• 검색 결과가 없습니다.

-Order Linear ODEs

N/A
N/A
Protected

Academic year: 2022

Share "-Order Linear ODEs"

Copied!
74
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Engineering Mathematics I

- Chapter 2. 2

ndd

-Order Linear ODEs

민기복 민기복

Ki-Bok Min PhD Ki Bok Min, PhD

서울대학교 에너지자원공학과 조교수

Assistant Professor, Energy Resources Engineering, gy g g

(2)

1. First-Order ODEs

S (1)

Summary (1)

• Separation of variables & Reduction to separable form

– Separation of variablesSeparation of variables

  '  

g y y f x

  '   g y   

g y y f x dyf x dxc

– Extended Method: Reduction to separable form

  '   g y    

g y y f x dy f x dxc

y f y x

      

   

' y ' du dx

y f u x u f u

x f u u x

     

(3)

1. First-Order ODEs

S (2)

Summary (2)

• Exact differential equation

 ,  , 0 M N

M x y dx N x y dy

 ,  , 0

M x y dx N x y dy

y x

 , u  ,  ,   u  , dk &  

M x y u x y M x y dx k y N x y k y

x y dy

– Non exact differential equation (finding integrating factors)

y y

0

Pdx Qdy FPdxFQdy 0

 

 

  1 P Q

F R d h R

  exp

 

,   Q

F x R x dx where R x

Q y x

(4)

1. First-Order ODEs

S (3)

Summary (3)

• Linear ODEs

– Homogeneous ODEs

   

'

y p x y r x

Homogeneous ODEs

N h ODE

   

' 0 p x dx yp x y   yce

– Nonhomgeneous ODEs

   

' 0

y p x y r x pyr dxdy

– Bernoulli Equation (reduction to linear ODEs)

h h ,

y e e rdxc where  hpdx

– Bernoulli Equation (reduction to linear ODEs)

     

' a 0 & 1

y p x y g x y a a

       

1

' 1 1 a

u  a pu   a g u x  y x

(5)

1. 2

nd

-Order Linear ODEs I t d ti

Introduction

• ODEs

– Linear ODEsLinear ODEs – Nonlinear ODEs

• Linear ODEs of the 2

nd

order

– The most important ODEsp

– Transition to higher order Equations is immediate

(6)

Chapter 2. 2

nd

-Order Linear ODEs I t d ti

Introduction

2.1 Homogeneous Linear ODEs of 2nd order

2.2 Homogeneous Linear ODEs with Constant Coefficients 2.3 Differential Operators. Optional

2.4 Modeling: Free Oscillations (Mass-Spring System) 2.5 Euler-Cauchy Equations

2.6 Existence and Uniqueness of Solutions. Wronskian 2.7 Nonhomogeneous ODEs

2.8 Modeling: Forced Oscillations. Resonance 2.9 Modeling: Electric Circuits

2.10 Solution by Variation of Parameters

(7)

Homogeneous Linear ODEs of 2nd order

• Linear ODEs of 2

nd

order – Standard Form

     

'' '

yp x yq x yr x

– Homogeneous:

Ex)

 

0

r x

) 1

N h

 

'' ' 0

xy  y xy y'' 1x y' y 0

– Nonhomogeneous:

Ex)

 

0

r x '' 25 x cos y 25y e cos x

y y e x

 2

'' ' 0

y y y ?

(8)

Homogeneous Linear ODEs of 2nd order S iti P i i l

Superposition Principle

– If y1 and y2 are solutions of Homogeneous Linear ODE

yc y yc y

1 1 2 2

yc yc y

yc y1 1 yc y2 2

   

'' ' 0

yp x yq x y

– Ex1) – Ex2)

'' 0 y  y

'' 1

y  y y1  1 cos x y2  1 sin x

– Ex3)

y y

'' ' 0

y yxy

1 1 cos

y x y2 1 sin x

2

y1 x y2 1

(9)

Homogeneous Linear ODEs of 2nd order I iti l V l P bl (IVP)

Initial Value Problem (IVP)

   

'' ' 0

yp x yq x y

– Two Initial Condition for IVP

 

0 0 '

 

0 1

y xK y xK

– General solution

1 1 2 2

yc yc y

– Two arbitrary constants, C1 and C2 can be obtained from two i iti l diti

initial conditions.

