• 검색 결과가 없습니다.

¾Ì ¦ R× D¶  ¥ ö n Ú Œ ˜ my ¢= k Ga x In 1−x P y Sb z As 1−y−z /GaSb8 ý  ¹ Å X ì Ä — ¤V R Ë

N/A
N/A
Protected

Academic year: 2021

Share "¾Ì ¦ R× D¶  ¥ ö n Ú Œ ˜ my ¢= k Ga x In 1−x P y Sb z As 1−y−z /GaSb8 ý  ¹ Å X ì Ä — ¤V R Ë"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

~

¾Ì ¦ R× D¶  ¥ ö n Ú Œ ˜ my ¢= k Ga x In 1−x P y Sb z As 1−y−z /GaSb8 ý  ¹ Å X ì Ä — ¤V R Ë



™ »¦ P 

 â

l @ /† < Ɠ § s õ @ /† < Æ „   Ó ü t o † < Æõ , à º" é ¶ 443-760

(2010¸   1 Z 4 20{ 9  ~ à Î6 £ §, 2010¸   4 Z 4 21{ 9  à º& ñ ‘ : r ~ à Î6 £ §, 2010¸   5 Z 4 12{ 9  > F  S X ‰& ñ )

GaSb l ó ø Í\      & ñ ½ + Ër †   š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

_     & ñ ½ + ˛ ¸| õ  \  - t

  ½ ™× ¼Ì “ s1 p x „   & h  : £ ¤$ í `  ¦ # 3 6   x& h x 9 ] X   ½ + Ë ~ ½ ÓZ O `  ¦ s 6   x # Œ ½ ¨ % i  . > í ß –   õ   © œ@ / 3 ∼ 5 µm (7 £ ¤,  ½ ™× ¼Ì “ ss  0.41 eV ∼ 0.25 eV)“   ×  æ& h ü @‚  % ò % i _   ½ ™× ¼Ì “ s“ É r ŠҖ Ð 0.1 < Sb < 0.2 \ " f + þ A$ í

÷

&% 3  . Sb\  ¦ 0.09  Ò'  0.21 t  0.02 m ”  7 £ x r &  > í ß –ô  Ç   õ , Sb  7 £ x  ½ + É Ã º2 Ÿ ¤ GaSb \     & ñ

½

+ Ë r ~  ´ à º e ”   H x ü < y_  # 3 0 A V , # Qt  9,  ½ ™× ¼Ì “ sõ  „   {  þ j@ /° ú כ• ¸ 7 £ x † < Ê`  ¦ · ú ˜ à º e ” % 3  . ¢ ¸ ô

 Ç ×  æ& h ü @‚  % ò % i _  Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

ü < GaSb l ó ø Í  s _  ] X ½ + ˀ  \ " f  H ] j1+ þ Aì ø ͕ ¸^ ‰ H † d

` 

¦ · ú ˜ à º e ” % 3  . þ j   H   & ñ $ í  © œ  ) a W 1> h_  Ò  re  ¦ Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

/GaSb \  @ /ô  Ç  ½ ™× ¼Ì “ s z  ´+ « >

u

ü < q “ §K  ‘ : r   õ  ¸ ú ˜ { 9 u  % i  .

Ù þ

˜d ” # Q: š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰,Ga(x)In(1-x)P(y)Sb(z)As(1-y-z),MIR(midinfrared),   & ñ ½ + ˛ ¸| ,UTB(universal tight binding), ½ ™× ¼Ì “ s

Electronic Properties of the Pentanaly Alloy Ga x In 1−x P y Sb z As 1−y−z Lattice-matched to GaSb

Kyu Rhee Shim

Department of Electro-physics, Kyonggi University, Suwon 443-760 (Received 20 January, 2010 : revised 21 April, 2010 : accepted 12 May, 2010)

The electronic band gaps and the lattice-matching conditions for the pentanary alloy Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

lattice-matched to GaSb in the mid-infrared (MIR) spectral region were calculated by using the universal tight binding method. The calculation suggested that the alloy Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

/GaSb in 0.1 ≤ Sb ≤ 0.2 was suitable for the MIR spectral region from 3 to 5 µm (i.e., band gaps of 0.41 eV ∼ 0.25 eV). With increasing z from 0.09 to 0.21, the lattice- matching x and y regions became broader, and the band gap and the valence band maximum (VBM) also increased. This implies that the interface the between Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

and the GaSb is a type-I semiconductor. Our theoretical band gaps were compared with experimental band gap data for four samples of Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

/GaSb.

PACS numbers: 71.22.+i, 71.20 Nr

Keywords: Pentanary alloy Ga(x)InA(1-x)P(y)Sb(z)As(1-y-z), Midinfrared, Lattice matching condition, Universal tight binding method, Band gap

E-mail: kshim@kyonggi.ac.kr

-505-

(2)

I. " e  ] Ø

III-V  " é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰  H $ í ì  r q \      ½ ™× ¼Ì “ s,   



 © œÃ º,  â > €  \ " f_   ½ ™× ¼& ñ § > = © œI 1 p x`  ¦ › ¸] X ½ + É Ã º e ” 

#

Q, „   x 9 F g † < Æ& h  “ ¦î ß –¾ ¡ § \   € ª œ >  6 £ x6   x ÷ &“ ¦ e ”  .



