• 검색 결과가 없습니다.

- Chapter 1. First-Order ODEs (1계 상미분 방정식)

N/A
N/A
Protected

Academic year: 2022

Share "- Chapter 1. First-Order ODEs (1계 상미분 방정식)"

Copied!
48
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Engineering Mathematics I

- Chapter 1. First-Order ODEs (1계 상미분 방정식)

민기복

( )

민기복

Ki-Bok Min PhD Ki Bok Min, PhD

서울대학교 에너지자원공학과 조교수

Assistant Professor, Energy Resources Engineering, gy g g

(2)

Introduction

1. Basic Concepts. Modeling

2 Geometric Meaning of y’=f(x y) Directional Fields 2. Geometric Meaning of y =f(x,y). Directional Fields

3. Separable ODEs (변수분리형 상미분방정식). Modeling 4. Exact ODEs (완전 상미분방정식). Integrating Factors.

5 Li ODE (선형 상미분방정식) B lli E ti

5. Linear ODEs (선형 상미분방정식). Bernoulli Equation.

Population Dynamics

6. Orthogonal Trajectories (직교곡선족). Optional

7 Existence and Uniqueness of Solutions (해의 존재성과 7. Existence and Uniqueness of Solutions (해의 존재성과

유일성 )

(3)

Introduction

Ph sical problem s mathematical modeling Physical problem vs. mathematical modeling

• Many physical behavior can be expressed as differential equation (containing derivatives of unknown function)

• Three Steps

1 Deriving them from physical or 1. Deriving them from physical or

other problems (modeling)

2 Solving them by standard methods 2. Solving them by standard methods 3. Interpreting solutions and their

h i t f i bl graphs in terms of a given problem

Fig.1 Some applications of differential equations

(4)

1.1 Basic Concepts. Modeling ODE PDE

ODE vs PDE

• Differential Equation: An equation containing derivatives of an unknown function

– Ordinary Differential Equation (상미분방정식) : contains one or several derivatives of an unknown function of one independent variables (독립변수 1개)

Ex. y' cos , '' 9x y y 0, x y y2 ''' ' 2 e yx ''

x2 2

y2

– Partial Differential Equation (편미분방정식) : contains partial

 

q ( ) p

derivatives of an unknown function of two or more variables (독립변수 2개이상)

Ex 2 2 Ex. 2 2

2 2 0

u u

x y

(5)

1.1 Basic Concepts. Modeling O d E li it I li it

Order, Explicit vs. Implicit

• Order: The highest derivatives of the unknown function

– Ex. Ex. (1)(1) y'cos x 11 Order (1계)st Order (1계)

– (2) 2nd order (2계)

(3) 3 d d (3계)

y

'' 9 0 y y

– (3) 3rd order (3계)

• First-order ODE: Equations contain only the first derivatives y’

 

2 2 2

''' ' 2 x '' 2 x y y e y x y

q y y

and may contain y and any given functions of x

– Explicit form: Explicit form: y' f x y , – Implicit form:

 ,

y f y

, , ' 0

F x y y

(6)

1.1 Basic Concepts. Modeling T f S l ti

Types of Solution

• Solution: functions that make the equation hold true

– General solution (일반해): a solution that contains an arbitrary General solution (일반해): a solution that contains an arbitrary constant

– Particular solution (특수해): a solution in which we choose a Particular solution (특수해): a solution in which we choose a specific constants

– Singular solution (특이해): an additional solution that cannot be Singular solution (특이해): an additional solution that cannot be obtained from the general solution

Ex 16) ODE y′2 − xy′ + y = 0, general solution y = cx − c2

) y y y , g y

singular solution y = x2/4.

(7)

1.1 Basic Concepts. Modeling I iti l V l P bl

Initial Value Problem

• Initial Value Problem

– An ordinary differential equation together with specified value of An ordinary differential equation together with specified value of the unknown function at a given point in the domain of the solution

   

0 0

' , ,

yf x y   , , y x  

0

y

0

y f y y y

(8)

1.1 Basic Concepts. Modeling E l 4

Example 4.

• Solve the initial value problem

 0 5.7

, 3

' y y

dx y dy

• Step 1 Find the general solution.

dx

St 2 A l th i iti l diti

  3x

y x ce

• Step 2 Apply the initial condition.

 0 ce0 c 5.7 y

Particular solution :

y x 5.7e3x

(9)

1.1 Basic Concepts. Modeling

Ph sical phenomena  Mathematical model Physical phenomena  Mathematical model

• Typical steps of Modeling

– Step1 : The transition from the physical situation to its Step1 : The transition from the physical situation to its mathematical formulation

– Step 2: The solution by a mathematical methodStep 2: The solution by a mathematical method

– Step 3: The physical interpretation of differential equations and their applications

their applications

(10)

1.1 Basic Concepts. Modeling E l 5

Example 5.