(10)

Homogeneous Linear ODEs of 2nd order

• Example 4

   

'' 0, 0 3.0, ' 0 0.5

y  y 0, y

 

0 3.0, y

 

0  0.5

y y y y

(11)

Homogeneous Linear ODEs of 2nd order E l 4 I iti l V l P bl

Example 4 Initial Value Problem

   

'' 0, 0 3.0, ' 0 0.5

y  y y y  

(12)

Homogeneous Linear ODEs of 2nd order E l 4 I iti l V l P bl

Example 4 Initial Value Problem

   

'' 0 0 3 0 y' 0 0 5

y'' y 0, y 0 3.0, y' 0  0.5

y y y  

   

'' 0, 0 3.0, y' 0 3.0

y y y  

   

'' 0, 0 3.0, y' 0 10.0

y y y  

(13)

Homogeneous Linear ODEs of 2nd order E l 4 I iti l V l P bl

Example 4 Initial Value Problem

 0 3  

'' 0 0 ' 0 0 5

y'' y 0, y 0 3.0, ' 0y   0.5

y y y y  

 0 10.  

'' 0, 0, ' 0 0.5 y y y  y    

 0  

'' 0, y 3.0, ' 0 0.5

y  y   y  

(14)

Homogeneous Linear ODEs of 2nd order

• General solution (일반해):

– 구간 I에서 비례(proportional) 하지 않는 2계 제차 방정식의

1 1 2 2

y c y c y

구간 I에서 비례(proportional) 하지 않는 2계 제차 방정식의

해 y1, y2와 임의의 상수 c1, c2를 갖는 해

0 0

k and k

Linearly independent k1 0 and k2 0

1 1( ) 2 2( ) 0

k y x k y x

Linearly independent

1 1( ) 2 2( ) 0

k y x k y x

2 1

1 2 2 1

1 2

k k

y y or y y

k k

   

Linearly dependent

– Basis of solution (기저): 서로독립인 y1, y2를 구간 I에서의 제차방정식의 기저 (basis) 또는 기본계(fundamental system)

1 2

k k

– Particular solution (특수해): 일반해에서 c1, c2를 갖는 해

(15)

Homogeneous Linear ODEs of 2nd order Fi di b i if l ti i k

Finding a basis if one solution is known

• Method of reduction of order (by Lagrange)

x2 x y

'' xy' y 0

x x y

xy  y 0

x

y1 y22 uy11

(16)

Homogeneous Linear ODEs of 2nd order Fi di b i if l ti i k

Finding a basis if one solution is known

• Method of reduction of order (by Lagrange)

( ) ( ) 0

yp x yq x y

2 1 ' 2' ' 1 1' , '' 2'' '' 1 2 ' 1' 1'' y y uy y y u y uy y y u y u y uy

( ) ( ) 0

yp x yq x y

  1 1

1 1 1 1 1 1 1 1 1

1

2 '

'' ' 2 ' '' ' 0 '' ' y py 0 '' ' 0

u y u y py u y py qy u u y py qy

y

1

', ' '' '

y

U u U u U 1

1

2 ' 0

' 1

y p U y

dU

1

1 2 2 1 1

1 1

' 1

dU 2 y & ln 2 ln pdx,

p dx U y pdx U e y uy y Udx

U y y

   

 

(17)

Homogeneous Linear ODEs with Constant Coefficients

• 2

nd

order homogeneous linear ODEs with constant

coefficients (상수계수 2계 제차 선형미분방정식)

'' ' 0

yayby

y ex can be a solution

– λ is a solution of the following equation

2 a b 0

    

Characteristic equation (특성방정식, or auxiliary equation) Characteristic equation (특성방정식, or auxiliary equation)

(18)

Homogeneous Linear ODEs with Constant Coefficients

– Roots of quadratic equation

2

 

