• 검색 결과가 없습니다.

- Chapter 4. Systems of ODEs

N/A
N/A
Protected

Academic year: 2022

Share "- Chapter 4. Systems of ODEs"

Copied!
41
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Engineering Mathematics I

- Chapter 4. Systems of ODEs

민기복 민기복

Ki-Bok Min PhD Ki Bok Min, PhD

서울대학교 에너지자원공학과 조교수

Assistant Professor, Energy Resources Engineering, gy g g

(2)

Ch.4 Systems of ODEs. Phase Plane.

Q lit ti M th d Qualitative Methods

• Basics of Matrices and Vectors

• Systems of ODEs as Models

• Systems of ODEs as Models

• Basic Theory of Systems of ODEs

• Constant-Coefficient Systems. Phase Plane Method C it i f C iti l P i t St bilit

• Criteria for Critical Points. Stability

• Qualitative Methods for Nonlinear Systems Q y

• Nonhomogeneous Linear Systems of ODEs

(3)

Basics of Matrices and Vectors

• Systems of Differential Equations

– more than one dependent variable and more than one equationmore than one dependent variable and more than one equation

1' 11 1 12 2,

y a y a y 1 11 1 12 2 1

2 21 1 22 2 2

' ,

' ,

y a y a y a yn n

y a y a y a y

 

 

2 ' 21 1 22 2,

y a y a y 2 21 1 22 2 2

1 1 2 2

,

' ,

n n

n n n nn n

y a y a y a y

y a y a y a y

 

 

• Differentiation

– The derivative of a matrix with variable entries is obtained by differentiating each entry.

   

     

1 1  

2 2

' '

'

y t y t

t t

y t y t

y y

(4)

Basics of Matrices and Vectors

Eivenvalues (고유치) and Eivenvectors (고유벡터) Eivenvalues (고유치) and Eivenvectors (고유벡터)

• Let be an n x n matrix. Consider the equation where  is a scalar and x is a vector to be determined.

ajk

  

A

Ax   x

– A scalar  such that the equation holds for some vector

x ≠ 0 is called an eigenvalue

of A,

Ax   x

– And this vector is called an eigenvector of A corresponding to this eigenvalue .

A  

Ax x

(5)

Basics of Matrices and Vectors

Eivenvalues (고유치) and Eivenvectors (고유벡터) Eivenvalues (고유치) and Eivenvectors (고유벡터)

Ax x Ax   Ix  0  A I x 0

– n linear algebraic equations in the n unknowns (the components of x).

1, , n xx

p )

– The determinant of the coefficient matrix A 

I must be zero in

order to have a solution x ≠ 0.

• Characteristic Equation

– Determine λ1 and λ2

 

det A   I  0

Determine λ1 and λ2

– Determination of eigenvector corresponding to λ1 and λ2

(6)

Basics of Matrices and Vectors

Eivenvalues (고유치) and Eivenvectors (고유벡터) Eivenvalues (고유치) and Eivenvectors (고유벡터)

• Example 1. Find the eigenvalues and eigenvectors

4 0 4 0

2 . 1 6 . 1

0 . 4 0 . A 4

• If x is an eigenvector, so is kx g ,

(7)

Systems of ODEs as Models

10 gal/min

10 gal/min 10 gal/min

10 gal/min

VS.

10 gal/min

Single ODE Systems of ODEs

(8)

Systems of ODEs as Models

E l 3 Mi i bl (S 1 3) Example 3. Mixing problem (Sec 1.3)

– Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10

gal/min gal/min

– Amount of salt at t?

10 gal/min

10 gal/min

?

(9)

Systems of ODEs as Models

– Tank T1 and T2 contain initially 100 gal of water each.

– In T1 the water is pure, whereas 150 lb of fertilizer are dissolved in T2.

– By circulating liquid at a rate of 2 gal/min and stirring the amounts of fertilizer in T1 and in Ty t2   2 change with time t.