• Given an amount of a radioactive substance, say 0.5 g(gram), find the amount present at any later time.

– Physical Information: Experiments show that at each instant a radioactive substance – Physical Information: Experiments show that at each instant a radioactive substance

decomposes at a rate proportional to the amount present.

– Step 1 Setting up a mathematical model(a differential equation) of the physical process.

B th h i l l dy dy k By the physical law :

The initial condition :

– Step 2 Mathematical solution.

dy dy

y ky

dt dt

 0 0.5

y

p

General solution : Particular solution :

Always check your result :

  kt

y t ce

 0 0 0.5   0.5 kt

y ce  c y t e

y y

– Step 3 Interpretation of result.

The limit of as is zero.y t 

Fig.4. Radioactivity (Exponential decay, y = 0.5ekt, with k = −1.5 as an example

(11)

1.2 Geometric meaning of y’=f(x,y).

Di ti Fi ld Direction Fields

• Direction Field (방향장)

– The graph with line segments (tangent line to the solution).

• Reason of importance of the direction field

– You need not solve a ODE

– The method shows the whole family of solutions and their typical properties.

'

Isoclines: curves of

'

yxy

Fig. 7 Direction field of y′ = xy

*CAS (Computer Algebra System):

ex) Maple, Mathematica, Matlab

Isoclines: curves of equal inclination

(12)

1.3 Separable ODEs. Modeling D fi iti

Definition

• Separable Equation

  '  

g y yf x

– 왼쪽은 y, 오른쪽은 x만으로 구성 가능한 형태

   

g y yf x

• Method of separation of variables (변수분리법) Method of separation of variables (변수분리법)

       

f x

dy

f x dx c dy dx dy

y y

g

 

'

 

g

 

y

 

y f dx y

f y y

g g y

(13)

1.3 Separable ODEs. Modeling

E l 1

Example.1

Solve . y'1 y2

y dx dy y

dx dy y

y

1 1

1 /

1 1 '

2 2

2 (변수분리형)

c x y c

dx

dy

1y dy

dxc arctan y xc (적분)

1

arctan

2 (적분)

x c

y

tan

(정리)

(14)

1.3 Separable ODEs. Modeling E l 3 Mi i P bl

Example 3. Mixing Problem

– Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10

gal/min gal/min

– Amount of salt at t?

– Step1. Setting up a model – Step2. Solution of the modelp

(15)

1.3 Separable ODEs. Modeling

E tended Method Red ction to Separable Extended Method: Reduction to Separable Form

• When equation is not separable???

• Extended Method: Reduction to Separable Form

• Extended Method: Reduction to Separable Form

– A certain 1st order equation can be made separable by a simple change of variables

change of variables

y f y x

      . cos y

Ex x

  

 

 

y & ' ' '

y ux u y ux u x u

x

   

' y ' du dx

y f u x u f u

x f u u x

       f  

(16)

1.3 Separable ODEs. Modeling

E ample 6 Red ction to Separable form Example 6. Reduction to Separable form

• Example 6. Reduction to Separable Form. Solve

2

' 2

2xyyyx 2xyyy x

(17)

1.3 Separable ODEs. Modeling

E l 6 R d ti t S bl Example 6. Reduction to Separable form

• Example 6. Reduction to Separable Form. Solve

2

' 2

2xyyyy  yyx





y

x x y y

x y

xyy 2

' 1 '

2 2 2

(2xy로 나눔)

 

y u x u u u

x u y ux

y 1

2 ' 1

' ,

,

dx u du

u du u u

x

u 1 1 1 2 1 2 1

'

2

 

dx

du x x u

dx u u

u u x

u 1

1 2

2 2 2

* 2

2 1 ln ln ,

ln

* ln

1 ln

1 *

1

2 c

e c c

c c

x u

c dx u du

u2 1 x x x

 

cx y

x x c x

y x

u c

2 2

2

2 1 1

x x

x

4 2

2 2

2 c

c y

x

 

(18)

1. 4 Exact ODEs. Integrating Factors B i Id

Basic Ideas

미분)

u u

 

( , ), (

For u x y its differential 미분) is

u u

du dx dy

x y

 

 

 

( , ) , 0

if u x yc then du

2 3

F l if

3 2 2

(1 2 ) (3 ) 0

ddd

2 3

,

For example if u   x x yc

1 2

3

dyxy

3 2 2

(1 2 ) (3 ) 0

du   xy dxx y dy

2 2

' 1 2

3

dy xy

or y dx x y

   

(19)

1. 4 Exact ODEs. Integrating Factors D fi iti

Definition

• Exact Differential Equation (완전미분방정식) :

   

If th diff ti l f i t

  ,   , 0

M x y dxN x y dy

   

– If the differential form is exact – This means that this form is the differential of u(x,y)

