• 검색 결과가 없습니다.

ODE S C HAPTER 3. H IGHER O RDER L INEAR

N/A
N/A
Protected

Academic year: 2022

Share "ODE S C HAPTER 3. H IGHER O RDER L INEAR"

Copied!
22
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

C HAPTER 3. H IGHER O RDER L INEAR ODE S

2019.4

서울대학교

조선해양공학과

서유택

(2)

3.1 Homogeneous Linear ODEs

ODE of nth order (n계 상미분 방정식):

Linear ODE of nth order:

(Standard Form)

Homogeneous: r(x) =0

Nonhomogeneous: r(x) ≠ 0

  n n 1     n 1 1   ' 0    

yp x y   p x yp x yr x

, , ', ,   n0

F x y y y

Homogeneous Linear ODE: Superposition Principle, General Solution

 Theorem 1 Fundamental Theorem for the Homogeneous Linear ODE

For a homogeneous linear ODE, sums and constant multiples of solutions on some open interval I are again solutions on I.

(3)

3.1 Homogeneous Linear ODEs

 Definition General Solution (일반해), Basis (기저), Particular Solution (특수해)

A general solution of an ODE on an open interval I is a solution on I of the form arbitrary

y = c 1 y 1

(x) + ···+ c

n y n

(x) (c

1

, …, c

n

)

where y

1

, …, y

n

is a basis (or a fundamental system) of solutions of the equation on I;

that is, these solutions are linearly independent on I.

A particular solution of the equation on I is obtained if we assign specific values to the n constants y

1

, …, y

n

in c

1

, …, c

n .

(4)

3.1 Homogeneous Linear ODEs

 Definition Linear Independence and Dependence (1차독립과 1차종속)

n functions y 1

(x), …, y

n

(x) are called linearly independent on some interval I where they are defined if the equation

k 1 y 1

(x) + ···+ k

n y n

(x) = 0 (c

1

,…, c

n

) on I implies that all k

1

, …, k

n

are zero.

These functions are called linearly dependent on I if this equation also holds on I

for some k 1 , …, k n not all zero.

 Ex. 1 Linear Dependence

Show y 1 = x 3 , y 2 = -2x, y 3 = 3x 3 are linearly dependent on any interval.

(5)

3.1 Homogeneous Linear ODEs

 Theorem 2 Existence and Uniqueness Theorem for Initial Value Problems

If the coefficients p

0

(x), …, p

n-1

(x) of the equation are continuous on some open interval I and x

0

is in I, then the initial value problem has a unique solution y(x) on I.

Initial Value Problem (초기값문제). Existence and Uniqueness

Initial value problem

  n n 1     n 1 1   ' 0   0

yp x y   p x yp x y

and

y x  

0

K y x

0

, '  

0

K

1

, , y  

n1

  x

0

K

n1

(6)

 Ex. 2 Solve the following initial value problem on any open interval I on

the positive x-axis containing x = 1.

Step 1 General solution of the homogeneous ODE

Substitution of

Corresponding general solution of the homogeneous ODE:

y h = c 1 x + c 2 x 2 + c 3 x 3

Step 2 Particular Solution

Answer y h

= 2x + x

2

- x

3

    

1 2 3 1 6 6 0 1, 2, 3 yx

m

m mm   m m   m    m

3.1 Homogeneous Linear ODEs

 Initial Value Problem for a Third-Order Euler-Cauchy Equation

4 )

1 ( ,

1 ) 1 ( , 2 ) 1 ( , 0 6

6 3

2

3 y



x y



x y



y

y

y

 

y

  

x

4 6

2 )

1 (

1 3

2 )

1 (

2 )

1 (

3 2

3 2

1

3 2

1

 

 

c c

y

c c

c y

c c

c y

1 2, 2 1, 3 1

c c c

    

(7)

3.1 Homogeneous Linear ODEs

Linear Independence of Solutions. Wronskian

 

     

1 2

1 2

1

1 1 1

1 2

' ' '

, ,

n

n n

n n n

n

y y y

y y y

W y y

y y y

 Theorem 3 Linear Dependence and Independence of Solutions

Let the ODE have continuous coefficients p

0

(x), …, p

n-1

(x) on an open interval I.

Then n solutions y

1

, …, y

n

of the equation on I are linearly dependent on I

if and only if their Wronskian is zero for some x = x 0 in I.

Furthermore, if W is zero for x = x

0

, then

W is identically zero on I.

Hence if there is an x

1

in I at which W is not zero, then y

1

, …, y

n

are linearly independent on I,

so that they form a basis of solutions of the equation on I.