 

y t1

1 2 g

– Model Set Up

2 gal/min

2  

y

2 gal/min

1 2 1 1 1 1 2

2 2

' Inflow / min - Outflow / min Tank ' 0.02 0.02 100 100

y y y T y   y y

2 1 2 2 2 1 2

2 2

' Inflow / min - Outflow / min Tank ' 0.02 0.02 100 100

y y y T y y y

0 02 0 02

0.02 0.02 ' ,

0.02 0.02

y Ay A  

(10)

Systems of ODEs as Models

y1-y2 plane - phase plane (상평면 ) Trajectory (궤적) :

- 상평면에서의 곡선

- 전체 해집합의 일반적인 양상을 잘 표현함.

Phase portrait (상투영): trajectories in phase plane

(11)

Systems of ODEs as Models

• Example 2. Electrical Network

y1-y2 plane - phase plane (상평면 ) Trajectory (궤적) :

- 상평면에서의 곡선

- 전체 해집합의 일반적인 양상을 잘 표현함.

Phase portrait (상투영): trajectories in phase plane

(12)

Systems of ODEs as Models

Con ersion of an nth order ODE to a s stem Conversion of an nth-order ODE to a system

• 2

nd

order to a system of ODE – Example 3. Mass on a Spring

0 '

''  '  k 0 ''  cykymy

2 1' y

y 0 1 y

' , 2

1 y y y

y

2 1

y y y

2 1

2

2 1

' y

m y c

m y k

y y

2

0 1

' y

y m

c m

Ay k y

0

1

det 2

m k m

c c

k

I

A Calculation same

as before!

m m m

m as before!

) '' 2 ' 0 75 0 E ) '' 2 ' 0.75 0 Ex yyy

(13)

Systems of ODEs as Models

Con ersion of an nth order ODE to a s stem Conversion of an nth-order ODE to a system

– solve single ODE by methods for systemsg y y

– includes higher order ODEs into …first order ODE

(14)

Basic Theory of Systems of ODEs

C t ( l t i l ODE)

Concepts (analogy to single ODE)

   

• First-Order Systems

1' 1 , 1, , n y f t y y

1 1

,

n n

y f

y f

   

   

   

   

   

y f

2 2 1

1

' , , ,

' , , ,

n

n n n

y f t y y

y f t y y

n n

y f

   

 

' t, y f y

S l ti i t l t b

1

n n n

• Solution on some interval a<t<b

– A set of n differentiable functions y1 h t1

 

, , yn h tn

 

• Initial Condition:

y t1 0 K1, y t2 0 K2, , y tn  0 Kn

(15)

Basic Theory of Systems of ODEs E i t d U i

Existence and Uniqueness

• Theorem 1. Existence and Uniqueness Theorem

– Let be continuous functions having continuous partial derivatives in some domain R of

1, , n

f f

f f f

t

derivatives in some domain R of - space containing the point . Then the first-order system

1 1

1

, , , ,

n n

f f f

y y y

n ty y1 2yn

t K0, , , 1 Kn

space containing the point . Then the first order system has a solution on some interval satisfying the

0 1 n

0 0

t     t t

initial condition , and this solution is unique.

(16)

Basic Theory of Systems of ODEs

H N h

Homogeneous vs. Nonhomogeneous

   

• Linear Systems

     

y 'a t y   a t y g t

11 1 1 1

1 2

, ,

n

n nn n

a a y g

a a y g

   

   

   

   

   

A y g

     

     

1 11 1 1 1

1 1

'

n n

n n nn n n

y a t y a t y g t

y a t y a t y g t

 

 

y' Ay g

Homogeneous:

– Homogeneous:

– Nonhomogeneous: y' Ay g, g 0

' y Ay

(17)

Basic Theory of Systems of ODEs

C t ( l t i l ODE)

Concepts (analogy to single ODE)

• Theorem 2 (special case of Theorem 1)

Th 3

• Theorem 3

 

(1) (2) (1) (2) (1) (2)

1 2 1 2 1 2

(1) (2)

1 2

c c c c c c

c c

 

y y y y y Ay Ay

A y y Ay

(18)

Basic Theory of Systems of ODEs

G l l ti

General solution

미분 아님!!

• Basis, General solution, Wronskian

– Basis: A linearly independent set of n solutions of the y 1 , , y n

미분 아님!!