Œ

™" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰  H ô  Çt _  $ í ì  r q \  _ K  „   & h  :

£ ¤$ í `  ¦ › ¸] X  >  ÷ &t ë ß –,  " é ¶ x 9 š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰  H

¿

ºt  s  © œ_  $ í ì  r q \  ¦ y Œ •y Œ • 1 l qw n & h Ü ¼– Ð › ¸] X ½ + É Ã º e ” 

#

Q, 7 á §  8 î ß –& ñ & h s “ ¦  € ª œô  Ç Û ¼& 7 ˜à Ô! 3  % ò % i _  ì ø ͕ ¸^ ‰

\

 ¦ ½ ¨‰ & ³½ + É Ã º e ”  . Õ ª! 3 \ • ¸ Ô  ¦ ½ ¨ “ ¦ ™ D ¥ ½ + Ë0 l x • ¸\   

 É

r Á º| 9 " f ´ òõ ü < ™ D ¥  o$ í Ì “ s(miscibility gap)1 p x   & ñ $ í  © œ _

 # Q 9¹ ¡ § Ü ¼– Ð z  ´+ « > ¢ ¸  H s  : rƒ  ½ ¨ ] jô  Ç÷ &# Q M ® o  . þ j



 H LPE(liquid phase epitaxy)   MOVPE(metal organic vapour phase epitaxy)1 p x \ x „ à Ìr    & ñ $ í  © œ l Õ ü t s  µ 1 Ï

² ú

˜ H † d \      .š ¸" é ¶  o½ + ËÓ ü t \  @ /ô  Ç ƒ  ½ ¨  Ö ¸ µ 1 Ïy  s À Ò

#

Qt “ ¦ e ”   [1,2].

 © œ@ / 3-5 µm “   ×  æ& h ü @‚  (midinfrared : MIR)% ò

%

i _  F g ~ ½ ÓØ  ¦ l    Ž Ø  ¦ l   H @ /l š ¸% i Û ¼ 8 £ ¤& ñ s   Á º‚   F

g: Ÿ x’  1 p x \  s 6   x| ¨ c à º e ” # Q, MIR % ò % i  ì ø ͕ ¸^ ‰ > hµ 1 Ïs  þ j



 H ´ ú §“ É r › ' a d ” `  ¦ % 3 “ ¦ e ”   [3,4]. Ä »} © œô  Ç MIR % ò % i  ì ø ͕ ¸

^

‰– Ð" f š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z 

· ú

˜ 94 R e ”  . 1999 ¸   % ƒ6 £ § Ü ¼– Ð # 3 6   x& h x 9 ] X   ½ + Ë~ ½ Ó Z O

(universal tight binding method : UTB) [5] ü <  © œ  

ñ„  > h† < Êà º(correlated function expansion :CFE)~ ½ ÓZ O  [6] \  _ K  Ga x In 1−x P y Sb z As 1−y−z \  @ /ô  Ç s  : r& h “  

ƒ

 ½ ¨ à º' Ÿ ÷ &% 3  . # Œl " f Ga x In 1−x P y Sb z As 1−y−z _  l

ó ø Í 7 á x À Ó (InAs, InP, GaSb) \    É r    & ñ ½ + ˛ ¸

|

õ  $ í ì  r q \    É r Å Òכ ¹ \  -t  Ì “ sõ   © œI x 9 • ¸1 p x

„

  & h  : £ ¤$ í \  @ /ô  Ç s  : r& h  > í ß –   õ  µ 1 ϳ ð÷ &% 3 



[5-6]. Õ ª s Ê ê 2002¸   InAs l ó ø Í\     & ñ ½ + Ër †   Ga 0.92 In 0.08 P 0.05 As 0.08 Sb 0.87 _    & ñ $ í  © œs  LPE ~ ½ ÓZ O  Ü

¼– Ð % ƒ6 £ § $ í / B N # Œ 77 K \ " f_   ½ ™× ¼Ì “ ss  695 meVs  9 300 K \ " f_   ½ ™× ¼Ì “ s 640 meV Ü ¼– Ð ˜ Г ¦  ) a   e ” 



 [7]. ¢ ¸ô  Ç 2007 ¸   LPE ~ ½ ÓZ O Ü ¼– Ð GaSb l ó ø Í0 A\  Ga 0.02 In 0.98 P 0.02 As 0.84 Sb 0.14 _    & ñ $ í  © œs  $ í / B N €  " f [3], / B I s # Q ° ú  “ É r ~ ½ ÓZ O Ü ¼– Ð MIR % ò % i _  W 1> h   & ñ [ þ t;

Ga 0.03 In 0.97 P 0.06 As 0.81 Sb 0.13 , Ga 0.04 In 0.96 P 0.04 As 0.83 Sb 0.13 , Ga 0.07 In 0.93 P 0.03 As 0.82 Sb 0.15 , Ga 0.03 In 0.97 P 0.17

As 0.64 Sb 0.19 `  ¦ $ í  © œ # Œ PL(photoluminescence)\  _  ô

 Ç  ½ ™× ¼Ì “ s   õ \  ¦ µ 1 ϳ ð % i   [8]. ¢ ¸ô  Ç Ga x In 1−x P y Sb z As 1−y−z _    & ñ `  ¦ $ í  © œr ~  ´ M : l ó ø ÍÜ ¼– Ð" f GaSb

\

 ¦  6   x   H  כ s  InAs\  ¦  6   x   H  כ ˜ Ð  l ó ø Í Â Òd ” 

`

 ¦ ×  ¦ s   H X < ´ òõ & h s    H  כ `  ¦ · ú ˜ Í Ç x  [8].

