• 검색 결과가 없습니다.

Semiconductor: Definition

N/A
N/A
Protected

Academic year: 2022

Share "Semiconductor: Definition "

Copied!
32
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Semiconductor: Definition

Conductivity of semiconductors

1.S/C materials: Silicon

- a group IV element in the periodic table

- the density of silicon atoms in a solid 5×1022 atoms/cm3 at 300K

- minimal energy needed to excite a covalently bonded electron to become a fre e charge carrier is approximately 1.11 eV (metal is zero) : very useful to operate at RT

- no free electron at absolute zero temperature(0K)

Other semiconductors: germanium, silicon germanium, gallium aesenide(GaAs), -Semiconductors-

A substance as germanium or silicon whose electrical conductivity is intermediate between that of a metal (like copper) and an insulator (like rubber); More importan t of S/C, the conductivity can be controlled by a variety of means, such as intention ally introduced impurities, externally applied electric fields, charge injections, ambie nt light and temperature variations  this effect leads to many uses of S/C materia ls

(2)

Covalent Bonding

Si

Electron 을 missing 하면 Hole이 발생 됨

Na+

Cl-

2차원적 표시

“Concept for positive ion and negative ion”

Ex) salt

sodium ion : positive Na+

chlorine ion : negative Cl-

(Na+는 인접한 6개의 Cl-에 의해 둘러 쌓임) <become a good insulator>

silicon의 경우 : Covalent bond

(3)

Direct & indirect S/C

K-space의 의미?

direct & indirect의 차이?

Indirect에서의 빛 발산?

(4)

K space

주파수에 대한 개념: 어떤 wave가 시간에 대해 넓게 퍼져 있는 것 Wave 1 : period T1

Wave 2 : period T2

t T A

1

cos( 2 π /

1

)

주기적인 삼각파 함수는 단지 그 주기와 진폭만 표현 하면 모든 것을 표현한 것

1 1

2 π / T

ω =

(각주파수)

각주파수

(5)

공간축에 대하여

x i

x

e

ix

= cos + sin

진폭

) Re(

cos ω

1

t = e

iω1t

x A

1

cos( 2 π / λ

1

)

x A

2

cos( 2 π / λ

2

)

2 2

1 1

/ 2

/ 2

k k

=

= λ π

λ

π

Wave vector

) Re( e

ik1x

K space (Cont.)

복소평면에서의 삼각함수 관계

(6)

시간과 공간의 차이?

시간은 한 방향으로 진행되는 일차원적인 함수이라면 공간은 3차원적인 의미를 가짐 1. 공간을 진행하는 wave는 어떤 방향으로 진행하는가를 구분할 수 있는 Vector량 2. x축으로 진행하는 wave와 y축으로 진행하는 wave는 다름(atoms간의 간격이 다름)

 3차원 공간에서 진행하는 wave는 k 값 역시 3차원 값을 지님

X축과 y축을 진행하는 wave 각각의 wave 성분을 k로 표현

Kx, ky, kz로 표현되는 공간  K-space

K space (Cont.)

(7)

1차적 결론!!!

Time function: Fourier TF  frequency function Space function: Fourier TF  K-space

Periodic 특성을 가진 crystal의 potential을 Fourier transform하면?

Distance between two atoms

Next  E-K relation

하나의 crystal일 경우에도 결정 내부를 움직이는 전자는 어떤 방향으로 움직이는 가

K space (Cont.)

(8)

전장에서 사용되는 첨단 기기의 반도체 칩은 대부분 일제 왜?

한국은 반도체 강국 ?

실리콘으로는 발광소자나 광 검출 소자로 이용하지 못할까?

해답: conduction band 최소값과 valance band의 최대값의 k 값의 일치 여부

Direct S/C: k 값의 일치에 의해 h와 e가 바로 결합

Indirect S/C: k 값의 변화가 있어야만 h와 e가 결합 가능

실리콘은 e가 결정과 충돌하여 (k 값 변화) 결정 내부의 trap이라는 곳에 포획되고 그 후 h와 결합

 Shockley-Read-Hole combination

K space (Cont.)

(9)

Light emitting: direct semiconductor

λ hv hc

E

g

= =

light of

length wave

cm light

of velocity c

frequency v

eV Cons

plank h

:

sec) /

10 3

( :

:

sec) 10

14 . 4 ( . :

10 15

λ

×

×

1.24 eV의 energy gab  1 µm

Ex) GaAs: 1.43 eV  0.87 µm의 적외선 GaP: 2.26 eV  0.55 µm의 연두색 GaN: 3.36 eV  blue laser

E

g

24 .

= 1 λ

K space (Cont.)

(10)

Silicon for MEMS

Properties:

• Extensive studies and documentation

• Suitable for electronic, mechanical, thermal, and optical integration

• Can sustain harsh (mechanical) handling conditions

• Crystalline: mechanical properties are uniform across wafer lots

• Elementary semiconductor

• Plentiful element (지구상의 약 24%를 차지) Structure:

• Crystalline,

• Polycrystalline-polysilicon

• amorphous Conductivity:

• Semiconductor

Silicon: the dominant substrate material for transducers

(11)

Mechanical:

• Hard and brittle material, deforms elastically, robust

• Tensile yield strength – 7 GPa

• Maintain mechanical integrity up to 500 °C. >500 °C plastic deformation.