Basis: A linearly independent set of n solutions of the homogeneous system on that interval

– General Solution: A corresponding linear combination

, ,

y y

General Solution: A corresponding linear combination

 1  

 

1 n 1, , arbitraryn

c c c c

n

y y y

– Fundamental Matrix : An n x n matrix whose columns are n solutions y 1 , , y n    1 , ,  

n

Y y y y = Yc

– Wronskian of : y 1 , , y n The determinant of

Y

     

     

1 2

1 1 1

1 2

n n

y y y

y y y

ex)

   

     

     

1 2 2 2

1 2

W , ,

n

n n n

y y y

y y y

y yn

ex)

(1) (2) 0.5 1.5

1 1 0.5 1.5

1 1

1 2

(1) (2) 0.5 1.5

2 2

2 2

2 1

2

1 1.5

1.5

t t

t t

t t

c c

y y e e

Yc c e c e

c c

y y e e

     

         y

(19)

Constant Coefficient Systems.

• Homogeneous linear system with constant coefficients ' 

y Ay

• Homogeneous linear system with constant coefficients

– Where n x n matrix has entries not depending on tA  ajk

– Try yxet

'  et et

yxAyAxAxx

• Theorem 1. General Solution

y y

– The constant matrix A in the homogeneous linear system has a linearly independent set of n eigenvectors, then the corresponding solutions form a basis of solutions and the y 1 y n

solutions form a basis of solutions, and the corresponding general solution is

   

, ,

y y

 1 1  

1

n nt t

c e cn e

 

y x x

(20)

Constant Coefficient Systems.

• Example 1. Improper node (비고유마디점)

3 1

3 1

' 1 3

 

y Ay y 1 1 2

2 1 2

3 3

y y y

y y y

  

  

  c   c e t c e t

y1 c 1 2 1 2 1 4

y y

y c   c   c e c e

y2 1 2 1 1 2 1



y y

y

(21)

Constant Coefficient Systems.

• Example 2. Proper node (고유마디점)

1 0

'

 

y Ay y y1  y1 0 1

y Ay y

2 2

y   y

t t t

t

e c y

e c e y

c e c

2 2

1 1

2

1

1 0 0

1

 



 

 



 

  y

(22)

Constant Coefficient Systems.

• Example 3. Saddle point (안장점)

1 0

'

 

y Ay y y1  y1

0 1

y Ay y

2 2

y   y

t t

t y c e

e c

e

c

1 0 1 1

y t

e c e y

c e

c

2 2

2

1

1 y 0

(23)

Constant Coefficient Systems.

• Example 4. Center (중심)

0 1

'

 

y Ay y y1  y2 4 0

y Ay y

2 4 1

y    y

it it

it it it

it

e ic e

ic y

e c e

c e y

c i i e

c 2

2 2

1 2

2 2 2

1 2 1

2 2

1 2 2

2 1 2

1

y

(24)

Constant Coefficient Systems.

• Example 5. Spiral Point (나선점)

1 1

1 1 y1   y1 y2

' 1 1

 

y Ay y

2 1 2

y    y y

it e it

c i i e

c

11 1 2 1 1 y

(25)

Constant Coefficient Systems.

• Example 6. Degenerate Node (퇴화마디점):

– 고유벡터가 기저를 형성하지 않는 경우: 행렬이고유벡터가 기저를 형성하지 않는 경우: 행렬이

대칭이거나 반대칭(skew-symmetric)인 경우 퇴화마디점은

생길 수가 없음.

y 1 xet

y

y

 

 

2 1

1 ' 4

  xe

y

  xtet uet

y 2

t

t c t e

e

c 1 3 1 0 3









 

 

 





y c1 e c2 t e 1 1

1  

 

 





 

 

 

y

(26)

Constant Coefficient Systems.