2

1 1

4 4

a a b a a b

1 2

 a a 4b

, 2 2

 a a 4b

   

1 2

1 2

x x

y e and y e

• Three kinds of the general solution of the equation

– (case I) Two real roots if  a2 4b 0 y c e1x c e2x

– (case I) Two real roots if

– (case II) A real double root if

1 2

4 0

a b y c e c e

1, 2

 

a 2

  a2 4b0 y c1c x e2 ax2

– (case III) Complex conjugate roots if

 

2 4 0 ax2 cos sin

a b y e A x B x a2 i

 

2 2

a 4

 b

(19)

Homogeneous Linear ODEs with Constant Coefficients

Case I. Two Distinct Real Roots λ

1

and λ

2

'' ' 0

yayby

• Basis of solutions

1

1

y e x

1x 2x

2

2

y e x

• Ex)

1 2

1 2

x x

y c e c e

2 0

y y y y(0) 4, y(0)  5

)

(20)

Homogeneous Linear ODEs with Constant Coefficients Case II. Real double root λ=-a/2

'' ' 0

yayby

• (case II) A real double root if  a 2 a2 4b0 y c1c x e2 ax2

 / 2

1

a x

y e Method of reduction of order y2 xe a/ 2 x

ax

E l 4)

1 22

y c c x eax



• Example 4) y y 0.25y 0, y(0) 3.0, y(0) 3.5

(21)

Homogeneous Linear ODEs with Constant Coefficients Case III. Complex Conjugate

( III) C l j t t

'' ' 0

yayby

a i

2 2

a 4

 b

2 4

2

a a b

 

• (case III) Complex conjugate roots

if a2 4b 0 y 2eax2Acosx Bsinx

a i

 

Basis of solutions:

1 +

a2 i

  2

a2 i

 

/ 2

1 ax cos

y e x y2 eax/ 2sinx

General solutions:

• Example 5)

/ 2 cos sin

y eax A xB x

0.4 9.04 0, (0) 0, (0) 3 y0.4y9.04y 0, y(0) 0, y(0) 3

y y y y y

(22)

Homogeneous Linear ODEs with Constant Coefficients Case III. Complex Conjugate

• Example 5.

(23)

Homogeneous Linear ODEs with Constant Coefficients

summary

'' ' 0

yayby  

2

a    b 0

yex

(24)

Differential Operators (미분연산자).

• Operator (연산자): A transformation that transforms a function into another function

• Differential Operator D (미분연산자)

A t hi h t f (diff ti bl ) f ti i t it – An operator which transforms a (differentiable) function into its

derivative

' dy Dy y

  dx

– Identity Operator I : Iy = y

dx

– Second-order differential operator (2계 미분연산자)

 

2

 

'' '

L P D D aD bI Ly P D y y ay by

• Example1. Factor and solve

L P D

 

D2 3D 40I P D y

 

0

(25)

Modeling: Free Oscillations (자유진동). (Mass- Spring System)

Spring System) Introduction

• A basic mechanical system

– a mass on an elastic spring, which moves up and down*.a mass on an elastic spring, which moves up and down .

*We choose the downward direction as the (+) direction.

(26)

Modeling: Free Oscillations. (Mass-Spring System) Modeling

• Physical Information

– Newton’s second law : Mass x Acceleration = ForceNewton s second law : Mass x Acceleration Force

– Hooke’s law: restoring force is directly proportional to the distance

• Modeling

– System in static equilibriumy q

Weight of body :

 

0 0 : spring constant F  ks k

0 0 0

FW  ksmg

Weight of body :

– System in motion

W mg

Restoring force : (Hooke’s law)k

(Newton’s second law) F1  ky

1 ''

FFmy

my '' ky 0

(27)

Modeling: Free Oscillations (자유진동). (Mass- Spring System)

Spring System) Introduction

• Alternative way of thinking

– a mass on an elastic spring, which moves horizontally.a mass on an elastic spring, which moves horizontally.

l t plate

(28)

Modeling: Free Oscillations. (Mass-Spring System) Undamped system

• Undamped System : ODE and Solution

– ODE : ODE : my '' ky  0

– Harmonic oscillation (조화진동)

k

0

myky

  cos

0

sin

0

cos 

0

 ,

02

k

y t A t B t C t

     m

    

(29)

Modeling: Free Oscillations. (Mass-Spring System) Undamped system

• Example 1

– Iron ball weight = 98 N Not to scale!