‘

: r  7 Hë  H \ " f  H þ j   H   & ñ $ í  © œs  $ í / B N& h Ü ¼– Ð s À Ò# Q t 

“

¦ e ”   H GaSb \      & ñ ½ + Ër †   MIR % ò % i _  š ¸" é ¶  o½ + ËÓ ü t ì

ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z /GaSb \  @ /ô  Ç „   & h  : £ ¤

$ í

`  ¦ UTB ~ ½ ÓZ O `  ¦ s 6   x # Œ · ú ˜ ‘ : r  .

II. T  Â ] Ø

III-V 7 á ¤  " é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰_  „   & h   © œI \  ¦ > í ß – 



 H X < e ” # Q UTB ~ ½ ÓZ O “ É r q “ §& h  ç ß –é ß – “ ¦ & ñ S X ‰ >  ½ ¨½ + É Ã

º e ”   H ~ ½ ÓZ O Ü ¼– Ð · ú ˜ 94 R e ”   [9]. UTB\ " f  " é ¶  o½ + Ë Ó

ü

t ì ø ͕ ¸^ ‰  H — ¸› ¸  & ñ (pseudo-crystal)Ü ¼– Ð 2 [/ å L ) a   [5].

#

Œl " f š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z _  K  x 9

ž Ðm î ß –“ É r # Œ$ Á > h_  s " é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ GaP, GaSb, GaAs, InP, InSb, InAs [ þ t _  Ä »´ òK x 9 ž Ðm î ß –(effective Hamiltonian)`  ¦ ×  æ¨ î ç  H ô  Ç ° ú כÜ ¼– Ð    · p .

H ˆ Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

= xy ˆ H GaP

+ xz ˆ H GaSb + x(1 − y − z) ˆ H GaAs

+ (1 − x)y ˆ H InP + (1 − x)z ˆ H InSb + (1 − x)(1 − y − z) ˆ H InAs (1) GaSb _  Ä »´ òK x 9 ž Ðm î ß – ( ˆ H GaSb )“ É r GaSb _  | 9 " fK x 9 ž Ð m

î ß –(ordered Hamiltonian) ( ˆ H GaAs 0 ) õ  Á º| 9 " fK x 9 ž Ðm  î

ß –(disordered Hamiltonian) (∆ ˆ H GaSb ) _  ½ + ËÜ ¼– Ð   ? / t

 9,   É r s " é ¶  o½ + ËÓ ü t \  @ /K " f• ¸  ð ø Ít s  .

H ˆ GaSb = ˆ H GaSb 0 + ∆ ˆ H GaSb H ˆ GaP = ˆ H GaP 0 + ∆ ˆ H GaP

H ˆ GaAs = ˆ H GaAs 0 + ∆ ˆ H GaAs H ˆ InP = ˆ H InP 0 + ∆ ˆ H InP

H ˆ InSb = ˆ H InSb 0 + ∆ ˆ H InSb

H ˆ InAs = ˆ H InAs 0 + ∆ ˆ H InAs . (2)

#

Œl " f GaSb _  | 9 " fK x 9 ž Ðm î ß – ˆ H GaSb 0   H ¢ - a„    

&

ñ é # Qo  © œI _  K x 9 ž Ðm î ß –s  9, Á º| 9 " f K x 9 ž Ðm î ß –

∆ ˆ H GaSb   H GaSb _  s “ : r u  ¨ 8 Š \  _ ô  Ç q ‚  + þ A´ òõ \  ¦ Ä »

•

¸   H € ª œÜ ¼– Ð" f ∆ ˆ H GaSb:In , ∆ ˆ H GaSb:P , ∆ ˆ H GaSb:As [ þ t _

 u  ¨ 8 Š$ í ì  r q  Y  L _  ½ + ËÜ ¼– Ð   ? /”   .   É r s " é ¶  o½ + Ë Ó

ü

t \  @ /K " f• ¸  ð ø Ít – Ð & h 6   x ÷ &# Q,

∆ ˆ H GaP = (1 − x)∆ ˆ H GaP :In + z∆ ˆ H GaP :Sb

+(1 − y − z)∆ ˆ H GaP :As

∆ ˆ H GaSb = (1 − x)∆ ˆ H GaSb:In + y∆ ˆ H GaSb:P

+(1 − y − z)∆ ˆ H GaSb:As

∆ ˆ H GaAs = (1 − x)∆ ˆ H GaAs:In + y∆ ˆ H GaAs:P

+z∆ ˆ H GaAs:Sb

∆ ˆ H InP = x∆ ˆ H InP :Ga + z∆ ˆ H InP :Sb

+(1 − y − z)∆ ˆ H InP :As

∆ ˆ H InSb = x∆ ˆ H InSb:Ga + y∆ ˆ H InSb:P +(1 − y − z)∆ ˆ H InSb:As

∆ ˆ H InAs = x∆ ˆ H InAs:Ga + y∆ ˆ H InAs:P

+z∆ ˆ H InAs:Sb . (3)

(3)

(3)d ” `  ¦ (2)d ” õ  (1)d ” \  @ /{ 9  # Œ & ñ o  €  , š ¸" é ¶  o½ + ËÓ ü t Ga x In 1−x P y Sb z As 1−y−z _  8 ú x K x 9 ž Ðm î ß –“ É r  6 £ § õ  ° ú   s

 ³ ð‰ & ³ ) a  .

H Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

= xyH GaP 0 + xzH GaSb 0 + x(1 − y − z)H GaAs 0 +(1 − x)yH InP 0 + (1 − x)zH InSb 0

+(1 − x)(1 − y − z)H InAs 0 + xyzV GaP Sb

+xy(1 − y − z)V GaP As + xz(1 − y − z)V GaSbAs +(1 − x)yzV InP Sb + (1 − x)y(1 − y − z)V InP As

+(1 − x)z(1 − y − z)V InSbAs + x(1 − x)yV GaP In

+x(1 − x)zV GaSbIn + x(1 − x)(1 − y − z)V GaInAs (4)

#

Œl " f V GaP Sb   H GaP:Sb ü < GaSb:P_  8 ú x Á º| 9 " f \ 



-t – Ð" f ∆ ˆ H GaP :Sb ü < ∆ ˆ H GaSb:P _  ½ + Ë`  ¦   ? / 9 (7 £ ¤, V GaP Sb = ∆ ˆ H GaP :Sb + ∆ ˆ H GaSb:P ), s   H ¿ º s " é ¶  o½ + ËÓ ü t _

 | 9 " fK x 9 ž Ðm î ß –_   ˆ H GaP 0 − ˆ H GaSb 0 – Ð é  H  .

x 9

] X   ½ + Ë(tight binding :TB)~ ½ ÓZ O \ " f j   P : Ú Ô Z …s  Û

¼_  ν   P : s “ : r _    & ñ “ ¦Ä » © œI  † < Êà º Ψ n (~ k, ~ r)  H Bloch

&

ñ o \  ¦ ë ß –7 á ¤ r v   H þ jü @y Œ • " é ¶  C • ¸ † < Êà º[ þ t φ ν αj (~ r) _  ‚   + þ

A  ½ + ËÜ ¼– Ð   ? /”   .  ƒ   o½ + ËÓ ü t ½ ¨› ¸\  ¦ ° ú   H III-V ì

ø ͕ ¸^ ‰  H sp 3 s Ú Ôo × ¼– Ð   ½ + Ë © œI \  ¦ s À Ò# Q € ª œs “ : r õ

 6 £ § s “ : r \  y Œ • 4> hm ”  (α = s, p x , p y , p z ) 8 ú x 8 > h_  þ jü @ y

Œ

• " é ¶  C • ¸† < Êà º K x 9 ž Ðm î ß –_  l $ † < Êà º  ) a  . y Œ • K

x 9 ž Ðm î ß – ' Ÿ § > =כ ¹™ è  H

H mn =< Ψ m |H|Ψ n > (5)

–

Ð" f, 8 × 8 K x 9 ž Ðm î ß – ' Ÿ § > =d ” `  ¦ % 3 > ÷ & 9 s \  ¦ : Ÿ x K  4 > h_  „   { ü < 4> h_  „  • ¸{  8 ú x 8 > h_  \  -t  “ ¦Ä »

° ú

כ`  ¦ % 3 >   ) a  . s M :, K x 9 ž Ðm î ß –_  " é ¶  C • ¸† < Êà º\  @ / ô

 Ç & h ì  r“ É r TB B > h  à º– Ð ¿ º  H X <, ' Í   P :  î  r " é ¶  

\

 @ /ô  Ç  © œ  ñ Œ •6   x`  ¦ “ ¦ 9 €   9> h, ¿ º  P :  î  r " é ¶



 t  “ ¦ 9 €   23> h_  TB B > h  à º € 9 כ ¹ >   ) a



. (5)d ” `  ¦ (4)d ” \  @ /{ 9  >  ÷ &€  , š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z _  \  -t  “ ¦Ä »° ú כ“ É r s " é ¶  o½ + Ë Ó

ü

t ì ø ͕ ¸^ ‰[ þ t _  TB B > h  à ºü < ™ D ¥ ½ + Ëq _  † ½ ÓÜ ¼– Ð   ? /

”

    H  כ `  ¦ · ú ˜ à º e ”  .