 ,  ,

M x y dx N x y dy

– Condition for exactness

u u

du dx dy

x y

du 0 u x y

 

, c

– Condition for exactness

M N

y x

2

M u u u N

y y x x y x y x

   

 

y x

y yx  x y xy x

(20)

1. 4 Exact ODEs. Integrating Factors S l ti th d

Solution method

• Solution method of exact differential equation (완전미분방정식 해법) :

 

  ,   , u u 0

M x y dx N x y dy dx dy

x y

 

   

 

 

, u

 

,

 

,

 

M x y u x y M x y dx k y

x

    

Case 1)

   

u , dk &

N x y k y

y dy

   

 

, u

 

,

 

,

 

N x y u x y N x y dy l x

y

    

Case 2)

   

u , dl &

M x y l x

x dx

(21)

1. 4 Exact ODEs. Integrating Factors E l 1

Example 1.

• Solve

– Step 1 Test for exactness.

  

2

  

cos x y dx 3y 2y cos x y dy 0

M N

Step 1 Test for exactness.

 , cos M sin

M x y x y x y

y

 

 , 3 2 2 cos N sin

N x y y y x y x y

x

 

y x

– Step 2 Implicit general solution.

x

  M d k  cos d k  sin   k

          

  2 3 2

, , cos sin

cos , 3 2 *

u x y M x y dx k y x y dx k y x y k y

u dk dk

x y N x y y y k y y c

y dy dy

Step 3 Checking an implicit solution

  3 2

u x y, sin x y y y c

– Step 3 Checking an implicit solution.

(22)

1. 4 Exact ODEs. Integrating Factors I t ti F t

Integrating Factors

• Reduction to Exact Form, Integrating Factors

– Some equations can be made exact by multiplication by some Some equations can be made exact by multiplication by some function (called the Integrating Factor, 적분인자)

• Ex 3

d d 0

• Ex 3.

– This equation is not exact. Why?

0 ydx xdy

Integrating factor – multiplying it by

 

1 2

x

Integrating factor

2 2 2

1 1 1

y 0 y

dx dy

x x y x x x x

 

    

• Issue is then how to find this integrating factor (when it is not

simple)?

(23)

1. 4 Exact ODEs. Integrating Factors I t ti F t

Integrating Factors

• Given a nonexact equation

0 Pdx Qdy  

– Finding Integrating Factors (F)

0 Pdx Qdy  

0 FPdxFQdy

– The exactness condition

 FP  FQ F P F P F P F Q

y x y y x x

(24)

1. 4 Exact ODEs. Integrating Factors I t ti F t

Integrating Factors

– Golden Rule: Solve a simpler one. Hence we look for an integrating factor depending only on one variable.

  F F 0

F F x F',

x y

1 dF     1 P Q

 

 

1 1

' where

y x

dF P Q

FP F Q FQ R x R x

F dx Q y x

 

 

F x expR x dx

  1 * 1   

* * * where * * exp *

*

dF Q P

F F y R R F y R y dy

F dx P x y

(25)

1. 4 Exact ODEs. Integrating Factors I t ti F t

Integrating Factors

1 P Q

  1 P Q

R x Q y x

* 1 Q P

R

* Q

R P x y

(26)

1. 4 Exact ODEs. Integrating Factors I t ti F t

Integrating Factors

• Integrating factor for Exact Differential Equation???

1 P Q

  1 P Q

R x Q y x

  exp

 

F x R x dx

* 1 Q P

R P x y

  

* exp *

F y R y dy

P x y

(27)

1. 4 Exact ODEs. Integrating Factors E l 5 I t ti F t

Example 5 - Integrating Factors

• EX. 5 Find Integrating Factor and solve the following initial value problem

e

x y

ye

y

dx xe

y

1dy 0, y   0   1

– Step 1. Nonexactness

– Step 2. Integrating factor. General Solutionp g g St 3 P ti l S l ti

– Step 3. Particular Solution

(28)

1. 4 Exact ODEs. Integrating Factors E l 5 I t ti F t

Example 5 - Integrating Factors

x y

y

d

y

1d 0   0 1

– Step 1. Nonexactness

e

x y

ye

y

dx xe

y

1dy 0, y   0   1

  x y y P x y y y

P

p Step 2

  x y y ex y ey yey

ye y e

y x

P

,

  y ey

x xe Q

y x

Q

1

, x

Q y P

– Step 2.