SSummary Δ is discriminant (판별식) of determinant of (A-λI)

• Improper node (비고유마디점):

– Real and distinct eigenvalues of the same sign

1 2

0,   0

 

• Proper node (고유마디점):

– Real and equal eigenvalues

*

1 2

0,  

 

q g

• Saddle point (안장점):

Real eigenvalues of opposite sign

1 2

0,   0

 

– Real eigenvalues of opposite sign

• Center (중심):   0, pure imaginary

– Pure imaginary eigenvalues

• Spiral point (나선점):p p ( )   0, complex

– Complex conjugates eigenvalues with nonzero real part

* : when two linearly independent eigenvectors exist. Otherwise, degenerate node

(27)

Name Δ Eigenvalue Trajectories

Improper node

(비고유마디점)   0  1 2 0

Proper node

(고유마디점)   0  

(고유마디점) 0  1 2

Saddle Point

(안장점)   0  1 2 0

Center (중심)

Pure imaginary e.g.,i

( ) g

Spiral Point Complex number

  0

i

Spiral Point (나선점)

Complex number e.g., 1 i

(28)

Criteria for Critical Points. Stability

• Critical Points of the system

2

2 2 ' 21 1 22 2

'

dy dy dt y a y a y

y Ay 2 2 21 1 22 2

1 1 1 11 1 12 2

'

'

y dt y y y

dy dy y a y a y

dt

y Ay

– A unique tangent direction of the trajectory passing through except for the point

2 1

dy dy

 

0 0

P P

through , except for the pointP

– Critical Points: The point at which becomes undetermined, 0/0

0 : 0, 0

 

P P

1 2

: , P y y

2 1

dy dyy1

(29)

Criteria for Critical Points. Stability

• Five Types of Critical Points

– Depending on the geometric shape of the trajectories near them

Improper Node

Proper Node S

Saddle Point

Center

Spiral Point

(30)

Criteria for Critical Points. Stability

• Stable Critical point (안정적 임계점):

– 어떤 순간 에서 임계점에 아주 가깝게 접근한 모든 궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한0

t t

궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한 상태로 남아 있는 경우.

• Unstable Critical point (불안정적 임계점):

– 안정적이 아닌 임계점

• Stable and Attractive Critical point (안정적 흡인 임계점)

임계점):

– 안정적 임계점이고, 임계점 근처 원판 내부의 한 점을 지나는 모든 궤적이 t 를 취할 때 임계점에 가까이 접근하는 경우

(31)

Criteria for Critical Points. Stability

St bl & U t bl

Stable &

attractive

Unstable Unstable

Stable Stable &

Attractive

(32)

Qualitative Methods for Nonlinear S t

Systems

• Qualitative Method

– Method of obtaining qualitative information on solutions without Method of obtaining qualitative information on solutions without actually solving a system.

– particularly valuable for systems whose solution by analytic particularly valuable for systems whose solution by analytic methods is difficult or impossible.

N li

   

 

1 1 1 2

Nonlinear systems

' ,

, thus '

y f y y

' f

y f y

 

y2 ' f y y2

1, 2

y y

 

y ' a y a y h y y

linearization

   

 

1 11 1 12 2 1 1 2

2 21 1 22 2 2 1 2

, thus ,

' ,

y a y a y h y y y a y a y h y y

y' Ay h y

linearization

(33)

Qualitative Methods for Nonlinear S t

Systems

• Theorem 1. Linearization

– If fIf f11 and fand f22 are continuous and have continuous partial derivatives are continuous and have continuous partial derivatives in a neighborhood of the critical point (0,0), and if , then the kind and stability of the critical point of nonlinear systems are

th th f th li i d t

det A 0

the same as those of the linearized system

1' 11 1 12 2

th y a y a y ' A

– Exceptions occur if A has equal or pure imaginary eigenvalues;

1 11 1 12 2

2 21 1 22 2

, thus

' .

y y y

y a y a y

y' Ay

Exceptions occur if A has equal or pure imaginary eigenvalues;

then the nonlinear system may have the same kind of critical points as linearized system or a spiral point.

(34)

Qualitative Methods for Nonlinear S t

Systems

• Example 1. Free undamped pendulum

– Determine the locations and types of critical pointsDetermine the locations and types of critical points – Step 1: setting up the mathematical model

q : the angular displacement measured counterclockwise

q : the angular displacement, measured counterclockwise from the equilibrium position

The weight of the bob : mg

The weight of the bob : mg

A restoring force tangent to the curve of motion of the bob : mg sin q

By Newton’s second law, at each instant this force is balanced by the force of acceleration mLq``

'' sin 0 sin 0 g

mLθ mg θ'' k k

L

(35)

Qualitative Methods for Nonlinear S t

Systems

– Step 2: Critical Points Linearization  0, 0 , 2 , 0 ,   4 , 0 , sinθ'' k 0 set y1 , y2 ' 1' 2

' i

y y

k

2' sin 1

y  k y

2 0, sin 1 0 infinitely many critical points 0 , 0, 1, 2,

y y : nπ , n

1 0 1 '

– Step 3: Critical Points Linearization.