Ga x In 1−x P y Sb z As 1−y−z \  ¦ # Q‹ "  l ó ø Í0 A\  $ í  © œr v  

\

        & ñ ½ + ˛ ¸| s  ² ú ˜ t >   ) a  . s   H s p  µ 1 Ï

³

ð  ) a   e ”   [5].

x = 1

(−0.175 + 0.009z) − 0.008y

×(d o substrate + 0.082y − 0.182z − 2.623) (6)

Fig. 1. Allowed composition relationships for lat- tice matching of the substrate GaSb to the alloy Ga x In 1−x P y Sb z As 1−y−z with respect to z (= 0.2, 0.4, 0.6, 0.8)

#

Œl " f GaSb\  ¦ l ó ø ÍÜ ¼– Ð × þ ˜ % i `  ¦ M :, d o substrate = d GaSb = 2.639˚ A s Ù ¼– Ð Ga x In 1−x P y Sb z As 1−y−z \  ¦ GaSb \      & ñ ½ + Ë r ~  ´ à º e ”   H › ¸| “ É r

x = 0.082y − 0.182z + 0.016

−0.175 + 0.009z − 0.008y . (7) s

  ) a  .

Ga x In 1−x P y Sb z As 1−y−z _  \  -t   © œI \  ¦ ½ ¨ l  0 A K

  6   x ) a s " é ¶  o½ + ËÓ ü t GaP, GaSb, GaAs, InP, InSb, InAs _  TB B > h   à ºx 9   ½ + ËU  ´s   H ‚ à Г ¦ë  H‰  ³ [3]_   כ `  ¦



6   x  9, Table 1\   ü < e ”  . s  TB B > h  à º[ þ t“ É r s 

"

é

¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰_  „   {  þ j@ /° ú כ(valence band max- imum : VBM) s  0s  ÷ &>  €  " f, z  ´“ : r \ " f_  Å Òכ ¹@ /g A

&

h _  z  ´+ « >& h  \  -t  Ì “ s[ þ t õ  ´ ú ð  r  כ s  . € ª œs “ : r õ  6 £ § s 

“

: r _  $ í ì  r q   H 0 s  © œõ  1s   s # Q  Ù ¼– Ð, 0 ≤ x ≤ 1 s

 9 0 ≤ y + z ≤ 1 _  › ¸| `  ¦ (7)d ” \  & h 6   xÙ þ ¡`  ¦ M :, Ga x In 1−x P y Sb z As 1−y−z _  GaSb\      & ñ ½ + Ë % ò % i “ É r Sb _

 $ í ì  r q (7 £ ¤, z) \     Ga ü < P _  $ í ì  r q  (7 £ ¤, x ü < y)% ò

%

i s  ² ú ˜ t  9, s \     \  -t  Ì “ s_  % ò % i s  ² ú ˜  ”  



.

III. 4  ˜ m+ s ÇÊ Ý õ m Í À X Ø8 ý

š

¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z \  ¦ GaSb l

ó ø Í0 A\  $ í  © œr ~  ´M :,    & ñ ½ + Ë › ¸$ í q “   x, y, z_  › ' a >  d ”

“ É r (7)d ” \  _ K  ½ ¨½ + É Ã º e ” Ü ¼ 9 s   H Fig. 1 \      e ”

 . Figure 1“ É r z\  ¦ 7 £ x † < Ê\     ² ú ˜ t   H x ü < y_ 

 

 & ñ ½ + ˛ ¸| `  ¦ Õ ª 2 ;  כ s  .

Ga x In 1−x P y Sb z As 1−y−z /GaSb _  „   & h  : £ ¤$ í `  ¦ ½ ¨  l

 0 A # Œ, · ú ¡\ " f ½ ¨ô  Ç    & ñ ½ + Ë › ¸| \     UTB

~

½ ÓZ O Ü ¼– Ð Å Òכ ¹@ /g A& h (Γ, L, X)\  @ /ô  Ç \  -t ° ú כ[ þ t`  ¦ ½ ¨

(4)

Table 1. TB parameters and bond lengths of GaP, GaSb, GaAs, InP, InSb, and InAs.

TB

parameters and GaP GaSb GaAs InP InSb InAs

bond lengths

P

1

-6.285 -6.093 -6.724 -6.294 -6.724 -7.179

P

2

-2.789 -3.886 -3.978 -3.429 -3.978 -4.487

P

3

1.094 0.810 0.641 1.843 0.641 1.660

P

4

2.382 2.348 2.874 2.609 2.874 2.336

P

5

-7.750 -6.218 -6.900 -6.220 -6.900 -6.400

P

6

5.260 5.100 5.300 4.700 5.300 5.400

P

7

4.950 4.110 4.250 4.380 4.250 4.000

P

8

2.440 1.600 2.000 2.280 2.000 2.000

P

9

5.560 5.500 5.5 5.300 5.500 5.460

P

10

-1.138 -0.920 -0.339 -0.720 -0.339 -0.824

P

11

-1.186 -2.012 -1.756 -1.338 -1.756 -1.202

P

12

0.760 0.760 0.60 0.520 0.600 0.550

P

13

1.330 1.330 0.960 0.910 0.960 0.880

P

14

0.854 0.599 0.444 0.384 0.444 0.227

P

15

1.189 1.008 1.121 0.739 1.121 0.983

P

16

0.024 0.042 0.045 0.087 0.045 0.056

P

17

0.083 0.060 0.096 0.102 0.096 0.086

P

18

-0.167 -0.163 -0.047 -0.032 -0.047 -0.092

P

19

-0.181 -0.224 -0.065 -0.034 -0.065 -0.126

P

20

1.180 0.750 0.780 0.90 0.780 0.840

P

21

-0.080 -0.240 -0.08 -0.006 -0.080 -0.080

P

22

0.0 0.0 0.0 0.0 0.0 0.0

P

23

0.0 0.0 0.0 0.0 0.0 0.0

d

0

(˚ A) 2.358 2.639 2.448 2.541 2.805 2.623

Table 2. Principal energy band gap ranges for the alloy Ga x In 1−x P y Sb z As 1−y−z lattice matched to GaSb.