(8)

Ex. Show that the given functions are solutions and form a basis on any interval.

1, x, x 2 , x 3

3.1 Homogeneous Linear ODEs

 Initial Value Problem for a Third-Order Euler-Cauchy Equation

Q:?

(9)

3.1 Homogeneous Linear ODEs

 Theorem 5 General Solution Includes All Solutions

If the ODE has continuous coefficients p

0

(x), …, p

n-1

(x) on some open interval I, then every solution y = Y(x) on I is of the form

where y

1

, …, y

n

is a basis of solutions and C

1

, …, C

n

are suitable constants.

 

1 1

 

n n

 

Y xC y x   C y x

A General Solution Includes All Solutions

 Theorem 4 Existence of a General Solution

If the coefficients p

0

(x), …, p

n-1

(x) of the equation are continuous on some open interval I, then the equation has a general solution on I.

(10)

nth-order homogeneous linear ODEs with constant coefficients:

We try .

Characteristic equation (특성방정식):

General Solutions

 Distinct Real Roots: all the n roots λ 1

, …, λ

n

are real and different.

constitute a basis.

 Simple Complex Roots: λ = γ±iω

are simple roots

 two corresponding linearly independent solutions are

1 2

.

ye x cos  x y ,  e x sin  x

3.2 Homogeneous Linear ODEs with Constant Coefficients

    1

1 1 ' 0 0

n n

ya n y   a ya y

1

1 1 0 0

n n

a n a a

      

1

1 x , , n n x ye ye

ye x

(11)

General Solutions

 Multiple Real Roots: λ is a real root of order m.

 m corresponding linearly independent solutions are

e λx , xe λx , x 2 e λx , ···, x m-1 e λx .

 Multiple Complex Roots: λ = γ±iω are double roots.

 corresponding linearly independent solutions are

e γx cos ωx, e γx sin ωx, xe γx cos ωx, xe γx sin ωx.

3.2 Homogeneous Linear ODEs with Constant Coefficients

(12)

Ex 2. Solve the initial value problem.

3.2 Homogeneous Linear ODEs with Constant Coefficients

 Simple Complex Roots. Initial Value Problem

299 0

11 0

4 0

0 100

100         

 

  y y y y ( ) y ( ) y ( )

y

3 2

100 100 0

          1, 10i

1 1

1

cos10 sin10

10 sin10 10 cos10 100 cos10 100 sin10

x x

x

y c e A x B x

y c e A x B x

y c e A x B x

  

   

   

1 1 1

4 10 11

100 299

c A

c B

c A

 

 

  

101 A  303,   A 3

1

B 

1

1

c 

3cos10 sin10

y e x x x

   

(13)

Ex. Solve the ODE.

3.2 Homogeneous Linear ODEs with Constant Coefficients

 Real Double and Triple Roots

Q:?

2 0

y ivy    y

(14)

Nonhomogeneous linear ODEs of nth order (

n 계 비제차 선형 상미분방정식)

General solution: y(x) = y

h

(x) + y

p

(x)

y h

= c

1 y 1

(x) + ···+ c

n y n

(x) is a general solution of

y p

is any solution of on I containing no arbitrary constants.

Initial value problem

 

n n 1

   

n 1 1

  '

0

    ,   0 yp

x y

  p x yp x yr x r x

 

n n 1

   

n 1 1

  '

0

  0 yp

x y

  p x yp x y

 

n n 1

   

n 1 1

  '

0

   

yp

x y

  p x yp x yr x

3.3 Nonhomogeneous Linear ODEs

 

n n 1

   

n 1 1

  '

0

   

yp

x y

  p x yp x yr x

and

y x  

0

K

0

, ' y x  

0

K

1

, , y  

n1

  x

0

K

n1

(15)

3.3 Nonhomogeneous Linear ODEs

Method of Undetermined Coefficients (미정계수법)

 

n n 1

   

n 1 1

  '

0

    ,   0 yp

x y

  p x yp x yr x r x

Choice Rules for the Method of Undetermined Coefficients

a. Basic Rule. If r(x) is one of the functions in the first column in Table 2.1, choose y p in

the same line and determine its undetermined coefficients by substituting y p and its

derivatives into y (n) +a n-1 y (n-1) + ··· + a 1 y ʹ + a 0 y = r(x).

(16)

3.3 Nonhomogeneous Linear ODEs

Choice Rules for the Method of Undetermined Coefficients

b. Modification Rule. If a term in your choice for y p is a solution of the

homogeneous ODE corresponding to y (n) +a n-1 y (n-1) + ··· + a 1 y ʹ + a 0 y = r(x) then multiply this term by x k , where k is the smallest positive integer such that this term times x k is not a solution of the homogeneous ODE.