3

1 1 1 1

sin 1

y y 6 y    y 1 2

2 1

' 0 1

, thus ' 0

y y

' k y ky

   

y Ay y

, 0 ,  3 , 0 ,  5 , 0 ,

Consider the critical point (p , 0)

 

1 2

set y   , y  '  ' 0 1

'

y Ay y

critical points are all saddle points.

sinθ'' k 0  

1 1 1 13 1

sin sin sin 1

y y y 6 y y

         ' 0

 k

y Ay y

(36)

Qualitative Methods for Nonlinear S t

Systems

(37)

Nonhomogeneous Linear Systems of ODE

ODEs

• Nonhomogeneous of Linear Systems:

– Assume g(t) and the entries of the n x n matrix A(t) to be

'   , 

y Ay g g 0

Assume g(t) and the entries of the n x n matrix A(t) to be continuous on some interval J of the t-axis.

– General solution : General solution : y y h y p

: A general solution of the homogeneous system on J

: A particular solution(containing no arbitrary constants) of

 

y y y

 h

y

 p

y y'  Ay

'  

y Ay g

: A particular solution(containing no arbitrary constants) of on J

• Methods for obtaining particular solutions

y  y Ay

• Methods for obtaining particular solutions

– Method of Undetermined Coefficients – Method of the Variation of Parameter

(38)

Nonhomogeneous Linear Systems of ODE

ODEs

• Method of undetermined coefficients:

– Components of g : Components of g : – (1) constants

(2) iti i t f t

– (2) positive integer powers of t – (3) exponential functions

– (4) cosines and sines.

(39)

Nonhomogeneous Linear Systems of ODE

ODEs

• Example 1. Method of undetermined coefficients. Modification rule

3 1  6

A general solution of the homogeneous system :

3 1 6 2

' 1 3 2

y e t

 

     y Ay g

  2 4

1 2

1 1

h c   e t c   e t

– A general solution of the homogeneous system : y – Apply the Modification Rule by setting

Equating the terms on both sides:

1 2

1 1

   

   

y

 p te2t e2t

y u v

 1

t 2t

– Equating the -terms on both sides:

– Equating the other terms:

 

2 6 2 k h 0

k

 

 

A

2 1 with any 0

a 1 a

 

u Au u  

te 2t

– General solution :

 

2 2, choose 0

2 a 4 k

     k

u v Av v

1 1 1 2

  2   4   2   2

1 2

1 1 1 2

1 1 2 1 2

t t t t

c  e c  e  te   e

            y

참조

관련 문서

여기에는 농어촌주민의 보건복지 증진 을 위한 특별법에 근거해 노인복지법 제31조 노인복지시설을 종합적으로 배치한 복합노인복지시설을

식품소비행태조사와 관련한 다양한 정보는 식품소비행태조사 홈페이지&lt;http://foodsurvey.krei.re.kr/&gt;에서

[r]

설명하였다. ISSB 는 기업이 비즈니스에 영향을 미치는 ESG 요소 보고를 위해 전 세계적으 로 일관된 보고 표준을 의미한다.. Building a Global ESG Disclosure Famework:

다면적 기능 지불 추진 교부금 이란 도도부현이나 시정촌 등 지자체나 지역의 추진조직이 지불금의 교부나 활동 시행상황 확인 , 활동 조직에 대한 지원 등 원활한

중국의 사료용 수요는 곡물 시장 의 수급 상황에 중요한 영향을 미칠 것으로 생각된다.. 그러한 요인들은 물론 본 고에서 제시된

crystal phase Isotropic liquid organic compound. 3 degrees of order 1 degree of order 0 degrees

Step 2 can be repeated as many times as necessary to produce the desired level of accuracy, that