• 검색 결과가 없습니다.

5. Superposition of Waves 5. Superposition of Waves

N/A
N/A
Protected

Academic year: 2022

Share "5. Superposition of Waves 5. Superposition of Waves"

Copied!
14
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

5. Superposition of Waves 5. Superposition of Waves

Last Lecture

• Wave Equations

• Harmonic Waves

• Plane Waves

• EM Waves This Lecture

• Superposition of Waves

(2)
(3)

Superposition of Waves Superposition of Waves

1 2

2 2 2 2

2

2 2 2 2 2

1 2

1 2

:

1 v

. ,

,

Suppose that and are both solutions of the wave equation

x y z t

Then any linear combination of and is

also a solution of the wave equation For example if a and b are constants then

a b

is a

ψ ψ

ψ ψ ψ ψ ψ

ψ ψ

ψ ψ ψ

∂ ∂ ∂ ∂

+ + = ∇ =

∂ ∂ ∂ ∂

= +

. lso a solution of the wave equation

E. Hecht, Optics, Chapter 7.

(4)

5-2. Superposition of Waves of the Same Frequency 5-2. Superposition of Waves of the Same Frequency

1 2

01

cos(

1

)

02

cos(

2

)

E

R

E E

E α ω t E α ω t

= +

= − + −

(5)

Constructive interference and Destructive interference

Constructive interference and Destructive interference

Constructive interference :

( )

( )

2 1

1 2 01 1 02 1

01 02 1

2

cos( ) cos( 2 )

cos( )

m

E E E t E m t

E E t

α α π

α ω α π ω

α ω

− =

+ = − + + −

= + −

Destructive interference :

( )

( )

( )

2 1

1 2 01 1 02 1

01 02 1

2 1

cos( ) cos( 2 1 )

cos( )

m

E E E t E m t

E E t

α α π

α ω α π ω

α ω

− = +

+ = − + + + −

= − −

(6)

General superposition of the Same Frequency General superposition of the Same Frequency

( )

( )

1 2

1 2

( ) ( )

01 02

0 01 02

( )

0 0

Re

Defining

Re cos( )

i t i t

R

i i

i

i t

R

E E e E e

E e E e E e

E E e E t

α ω α ω

α α

α

α ω

α ω

= +

≡ +

⇒ = = −

2 2

0 01 02 01 02 2 1

01 1 02 2

01 1 02 2

2 cos( )

sin sin

tan cos cos

E E E E E

E E

E E

α α

α α

α α α

= + + −

= +

+

(7)

Superposition of Multiple Waves of the Same Frequency Superposition of Multiple Waves of the Same Frequency

( ) ( ) ( )

( )

0 0

1

2 2

0 0 0 0

1 1

0 1

0 1

:

, cos cos

2 cos

sin tan

cos

N

i i

i

N N N

i i j j i

i j i i

N

i i

i N

i i

i

The relations just developed can be extended to the addition of an arbitrary number N of waves

E x t E t E t

E E E E

E E

α ω α ω

α α

α α

α

=

= > =

=

=

= − = −

= + −

=

∑ ∑∑

(8)

5-3. Random and coherent sources 5-3. Random and coherent sources

( )

2 2

0 0 0 0

1 1

2 cos

N N N

i i j j i

i j i i

E E E E α α

= > =

= ∑ + ∑∑ −

Randomly phased sources :

( )

2 2 2

0 0 0 0 0

1 1 1

2 cos

N N N N

i i j j i i

i j i i i

E E E E α α E

= > = =

= ∑ + ∑∑ − = ∑

0 0

1 N

i i

I I

=

= ∑

The resultant irradiance (intensity) of the randomly phased sources is the sum of the individual irradiances.

Coherent and in-phase sources :

( )

2 2 2

0 0 0 0 0 0 0

1 1 1 1

2 cos 2

N N N N N N

i i j j i i i j

i j i i i j i i

E E E E α α E E E

= > = = > =

= ∑ + ∑∑ − = ∑ + ∑∑

2

0 0

1 N

i i

I E

=

⎛ ⎞

= ⎜ ⎟

⎝ ∑ ⎠

The resultant irradiance (intensity) of the coherent sources is N2 times the individual irradiances.

0 01

I = × N I

2

0 01

I = N × I

(9)

5-4. Standing waves 5-4. Standing waves

1 2 0

sin( )

0

sin( )

R R

E = E + E = E ω t + kx + E ω tkx − ϕ

to the left to the right

2

0

cos( ) sin( )

2 2

R R

E

R

= E kx + ϕ ω t − ϕ

{ ϕ

R

= π } → E

R

= ( 2 E

0

sin kx ) cos ω t

Mirror reflection

kx 2 x π m π

= λ =

x m ⎛ ⎞ λ 2

= ⎜ ⎟ ⎝ ⎠

Nodes at

(10)

In a laser cavity In a laser cavity

2 d m λ

m

= ⎜ ⎟

⎝ ⎠

2

m m

2

m

d c c

m m d

λ ν

λ

⎛ ⎞ ⎛ ⎞

= ⎜ ⎝ ⎟ ⎠ = = ⎜ ⎝ ⎟ ⎠

(11)

5-5. The beat phenomenon 5-5. The beat phenomenon

1 2

p

2

k k k = +

1 2

g

2

k k

k

=

( )( )

( ) x 2 A cos k x

g

cos k x

p

ψ =

(12)

Superposition of Waves with Different Frequency Superposition of Waves with Different Frequency

: beat wavelength

kp=

kg =

If the 2 waves have approximately equal wavelengths,

(13)

Phase velocity and Group velocity Phase velocity and Group velocity

When the waves have also a time dependence,

1 2

1 2

2 2

p

g

ω ω ω ω ω ω

= +

= −

1 2

1 2

2 2

p

g

k k k

k k k

= +

= −

1 1 1

2 2 2

( , ) cos( )

( , ) cos( )

x t A k x t

x t A k x t

ψ ω

ψ ω

= −

= −

higher frequency wave

lower frequency wave (envelope)

phase velocity : 1 2

1 2

p p

p

v k k k k

ω ω ω+ ω

= = ≈

+

1 2

1 2

g g

g

v d

k k k dk

ω ω ω− ω

= = ≈

group velocity : −

( )

( )

2 1

1 2 /

p

g p p

p p p

p

d d dv

v kv v k

dk dk dk

d c c dn k dn

v k v k v

dk n n dk n dk

v dn k

n d ω

λ π λ

λ

= = = + ⎜

⎛ ⎞ ⎞⎛

= + ⎜ ⎟⎝ ⎠= + ⎟⎜⎠⎝ =

= + =

(14)

Phase velocity and Group velocity Phase velocity and Group velocity

phase velocity : 1 2

1 2

p p

p

v k k k k

ω ω ω+ ω

= = ≈

+ 1 2

1 2

g g

g

v d

k k k dk

ω ω ω− ω

= = ≈

group velocity : −

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

Ultimately, we believe that our efforts to install pad  machines and increase community understanding of menstrual health will promote global gender  equity and ensure that

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

합의 법칙(summation rule)...

examples of waves in engineering: sound, ripples on a pond, string b. examples

Any combination of voltage sources, current sources, and resistors with two  terminals is electrically equivalent to a single voltage source V