Method of Undetermined Coefficients (미정계수법)

 

n n 1

   

n 1 1

  '

0

    ,   0

yp

x y

  p x yp x yr x r x

(17)

3.3 Nonhomogeneous Linear ODEs

Choice Rules for the Method of Undetermined Coefficients

c. Sum Rule. If r(x) is a sum of functions in the first column of Table 2.1, choose for y p the sum of the functions in the corresponding lines of the second column.

Method of Undetermined Coefficients (미정계수법)

 

n n 1

   

n 1 1

  '

0

    ,   0

yp

x y

  p x yp x yr x r x

(18)

Ex 1. Solve the initial value problem.

3.3 Nonhomogeneous Linear ODEs

 Simple Complex Roots. Initial Value Problem

47 0

3 0

3 0

30 3

3           

  y y y e y ( ) y ( ) y ( )

y x

(not satisfied)

(from modification rule)

(19)

Ex 3. Solve the initial value problem.

3.3 Nonhomogeneous Linear ODEs

 Simple Complex Roots. Initial Value Problem

47 0

3 0

3 0

30 3

3           

  y y y e y ( ) y ( ) y ( )

y x

(20)

3.3 Nonhomogeneous Linear ODEs

Method of Undetermined Coefficients (미정계수법)

Method of Variation of Parameters (매개변수변환법)

W j

is obtained from W by replacing the jth column of W by the column [0 0 ···0 1]

T

When n = 2, this becomes identical with

If it starts with f (x)y, divide first by f (x).

     

       

   

1 1

n

p n

W x W x

y x y x r x dx y x r x dx

W x W x

    

1 1

1 2

2 2

2 1

2 1

2 1

1 0 1

0 y

y W y

y y W y

y y

y

W y

 

 

 

  , ,

 

1 2 2 1

p

y r y r

y x y dx y dx

W W

    

(21)

 Ex. 2 Solve the nonhomogeneous Euler-Cauchy equation.

Step 1 General solution of the homogeneous ODE

Substitution of

Corresponding general solution of the homogeneous ODE:

y h

= c

1 x + c 2 x 2

+ c

3 x 3

 y

1

= x, y

2

= x

2

, y

3

= x

3 Step 2 Determinants

3 2 4

''' 3 '' 6 ' 6 ln

x y

x y

xy

y

x x

    

1 2 3 1 6 6 0 1, 2, 3 yx

m

m mm   m m   m    m

2 3 2 3 3 2

2 3 2 4 2 3 2

1 2 3

0 0 0

1 2 3 2 , 0 2 3 , 1 0 3 2 , 1 2 0

0 2 6 1 2 6 0 1 6 0 2 1

x x x x x x x x x

W x x x W x x x W x x W x x

x x x

        

3.3 Nonhomogeneous Linear ODEs

(22)

 Ex. 2 Solve the nonhomogeneous Euler-Cauchy equation

Step 3 Integration

Here, since it starts with x 3 y, divide first by x 3 . Then, r(x) = x 3 lnx/x 4 = xlnx.

3 2 4

''' 3 '' 6 ' 6 ln

x y

x y

xy

y

x x

3 4 3 2

1 2 3

2 , , 2 ,

W

x W

x W

 

x W

x

2 3 4

2 3 4

1 2 3

1 1 11

ln ln ln ln

2 2 6 6

1 11

ln

6 6

p

y x x x xdx x x xdx x x xdx x x x

y c x c x c x x x

 

      

 

 

       

 

  

3.3 Nonhomogeneous Linear ODEs

     

       

   

1 1

n

p n

W x W x

y x y x r x dx y x r x dx

W x W x

    

y 1

= x, y

2

= x

2

, y

3

= x

3

참조

관련 문서

(Taekwondo, Weight Lifting Players) (90 min × 6 days/week) Warming

15) 세광음악출판사

[r]

Step 1 Setting up a mathematical model (a differential equation) of the physical process.. By the physical law : The initial condition : Step

 This highly important theorem holds for homogeneous linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs.. 2.1 Homogeneous Linear ODEs

The reduction of power series ( , m→ ∞) to polynomials (m is finite) is a great advantage.. because then we have solutions for all x,

Two matrices A=[a jk ] and B=[b jk ] are equal, written A=B, if and only if they have the same size and the corresponding entries are equal, that is, a 11 =b 11 , a 12 =b 12 ,

회원국의 영토밖에서 다른 회원국의 , 영토내에서 회원국의 서비스 소비자에게