z (Sb) of E(Γ) E(L) E(X)

Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

(eV) (eV) (eV)

0.1 0.265 1.346 2.199

0.2 0.265 - 0.305 1.332 - 1.385 2.013 - 2.152

0.3 0.245 -0.513 1.255 - 1.425 1.925 - 1.965

0.4 0.289 - 0.901 1.224 - 1.586 1.854 - 1.954

0.5 0.359 - 0.878 1.208 - 1.521 1.801 - 1.863

0.6 0.447 - 0.863 1.201 - 1.476 1.756 - 1.829

0.7 0.542 - 0.849 1.200 - 1.432 1.727 - 1.800

0.8 0.638 - 0.835 1,201 - 1.376 1.723 - 1.772

0.9 0.727 - 0.818 1.200 - 1.298 1.724 - 1.745

1.0 0.801 1193 1.720

½

+ É Ã º e ”  . — ¸Ž  H @ /g A& h \  @ /K  4> h_  „    { ü <

4 > h_  „  • ¸ {  > í ß –÷ &# Q t   H X <, Å Òכ ¹  ½ ™× ¼Ì “ s E(Γ), E(L), E(X)“ É r „  • ¸{  þ j™ è° ú כ(conduction band minimum : CBM) \ " f „   {  þ j@ /° ú כ(valence band maximum : VBM)`  ¦  É ™ ° ú כÜ ¼– Ð ½ ¨½ + É Ã º e ”  . Table 2\ " f  H

Ga x In 1−x P y Sb z As 1−y−z /GaSb _  Å Òכ ¹ @ /g A& h \ " f_   ½ ™

×

¼Ì “ s    o Sb (7 £ ¤, z) 7 £ x \     # Qb  G>       H t   

? /% 3  .

Table 2 \ " f ˜ Ѝ  H  ü < ° ú  s , Ga x In 1−x P y

Sb z As 1−y−z /GaSb “ É r „   % ò % i \    5 g E(Γ) E(L)

(5)

Table 3. Lattice matching ranges and the corresponding VBM and band gaps for the MIR Ga x In 1−x P y

Sb z As 1−y−z /GaSb.

z x range Ga

x

In

1−x

P

y

Sb

z

As

1−y−z

VBM E

o

y range /GaSb (eV) (eV)

0.09 0 ≤ x ≤ 0.0023 Ga

0.002

In

0.998

Sb

0.09

As

0.91

0.043 0.271

0 ≤ y ≤ 0.0049 InP

0.049

Sb

0.09

As

0.91

0.042 0.271

0.11 0 ≤ x ≤ 0.023 Ga

0.023

In

0.977

Sb

0.11

As

0.89

0.051 0.260

0 ≤ y ≤ 0.047 InP

0.047

Sb

0.11

As

0.843

0.044 0.268

0.13 0 ≤ x ≤ 0.044 Ga

0.044

In

0.956

Sb

0.13

As

0.87

0.059 0.251

0 ≤ y ≤ 0.093 InP

0.093

Sb

0.13

As

0.777

0.048 0.274

0.15 0 ≤ x ≤ 0.065 Ga

0.065

In

0.935

Sb

0.15

As

0.85

0.067 0.243

0 ≤ y ≤ 0.138 InP

0.138

Sb

0.15

As

0.712

0.054 0.286

0.17 0 ≤ x ≤ 0.081 Ga

0.081

In

0.919

Sb

0.17

As

0.83

0.073 0.235

0 ≤ y ≤ 0.182 InP

0.182

Sb

0.17

As

0.648

0.062 0.306

0.19 0 ≤ x ≤ 0.107 Ga

0.107

In

0.893

Sb

0.19

As

0.81

0.080 0.233

0 ≤ y ≤ 0.227 InP

0.227

Sb

0.19

As

0.583

0.072 0.333

0.21 0 ≤ x ≤ 0.128 Ga

0.128

In

0.872

Sb

0.21

As

0.79

0.085 0.232

0 ≤ y ≤ 0.271 InP

0.271

Sb

0.21

As

0.519

0.084 0.368

Table 4. Comparison of our estimate with the experimental band gaps (300 K) [8] for the MIR Ga x In 1−x P y Sb z As 1−y−z /GaSb.

x y z E

o

(µm) E

o

(µm)

exp. ours

0.03 0.06 0.13 4.05 4.56

0.04 0.06 0.13 4.10 4.49

0.07 0.03 0.15 4.05 4.75

0.03 0.17 0.19 3.38 4.09

s

  E(X)˜ Ð   s `›    Œ •“ É r f ” ] X   ½ ™× ¼Ì “ s (direct gap)Ü ¼– Ð



   f ” ] X   ½ ™× ¼Ì “ s (E o ) s   ) a  . ¢ ¸ô  Ç Sb 7 £ x † < Ê\ 



   ½ ™× ¼Ì “ s ° ú כs  & t   H  כ `  ¦ · ú ˜ à º e ”  .