Iron ball weight 98 N – Stretched 1.09 m

1) H l

– 1) How many cycles per minutes? And its motion?

– 2) Pull down 16 cm and let it start

with zero velocity. its motion? 1.09 m

16 cm

(30)

Modeling: Free Oscillations. (Mass-Spring System) Undamped system

• Example 1.

(31)

Modeling: Free Oscillations. (Mass-Spring System) Undamped system

• Example 1.

(32)

Modeling: Free Oscillations. (Mass-Spring System) Damped system

Damping Force

2

'

F   cy

(33)

Modeling: Free Oscillations. (Mass-Spring System) Damped system

• Damped System : ODE and Solutions

– Damping force : (c: the damping constant)Damping force : (c: the damping constant)F2  cy' '' ' k 0 – (Newton’s second law )

2

1 2 ''

F F  Fmy

'' ' 0

mycyky

• Three types of motion

– Case 1 (Overdamping)( p g) c2  4mk. Distinct real roots 1 , 2

– Case 2 (Critical damping) . A real double root.

C 3 (U d d i ) C l j t t 4

cmk1 , 2

2 4

cmk

– Case 3 (Underdamping) . Complex conjugate roots.c22  4mk

(34)

Modeling: Free Oscillations. (Mass-Spring System) Damped system - overdamping

'' ' 0

mycyky

• Overdamping

c2 4mk

 

 t   t c c2 4mk

 

1 2

t t

y tc e

  

c e

   , 4

2 2

c c mk

m m

(35)

Modeling: Free Oscillations. (Mass-Spring System) Damped system – critical damping

'' ' 0

mycyky

• Critical damping

c2 4mk

   

t

c

y t    c

1

c t e

2

, y t c c t e 2

m

  

(36)

Modeling: Free Oscillations. (Mass-Spring System) Damped system - underdamping

• Underdamping 

2 4 k

'' ' 0

mycyky

• Underdamping

 

t

cos * sin *

t

cos*

y te

AtBtCe

t  

c2 4mk

     

y

* 1 2

2 4mk c

  

2m

(37)

Modeling: Free Oscillations. (Mass-Spring System) Damped system

• Example2. my ''  cy '  ky  0

10, 90, 100, 60, 10 mkc

( )  ( )

(0) 0.16, (0) 0

yy

(38)

Modeling: Free Oscillations. (Mass-Spring System) Damped system

• Example2

(39)

Modeling: Free Oscillations. (Mass-Spring System) Damped system

• Example2

(40)

Euler-Cauchy Equations

• Euler-Cauchy Equations

2

'' ' 0

x yaxyby  0

x yaxyby

(41)

Euler-Cauchy Equations

• Euler-Cauchy Equations :

x y2 '' axy' by 0

y xm

– Auxiliary Equation m2 a1m b  0

y

• Three kinds of the general solution of the equation

– Case 1 Two real roots m1, m2 y c x1 m1 c x2 m2

– Case 2 A real double root

C 3 C l j t t

1, 2 y 1 2

   1 2

1 ln

2 a m

m    ycc x x

– Case 3 Complex conjugate roots

   

cos ln sin ln

m i y x A

x

B

x

(42)

Euler-Cauchy Equations

• Example 1

2

'' 1.5 ' 0.5 0 x yxyy

• Example 2

2

'' 5 ' 9 0

x yxyy

• Example 3

2

'' 0.6 ' 16.04 0

x y yxy yy y

(43)

Existence and Uniqueness of Solutions. Wronskian

• Theorem 1. Existence and Uniqueness Theorem for Initial Value Problems

   

 0 0  0 1

'' ' 0 (1)

, ' (2) y p x y q x y

y x K y x K

– 위의 초기값 문제에서 와 가 열린구간 I에서

연속함수이고 구간 I내에 있다면 초기값 문제는 구간p

 

x q

 

x

연속함수이고, 구간 I내에 있다면, 초기값 문제는 구간x

I에서 유일한 해를 갖는다.x0

(44)

Existence and Uniqueness of Solutions. Wronskian

• Theorem 2. Linear Dependence and Independence of Solutions.