1 1 1

1 1

x y y y y x y y

y y

P Q

R e e ye e e ye

Q y x xe xe

 

1 1

* Q P y x y y y 1 * y

R e e e ye F y e

 

fails

1  

x y y

R e e e ye F y e

P x y e ye

 

ex y dx x ey dy 0

u

x x   u '  y '  y ,   y

u e y dx e xy k y x k y x e k y e k y e

y

     

 x y e xy e c u , x y

– Step 3. Particular Solution

 0 1 0, 1 0 0 3.72  , x y 3.72

y   u  e   e u x y e xye

(29)

Last Lecture

• Exact differential equation

 ,  , 0

M x y dx , N x y dy , 0 M N M x y dx N x y dy

 , u  ,  ,   u  , dk &  

M x y u x y M x y dx k y N x y k y

x y dy

y x

– Non exact differential equation (finding integrating factors)

y y

0

Pdx Qdy FPdx FQdy 0

  exp

 

,   1 P Q

F x R x dx where R x

Q y x

(30)

1.5 Linear ODEs I t d ti

Introduction

선형 미분방정식

제차 선형 미분방정식 (Homogeneous 미분방정식

선형 미분방정식 (Linear ODEs)

(Homogeneous Linear ODEs)

비제차 선형미분방정식 미 방정식

(ODEs)

비선형 미분방정식 (Nonhomogeneous Linear ODEs)

(Nonlinear ODEs)

Linear ODE (선형미분방정식): 종속변수와 그 도함수가 모두 1차인 미분방정식 각 계수는 독립변수에만 의존 모두 1차인 미분방정식. 각 계수는 독립변수에만 의존

(31)

1.5 Linear ODEs

D fi iti d St d d F

Definition and Standard Form

– Linear ODEs are models of various phenomena

– Linear ODEs: linear in both the unknown function and its derivatives. p(x) and r(x) can be any given functions of x.

   

'

yp x yr x Standard Form – ex) y p  y   Standard Form

(start with y’)

'cos sin

y x y x x

Homogeneous Linear ODEs (r(x) is zero for all x)

ex) y' p x y  0 r x( ) 0

Nonhomogeneous Linear ODEs ex)

N li ODE N t li ODE

   

' 0

y p x y r x

– Nonlinear ODEs = Not linear ODEs.

Ex) y' p x y

 

r x y

 

2

(32)

1.5 Linear ODEs S l ti th d Solution method

– Homogeneous Linear ODE.(Apply the method of separating variables)

 

' 0

yp x y

– Nonhomogeneous Linear ODE.(Find integrating factor and solve )

   

'

yp x y    r x  

yp x y r x

(33)

1.5 Linear ODEs S l ti th d Solution method

– Homogeneous Linear ODE.(Apply the method of separating variables)

dy

     

' 0 dy ln *

y p x y p x dx y p x dx c

y    

When c=0  trivial solution (자명해)

 

p x dx

y ce

– Nonhomogeneous Linear ODE.(Find integrating factor and solve )

y

   

' 0

y p x yr x pyr dxdy py r p 0  1

y x

  

Not exact!

1 P Q 1 dF pdx

R p p F e

R p p F e

Qy x F dx

y 0

pdx pdx

e pyr dxe d

  '  '  ,  

pdx u pdx pdx pdx pdx

u ye l x  pye l x e pyr l x  re , l x  re dxc pdx pdx pdx pdx

u ye l x pye l x e py r l x re l x re dx c

x

u ye re dx c ye re dx c

  y epdx repdxdx c

(34)

1.5 Linear ODEs.

E l 1 Li ODE Example 1. Linear ODE

• EX.1 solve the linear ODE

y'y e2x

1 22x h

d

2 2

1, ,

x

h h x x x x x x x

p r e h pdx x

y e e rdx c e e e dx c e e c e ce

      

     

              

 

(35)

1.5 Linear ODEs.

E l 2 Li ODE Example 2. Linear ODE

• Example 2)

' tan sin 2 (0) 1

yy xx y

(36)

1.5 Linear ODEs.

B lli E ti Bernoulli Equation

• Bernoulli Equation (nonlinear  linear)

   

' a

y p x y

 

g x y

 

a 0 & a 1

    1 a

u x  y x 

 

   

 

1



'u 1 a y ya ' 1 a ya gya py 1 a g py a 1 a g pu

       

   

'u 1 a pu 1 a g

   

참조

관련 문서

Transverse integrated method is an innovative way of solving 3-D neutron diffusion equation which is to convert the 3-D partial. differential equation into 3

Step 1 Setting up a mathematical model (a differential equation) of the physical process.. By the physical law : The initial condition : Step

Fluorescence Amplication and Development of VOCs Sensor Based on Anisotropic Porous Silicon Derivatives..

• 계면 면적 수송 방정식 (IAT: Interface area transport equation). • 계면 비견인력

2.2 Homogeneous Linear ODEs with Constant Coefficients 2.3 Differential

Step 2 can be repeated as many times as necessary to produce the desired level of accuracy, that 

→ Bernoulli equation can be applied to any streamline.. The concepts of the stream function and the velocity potential can be used for developing of differential

• Beams that have more number of unknown reactions loads (forces or moments) than can be obtained by conditions of equilibrium. • The deflections of such beams must be taken