MIR % ò % i  ì ø ͕ ¸^ ‰  H  ½ ™× ¼Ì “ s  © œ@ / 3 - 5 µm “   ì ø ͕ ¸

^

‰ (7 £ ¤, E o  0.41 eV ∼ 0.25 eV) \  ¦ { 9 ( Ž >   ) a  . Table 2 \ " f   è ß –  ü < ° ú  s  GaSb \     & ñ ½ + ˝ ) a š ¸" é ¶  o½ + Ë Ó

ü

t ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z /GaSb ×  æ \ " f Sb  0.1{ 9  M : E o   H 0.265 eV s  9, Sb 0.2{ 9  M :  H 0.265 eV

≤ E o ≤ 0.305 eV s Ù ¼– Ð, Sb 0.1 õ  0.2 % ò % i \ " f MIR ì

ø ͕ ¸^ ‰ H † d`  ¦ · ú ˜ à º e ”  .

MIR % ò % i _  Ga x In 1−x P y Sb z As 1−y−z /GaSb \  @ /ô  Ç

&

ñ x 9 ô  Ç „   & h  : £ ¤$ í `  ¦ · ú ˜  ˜ Ðl  0 AK , Sb\  ¦ 0.09 Â Ò '

 0.21  t  0.02 m ”  7 £ x r &  xü < y_     & ñ ½ + ˛ ¸| 

% ò

% i õ  VBM, Õ ªo “ ¦  ½ ™× ¼Ì “ s    o\  ¦ Table 3 \    ? /

%

3  . Table 3 \ " f ˜ Ѝ  H  ü < ° ú  s  Sb 7 £ x ½ + Éà º2 Ÿ ¤ GaSb \     & ñ ½ + Ë r ~  ´ à º e ”   H x ü < y_  # 3 0 A V , # Qt  9, GaSb \ " f 0s % 3 ~   VBM ï  r 0 A z 7 £ x ½ + Éà º2 Ÿ ¤

VBM \  -t  ï  r 0 A  © œ@ /& h Ü ¼– Ð 7 £ x † < Ê`  ¦ · ú ˜ à º e ” % 3 



. l ó ø ͓   GaSb _  VBM   H 0 eV s “ ¦ ì Á œ× ¼Ì “ s(E o )“ É r 0.801 eV \  q K , s  l ó ø Í\     & ñ ½ + Ër †   MIR % ò % i 

š

¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸^ ‰ GaInPSbAs/GaSb_  VBM   H 0 ˜ Ð



 ß ¼“ ¦  ½ ™× ¼Ì “ s“ É r 0.801 eV ˜ Ð   Œ •“ É r 0.41 eV ∼ 0.25 eV ° ú כ`  ¦ % 3 >   ) a  . s   H GaSb ü < MIR š ¸" é ¶  o½ + ËÓ ü t ì ø ͕ ¸

^

‰ Ga x In 1−x P y Sb z As 1−y−z _   â > €  \ " f ] j1+ þ Aì ø ͕ ¸^ ‰ (type I semiconductor)  H † d`  ¦ · ú ˜ à º e ” % 3  . s   H  



É r z  ´+ « >  7 Hë  H \ " f• ¸ Ga x In 1−x P y Sb z As 1−y−z /GaSb  ]

j1+ þ Aì ø ͕ ¸^ ‰ H † d`  ¦ µ 1 ߘ 2 ³   e ”   [3].

þ

j   H LPE ~ ½ ÓZ O \  _ K    & ñ $ í  © œr †   4 > h_  Ga x In 1−x P y Sb z As 1−y−z /GaSb Ò  re  ¦ \  @ /ô  Ç  ½ ™× ¼Ì “ s z 

´+ « >° ú כ(300K) [3]`  ¦ ‘ : r  7 Hë  H \ " f ½ ¨ô  Ç s  : r ° ú כõ  Table 4 \ " f q “ § % i  . Table 4 \ " f ˜ Ѝ  H  ü < ° ú  s  z  ´+ « >u  ü

< s  : r u   s \   H €  •ç ß –_  s  e ” 6 £ §`  ¦ · ú ˜ à º e ”  .

s

  H z  ´+ « >& h Ü ¼– Ð ½ ¨ô  Ç     & ñ ½ + Ëq (x,y,z) s  : r& h Ü ¼

–

Ð ½ ¨ô  Ç    & ñ ½ + Ëq  ((7)d ” )ü < s  e ” % 3 Ü ¼ 9, z  ´+ « >› ¸

|

(“ : r • ¸      © œÃ º)1 p x Ü ¼– РÒ'  Ò q tU  ´ à º e ”   H š ¸  “ ¦ ì

 r$ 3  ) a  .