• Properties independent of doping (stress when impurities reach 1020 cm-3)

• Polycrystalline and amorphous: properties vary with deposition conditions, but similar to crystalline silicon.

• Polycrystalline and amorphous: high levels of intrinsic stress, requires annealing (>900 °C).

• Polycrystalline and amorphous: unstable, >250 °C.

Silicon for MEMS (Cont.)

(12)

Silicon Dioxide: Insulating layer

Properties

• Color table (Sze) Fabrication

• Thermally grown by oxidizing silicon at temperature > 800 °C.

• Spin on glass

• Bonding Mechanical

• High stress (difficult to control or anneal) – limited use as beams or membranes

• Uses

• Cost Thickness (µm) Color

0.07 Brown

0.31 Blue

0.39 Yellow

0.41 Light orange

0.47 Violet

(13)

Silicon Dioxide: Color table

(14)

Metals: Making Wires and Pads

Aluminum

• Basic electrical interconnections (common and easy to deposit)

• Non-corrosive environment only

• T < 300 °C (melting temperature = ? )

• Good light reflector (visible light) Gold/ titanium/tungsten

• Better for higher temperature

• Harsher environments

• Gold is good light reflector in the IR Platinum and palladium

• Stable for electrochemistry

(15)

Common Metals in MEMS

(16)

Polymers

Properties

• Spin coated with varying thickness; few nm – hundreds of microns

• Used in sensing of chemical gases and humidity

• Used as Photoresists,

• SU8: Epoxy based photoresist can form layers up to 100 μm

• Polyimide Fabrication

• Spin-on,molding Cost

• Low: PDMS

• Depends on materials

(17)

Thermal Conductivity

(18)

Thermal Expansion

(19)

Integrated circuit fabrication

(20)

Silicon ingot

(21)

Silicon ingot

(22)

Unit cubic of silicon

(23)

Miller indices

(24)

Wafer identification

(25)

R vs. dopant level

(26)

Overview of micromachining

(27)

Overview of micromachining

1. 유전체와 금속층을 기판 위에 증착하는 역 2. 확산보다 낮은 온도에서 시행

3. CVD와 PVD는 낮은 진공조건에서 실행

1. 유전체와 금속층을 기판 위에 증착하는 역

1. 유전체와 금속층을 기판 위에 증착하는 역할

2. 확산보다 낮은 온도에서 시행3. CVD와 PVD는 낮은

(28)

Overview of micromachining

1. 포토리소그래피는 가장 중요한 공정 중의 하나 2. 웨이퍼 표면위에 디자인된 패턴을 마스크 또는 래티클로부터 웨이퍼 표면에 도포된 감광막에 전사

1. 감광막 패턴으로부터 보호받지 못한 부분의 웨이퍼를 식각함으로 영구적인 패턴을 형성 2. Plasma etcher와 화학용액 이용

1. 유전체와 금속층을 기판 위에 증착하는 역할 2. 확산보다 낮은 온도에서 시행

3. CVD와 PVD는 낮은 진공조건에서 실행

(29)

Surface vs. bulk micromachining

⊙ Surface micromachining: processing “above” the substrate  Substrate is used as a base

⊙ Bulk micromachining: removes “ bulk” substrate

Two major processing for both micromachinings

Subtractive: etching, laser machining, mechanical milling Additive: deposition of dielectric materials, metal etc.

Isotropic and anisotropic

Isotropic process: Equal rates all directions

 produce structures with “rounded” feature

Anisotropic process: progress to a desired direction “usually perpendicular to the substrate”

 produce features with sharply defined features in the

(30)

Surface micromachinings Bulk micromachinings

Surface vs. bulk micromachining

(31)

Equipments

Wafer aligner

and exposure tool Metal Evaporator Plasma etcher

(32)

MEM devices and systems

참조

관련 문서

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio

ƒ Casting is a manufacturing process by which a molten material such as metal or plastic is introduced into a mold made of sand or metal, allowed to solidify within the mold,

Korean Studies major is designed for students from other nations who would like to prepare for a career as liaisons between the businesses of Korea and their nation,

The cost of such an item of PP&amp;E is measured at fair value unless (a) the exchange transaction lacks commercial substance ( 상업적실질 ) or (b) the fair value of

 An official school or college transcript that includes that applicant’s date of birth or a foreign school record that is sealed and includes a photograph of the applicant at

• Like Marx, Dahrendorf agreed that conflict is still a basic fact of social life. Dahrendorf believed that class conflict could have beneficial consequences for society,

The ideal diode is usually taken to be “wide-base” diode, or a diode whose contacts are several minority carrier diffusion lengths or more from the edges of the depletion region.