• 검색 결과가 없습니다.

(Review) The principle of superposition (Cont.)

N/A
N/A
Protected

Academic year: 2022

Share "(Review) The principle of superposition (Cont.)"

Copied!
26
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Prof. Dong‐Weon Lee

MEMS & Nanotechnology Laboratory School of Mechanical Systems Engineering

Chonnam National University

(2)

MEMS@chonnam.ac.kr

(Review) The principle of superposition (Cont.)

(3)

(Review) The principle of superposition: Ex. 

Known quantities:

Resistance value, voltage source Find:

Determine the voltage across resistor R

1

2

R‐V

(4)

MEMS@chonnam.ac.kr

(Review) The principle of superposition: Ex. 

(5)

(Review) The principle of superposition: Ex. (Cont.)

(6)

MEMS@chonnam.ac.kr

(Review) The principle of superposition: Ex. 

(7)

(Review) The principle of superposition: Ex. (Cont.) 

(8)

MEMS@chonnam.ac.kr

(Review) The principle of superposition: Ex. (Cont.) 

(9)

One‐port network and equivalent circuits: Network Thévenin equivalent circuits:

Any combination of voltage sources, current sources, and resistors with two  terminals is electrically equivalent to a single voltage source V

T

and a single  series resistor R

T

. For single frequency AC systems the theorem can also be  applied to general impedances, not just resistors.

Norton equivalent circuits:

Any collection of voltage sources, current sources, and resistors with two 

terminals is electrically equivalent to an ideal current source, I, in parallel with a  single resistor, R. For single‐frequency AC systems the theorem can also be 

applied to general impedances, not just resistors.

Things to do: Equivalent resistance, Thévenin voltage, Norton current 

(10)

MEMS@chonnam.ac.kr

Computation of Thévenin and Norton equivalent resistance Methodology

1. Remove load resistor (R

L

)

2. Remove all independent voltage & current sources

3. Calculate the total resistance between load terminals, with the load removed

② ③

②’

It has no relationship to the load

(11)

Thévenin equivalent resistor

Known quantities:

resistance value, source current and voltage Find:

Thévenin equivalent resistance R

T

V=5V; I=1A; R

1

=2, R

2

=2, R

3

=1, R4=2

(12)

MEMS@chonnam.ac.kr

Thévenin equivalent resistor Find:

Thévenin equivalent resistance R

seen by the load R

L

2 W

(13)

Computing the Thévenin voltage Thévenin voltage:

Open circuit voltage when a load(R

L

) was removed

개방단자에서 v

T

=v

oc

By the KVL

(14)

MEMS@chonnam.ac.kr

Computing the Thévenin voltage

Expression by equivalent resistance and voltage Methodology

1. Remove the load, leaving the load terminals open circuited.

2. Define the open‐circuit voltage v

OC

across the open load terminals.

3. Apply any preferred method (e.g.: nodal analysis) to solve for v

OC

.

4. The Thévenin voltage is v

T

= v

OC

.

(15)

Computing the Thévenin voltage: Ex. open‐circuit voltage Known quantities:

resistance value, source voltage Find:

Thévenin voltage v

oc

v=12V; R

1

=1, R

2 and 3

=10, R

4

=20

Apply KCL

v

‐ v

= 7.059V = v

oc

1. Remove the load, leaving the load terminals open circuited.

2. Define the open‐circuit voltage vOCacross the open load terminals.

3. Apply any preferred method (e.g.: nodal analysis) to solve for vOC. 4. The Thévenin voltage is vT= vOC.

(16)

MEMS@chonnam.ac.kr

Computing the Norton current Norton current:

Short circuit current when  a load(R

L

) is replaces with short circuit

Methodology

1. Replace the load with a short circuit.

2. Define the short‐circuit current i

SC

to be the Norton equivalent current.

3. Apply any preferred method (e.g.: nodal analysis) to solve for i

SC

.

4. The Norton current is i

N

= i

SC

.

(17)

Computing the Norton current Known quantities:

resistance value, source voltage Find:

Norton current i

cc

24 V

3 A

4 W 12 W

6 W

(18)

MEMS@chonnam.ac.kr

Thévenin resistance, voltage and Norton current

Methodology (remind) 1. Remove a load resistance(RL)

2. Remove all independent voltage and current sources 3. Calculation of total resistance when the load is removed

(19)

Thévenin resistance, voltage and Norton current (Cont.)

Methodology (Remind)

1. 부하를 제거하여 부하 단자를 개방회로로 설정 2. 개방된 부하 단자에 걸리는 개방 전압 vOC를 정의 3. vOC를 구하기 위해 node voltage 등의 방법 이용 4. vT=vOC

‐ 방법 및 절차

1. 부하를 단락회로로 대체

2. 단락 전류 iSC를 Norton 등가 전류로 정의 3. 노드 전압법 등을 이용하여 iSC를 구함 4. iN=iSC

(20)

Thévenin equivalent: Ex

(21)

Source transformation

v

T

=v

oc

R

L

=0 Refer a current divider

(22)

MEMS@chonnam.ac.kr

Measurement of open‐circuit voltage and short‐circuit current:

Experimental determination

유한 크기의 meter resistance: r

m

Ideal voltmeter?

Ideal ammeter?

This is very useful technique when we know internal 

resistance of measurement system

(23)

Focus on measurements: Experimental determination Known quantities:

resistance value, source current and voltage Find:

Thévenin equivalent resistance R

T

of an  unknown circuit from measurements of  open‐circuit voltage and short‐circuit  current

measured v

oc

=6.5V; measured i

sc

=3.75mA; r

m

=15W

(24)

MEMS@chonnam.ac.kr

Maximum power transfer

Matching

Assumption: v

T

and R

T

are fixed

(25)

Maximum power transfer

(26)

MEMS@chonnam.ac.kr

Nonlinear elements

참조

관련 문서

When pin 42 (GSET) is high (simultaneous gain set mode), the full-scale output current for both DACs is determined by the ratio of the internal reference voltage (1.2 V) and

And we introduce you to the terminal caracteristics, and linear and lumped constant characteristics about electric circuit elements, which are voltage source,

The rectifier is a circuit that acts as a dc voltage source by converting the ac voltage from a standard wall outlet to a dc voltage. This voltage is effectively applied

¾ In order to add or substrate two voltage sources, we place them in series. So the feedback network is placed in series with the input source.. Practical Circuits to

--- Any linear combination of two solutions is again a

3-43 The Fault Current and Voltage Curves of Fault Phase During the Double Line to Ground Fault(A Transformer for Voltage Drop or Modifier)..

linear element: a passive element that has a linear voltage-current relationship linear dependent source: a dependent source whose output is proportional only to the first power

– Given an equilibrated gas-liquid system containing only a single condensable component A, a correlation for , and any two of the variables y A (mole fraction of A in