IV. + s Ç Â ] Ø

(i) š ¸" é ¶  o½ + ËÓ ü t Ga x In 1−x P y Sb z As 1−y−z /GaSb _  „  

% ò

% i \    • 2 ; Å Òכ ¹  ½ ™× ¼Ì “ s(E(Γ), E(L), E(X))`  ¦ UTB ~ ½ Ó Z O

Ü ¼– Ð > í ß –ô  Ç   õ  ; 0.265 eV ≤ E(Γ) ≤ 0.901 eV, 1.193

eV ≤ E(L) ≤ 1.586 eV, 1.720 eV ≤ E(X) ≤ 2.199 eV Ü ¼

(6)

–

Ð E(Γ) E(L)s   E(X) ˜ Ð   s `›    Œ •“ É r f ” ] X   ½ ™× ¼Ì “ s

`

 ¦   ? /% 3  . (Table 1)

(ii) Ga x In 1−x P y Sb z As 1−y−z /GaSb  H Sb  0.1 õ  0.2



s \ " f 0.265 eV ≤ E o ≤ 0.305 eV “   MIR % ò % i  ì ø ͕ ¸

^

‰ H † d`  ¦ · ú ˜ à º e ” % 3  . (Table 2)

(iii) MIR % ò % i  ì ø ͕ ¸^ ‰ GaInPSbAs_  VBM   H l ó ø ͓   GaSb \  q K  7 £ x   9,  ½ ™× ¼Ì “ s“ É r GaSb \  q K  y Œ ™™ è† < ÊÜ ¼

–

Ð, GaSb ü < MIR % ò % i ì ø ͕ ¸^ ‰ Ga x In 1−x P y Sb z As 1−y−z



s _  ] X ½ + ˀ  \ " f ] j1+ þ Aì ø ͕ ¸^ ‰ (type I semiconduc- tor)  H † d`  ¦ · ú ˜ à º e ” % 3  . (Table 3)

(iv) UTB \  _ ô  Ç s  : r& h  > í ß – x 9 ì  r$ 3 [ þ t s  z  ´+ « >    õ

[ þ t õ  q “ §& h  ¸ ú ˜ { 9 u  % i  . (Table 4)

P

c p 8 ý ò k >

‘

: r ƒ  ½ ¨  H 2007¸  • ¸  â l @ /† < Ɠ § “ §? /ƒ  ½ ¨q  t " é ¶ \  _  K

 à º' Ÿ ÷ &% 3  .

Y

c p w Š à U Ø ”  ô

[1] C. Grasse, R. Meyer, U. Breuer, G. Bohm and M.

Amann, J. Cryst. Growth 310, 4835 (2008).

[2] S. A. Cripps, T. J. C. Hosea, A. Krier, V. Smirnov, P. J. Batty, Q. D. Zhuang, H. H. Lin, P. Liu and G.

Tsai, Thin Solid Films 516, 8049 (2008).

[3] A. Krier, V. M. Smirnov, P. J. Batty, V. I. Vailev, G.

S. Gragis and V. I. Kuchinskii, Appl. Phys. Lett. 90, 211115 (2007).

[4] N. B. Cook and A. Krier, Appl. Phys. Lett. 95, 21110 (2009).

[5] K. Shim and H. Rabitz, J. Appl. Phys. 85, 7705 (1999).

[6] H. Rabitz and K. Shim, J. Chem. Phys. 111, 10640 (1999).

[7] M. Aidaraliev, N. V. Zutova, S. A. Karandashev, B.

A. Matveev, M. A. Remennyi, N. M. Stus, G. N. Ta- lalakin, V. V. Shustov, V. V. Kuzentsov and E. A.

Kognovitskaya, Semiconductors 36, 944 (2002).

[8] A. Krier, V. M. Smirnov, P. J. Batty, M. Yin, K. T.

Lai, S. Raybchenk, S. K. Haywood, V. I. Vailev, G.

S. Gais and V. I. Kuchinskii, Appl. Phys. Lett. 91, 82102 (2007).

[9] K. Shim and H. Rabitz, Phys. Rev. B 57, 12974

(1998).

수치

Fig. 1. Allowed composition relationships for lat- lat-tice matching of the substrate GaSb to the alloy Ga x In 1−x P y Sb z As 1−y−z with respect to z (= 0.2, 0.4, 0.6, 0.8) # Œl &#34; f GaSb\ ¦ l óø ÍÜ ¼– Ð ×þ ˜
 %i `¦ M :, d o substrate = d GaSb =
Table 2. Principal energy band gap ranges for the alloy Ga x In 1−x P y Sb z As 1−y−z lattice matched to GaSb.
Table 3. Lattice matching ranges and the corresponding VBM and band gaps for the MIR Ga x In 1−x P y

참조

관련 문서

프로그램의 선두에서 시작하고자 하는 경우에는 EDIT 모드에서 RESET 을 누릅니 다... 미러이미지(Mirror Image)에서 오버런 이송시 방 향은

[r]

[r]

[r]

Within the Fresnel approximation, there are two approaches to determining the complex amplitude g(x, y) in the output plane, given the complex amplitude f(x, y) in the

In Section 5, we prove the Ulam-Hyers stability of the or- thogonally additive and orthogonally quadratic functional equation (0.1) in non-Archimedean orthogonality spaces for

Ø CheckNegative 함수 내에서는 int형, double형 값에 대한 throw문 발생 가능. n bool CheckNegative(int x,

함수에 사칙 연산과 합성 연산을 적용하는 방법을