상미방이 열린 구간 I 에서 연속인 계수 p(x)와 q(x)를 갖는다고 가정. 이 때 구간 I 에서 제차 선형상미방의 두 개의 해 y1, y2가 구간 I 에서 일차종속이 되기 위한 필요충분조건은 그들의 Wronskian이 구간 I 내의 어떤 x0 에서 0이 되는 것임. x = x00 에서 W = 0 이라면, 구간 I 에서 W ≡ 0. 만약 W가 0이 아닌 x1 1 이 구간 I 내에

존재하면, 구간 I 에서 y1, y2는 일차독립.

(45)

Existence and Uniqueness of Solutions. Wronskian

• Wronskian or Wronskian Determinant (론스키안 행렬식)

 

' '

'

, ' 1 2 2 1

2 1

2 1

2

1 y y y y

y y

y y y

y

W

• Example 1.

2

0

y    y  0 y   y

1

cos

y   x y

2

 sin  x

1 2 cos sin 2 2

cos sin

sin cos

y y x x

W x x

x x

y y

 

    

   

    

  

1 2 sin x cos x

y y

   

(46)

Existence and Uniqueness of Solutions. Wronskian

• Example 2

2 0

y   y    y

y y y

(47)

Existence and Uniqueness of Solutions. Wronskian

• Theorem 3. Existence of a General Solution

– If p(x) and q(x) are continuous on an open interval I, then If p(x) and q(x) are continuous on an open interval I, then has a general solution on I.

• Theorem 4 A general solution includes All solutions

• Theorem 4. A general solution includes All solutions

– If the ODE has continuous coefficients p(x) and q(x) on some open interval I then every solution y = y(x)

   

'' ' 0

y p x y q x y

p(x) and q(x) on some open interval I, then every solution y = y(x) of the equation on I is of the form

where y1, y2 is any basis of solutions of the equation on I and c  1 1  2 2  1,

Y x C y x C y x

y1, y2 y q 1,

c2 are suitable constants. Hence the equation does not have singular solutions (that is, solutions not obtainable from a general solution)

general solution).

(48)

Nonhomogeneous ODEs

• Nonhomogeneous Linear ODEs

       

'' ' , 0

yp x y

 

q x y

 

r x

 

, r x

 

 (1)

y p y q y

   

'' ' 0 (2)

yp x yq x y

(49)

Nonhomogeneous ODEs

       

'' ' , 0

yp x yq x yr x r x  (1)

h p (3) yyy

(50)

Nonhomogeneous ODEs

St i l i h ODE

Steps in solving nonhomogeneous ODE

• Steps in solving nonhomogeneous ODE

     

'' '

yp x yq x yr x

• Steps in solving nonhomogeneous ODE

– Step1. solve homogeneous ODE  find yh

– Step2. find any solution of nonhomogeneous ODE  find yp

 y = yh + yp

– Step 3. Solution of initial value problem

• How to find y

p

?

(51)

Nonhomogeneous ODEs

M th d f d t i d ffi i t Method of undetermined coefficients

• Method of Undetermined Coefficients (미정계수법)

 

'' '

yaybyr x

• Method of Undetermined Coefficients (미정계수법)

– Method of finding yp

– Suitable for constant coefficient a, b (상수계수에 적합) – When r(x)’s derivatives are similar to itself( )

Exponential, power of x, cosine, sine, or sum of these

(52)

Nonhomogeneous ODEs

M th d f d t i d ffi i t Method of undetermined coefficients

 

'' '

yaybyr x

(53)

Nonhomogeneous ODEs

M th d f d t i d C ffi i t Method of undetermined Coefficients

• Choice Rules

– Basic Rule (기본규칙): Basic Rule (기본규칙):

If r(x) is one of the functions in the table  choose the function in the table.

– Modification Rule (변형규칙):

choice of yp = solution of homogeneous ODE  multiply by x (or

2 if l ti i d bl t) x2 if solution is double root) – Sum Rule (합규칙):

If r(x) is a sum of functions in the table  sum of the functions in the table

(54)

Nonhomogeneous ODEs

• Example 1.

  0 0 , '   0 1 . 5

, 001

. 0

''  yx

2

yy

y

• Example 2.

  ,  

, y y

y y

   

'' 3 2.25 10

1.5x

, 0 1, ' 0 0

yy   y   e

yy

• Example 3. p

'' 2 5

0.5x

40 cos10 190 sin10 ,

yy   yexx

  0 0.16, ' 0   40.08

yy

(55)

Nonhomogeneous ODEs

• Example 3

(56)

Nonhomogeneous ODEs

• Example 3

(57)

Nonhomogeneous ODEs E l 3

Example 3

Stable  nonhomogeneous ODE approaches Steady State solution, yp

O h i  bl

Otherwise  unstable

(58)

Modeling: Forced Oscillations. Resonance F M ti F d M ti

Free Motion vs. Forced Motion

• Free Motion : Motions in the absence of external forces caused solely by internal forces.

F d M ti M d l b i l di t l f

'' ' 0

mycyky

• Forced Motion : Model by including an external force.

 

'' '

mycykyr t  

mycykyr t

Input or driving forceput o d g o ce

y(t) : Output or response y(t) : Output or response

(59)

Modeling: Forced Oscillations. Resonance

• Motion with Periodic external forces

– Nonhomogeneous ODE : Nonhomogeneous ODE :

my ''  cy '  kyF

0

cos  t

– Through the method of undetermined coefficients

y y y

0

cos sin

y

p

atbt

By putting y into the homogeneous ODE

2 2

By putting yp into the homogeneous ODE

 

   

2 2

0

0 2 2 2 2 2 2 0 2 2 2 2 2 2

0 0

,

m c

a F b F

m c m c

  

     

   

(60)

Modeling: Forced Oscillations. Resonance

U d d t

Undamped system

• Undamped Forced Oscillations

 

0 0

F F

020 2

0

020 2

0 p F cos cos F cos

c y t y C t t

m m

Natural frequency:

0 h

y y

p

– Natural frequency: 0

2 

– Frequency of the driving force

– What will happen if ?

2

  

0

What will happen if ?

 

0

(61)

Modeling: Forced Oscillations.

U d d F d S t R

Undamped Forced System: Resonance

• Resonance (공진) : Excitation of large oscillations by matching input and natural frequencies.   

0

– yp is no longer in the form of – Why?

cos sin

y

p

atbt

– Why?

– From modification rule  yp t a( cos0t bsin0t)

0

0 0

2 sin

p

y F t t

m

What will happen if input and natural frequency are very close?

(62)

Modeling: Forced Oscillations.

U d d F d S t B t

Undamped Forced System : Beat

• Beats (맥놀이):

– Forced undamped oscillation when the difference of the input and Forced undamped oscillation when the difference of the input and natural frequencies is small.

0F20 2

cos cos 0 sin

202F0 2

02 sin 02

y t t t t

m m

   

참조

관련 문서

그러면 구간 에서 제차 선형상미분방정식의 두 개의 해 가 구간 에서 일차종속이 되는 필요충분조건은 그들의 Wronskian이 구간 내의

약국은 당초 수집 목적과 합리적으로 관련된 범위에서 정보주체에게 불이익이 발생하는지 여부, 암호화 등 안전성 확보에 필요한 조치를 하였는지 여부 등을

(Taekwondo, Weight Lifting Players) (90 min × 6 days/week) Warming

15) 세광음악출판사

[r]

3.2 Homogeneous Linear ODEs with Constant Coefficients.. 

 This highly important theorem holds for homogeneous linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs.. 2.1 Homogeneous Linear ODEs

회원국의 영토밖에서 다른 회원국의 , 영토내에서 회원국의 서비스 소비자에게