• 검색 결과가 없습니다.

Removal Characteristics of Benzene in the Biofilter Packed with Scoria

N/A
N/A
Protected

Academic year: 2022

Share "Removal Characteristics of Benzene in the Biofilter Packed with Scoria"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

  Biofilter Benzene 

*

 

608-739   100

* 

614-714    24 (2003 1 20 , 2003 10 20 )

Removal Characteristics of Benzene in the Biofilter Packed with Scoria

Seok Hee Lee, Dong Whan Lee* and Min Gyu Lee

Division of Chemical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea

*Division of Material Science, Dongeui University, San 24, Gaya-dong, Busanjin-gu, Busan 614-714, Korea (Received20 January 2003; accepted 20 October 2003)

 

    benzene   . Benzene  ! "# Bacillus sp. $ . %& '( )*+, benzene - Bacillus sp ./& 0# 0.037 hr1+ 123 . 40&

 5 benzene 6789 600 ppmv: ; <=>?@A(EBCT)9 20 sec # B 100% BCDEF, EBCT 10 sec+ GHIJ BKLM 90%  6NCD . Benzene - O- B$PM 720 g/m3·hr D . Q 200

2O + GM ]^ _ a . b c  de benzene 8 fg# 1h ij kl& mn .

Abstract−The biodegradation of benzene vapor in the biofilter packed with scoria, which was from Jeju island, was inves- tigated. Bacillus sp. was used as a benzene oxidizer. Batch experiment results showed that the specific growth rate of Bacillus species was 0.037 hr1 for benzene. In the continuous biofilter operation, the empty bed contact time (EBCT) was changed from 5 to 60 sec with a fixed concentration of benzene at 600 ppmv. At the EBCTs up to 20 sec, the removal efficiency was over 99.9%. When the EBCT was further reduced to 10 and 5 sec, the removal efficiency decreased to 90% and 45%, respec- tively. The maximum capacity of benzene was 720 g/m3·hr. During the 200 days operation, the biofilter gave a stable removal efficiency such that the pH of a drain water was maintained at 6-7 and the pressure drop was about 5 mmH2O. The results for the benzene vapor concentration with respect to filter height followed the first order kinetics.

Key words: Scoria, Biofiltration, Benzene Vapor, VOC, Bacillus sp.

1.  

         

    ! "#$ %&'  ()*+ ,- . /0 1 " *+234 56 "  &7$ 8 9. 9:6

*+23 ; <= >? @A , BC . 2D 23 E F

 GHI ; 6 <JK L , M 6 ;N O PQRS TUV WO5 X . Y Z[ \]6 ^_9.

Volatile organic compound(VOC) ` K abcdE$ e'f, g hO4 0.02 psia  ibj$ kl mn 100oC \S5 a bcdE4 _o9[1, 2]. VOC 5p . qE a6 2D 23 E5 rc scE$ tK' u)E4= 2#23$ i! v

2#w . + x y5  9[3, 4]. VOC! 5p \ Q %z  {K|}4 <~+€ ‚;' ƒC|} 

f, g„ VOC e…+P !†2l ‡$ a ' ˆ4 ‰

Š† 9[5]. VOC wJ ‹Œyz 0 Žu0@ a‘ ;’, ab }; . “5” i , wa@, •–@, 5— . Œ˜™, Hš

NP™ F$ M › f, Mz 9›! 5œ "*+ žŸ

6 X€ !( 9[6].   VOC  6 "*+= RS TUV /0*+=N ‹Œ ˆ4 ¡¢( £ VOC 6 ; ¤H'9[7].

VOC ;l b¥4 ]›, ]¦, §¨ F E cO Z© \

"E sc ¨ª«$ }6 "EO Y Z© 9. E c

O5 Z©z 2D 23 E$ "¬ ;n$ [ $ RS T UV ­® ¯N! °±=N }² ³!´! ‹Œ + +

;K °9. µV= >? E cO Z© ¶'· ¶} ¸¹

To whom correspondence should be addressed.

E-mail: mglee@pknu.ac.kr

(2)

 41 6 2003 12

', 2D 23 µº »Y F ;! ¼ "EO Y Z©

½¾ 9[8].

"EO Y Z© <= ¿O4 } À2ÁÂ(biofilter)

 ghO4 \"E _o Ãp bp! Ä'Å ±= s@

 23E Ãp ¿± tKo "EÆ4 Çs, "EÆ È

#1' \"E "¨hÉ '· ;l Zq9[9]. µV=

À2ÁÂ Kª › z Ãp ­K  Êf, \"E

š µº ¨ª ¶iqËN F  ;lWÌ Í_£ 9.

À2ÁÂ } \"Ez ghO4 23 "y wÎ Ï: F

4„Â П ÑC'· ‹:6 » Ÿš' Z© KÒ ( 

¯N4 wÓ' Z© 9.   >? Y E 6 sc ËN, b¯N %, O_ pH ÔÕ, abE >š"KE % F

$ Ô'· ›6 VOC ¨ \"E$ ½_' 0)N  'Å Ö 9[10, 11].

À2Á } Ãp )Ó }' !× ¸¹6 Ï:

 compost, wood chip, peat F ab Ãp! w‘ Ø  9.   abK Ãp Pbœ } \"E  Ãp /p! ¨

l jÙ Ît£ j«Ú^ i!4 «¶ Û y5 

Ü4  ÝbÞ4ß ;lWÌ à×® G@' ;! 9

[10].  6 Ãp ¨ jÙ Ît F ; WO4 Í'

b &'· >? •Vá, 4 Òâ, ¨/ cdE F ãb 1

 6 äz 0)! Ö 9[10, 12-14].

;wN (å æ s1  ´ç T(scoria) cs è é ê "6 §= @Ko @Kp4= ]ëK ì', 9IK±=N

@_ ìN !( £ · Y  Óí[15] . ]¦;[16]4

} 9. ´ç T sŒ (å µV Ôîï D!  Ó /! › cm _N Ôð w Øf, wK¨z SiO2+Al2O3+Fe2O3 4 ñ² 75% 'f, ¶òO [_o c ÔK$ k 9. µV

= ´ç T  6 ­Kz À2ÁÂ} Ãp4 Odé ˆ4 

o9. Lee F[17]z ´ç T Ãp4 6 À2ÁÂ= óc›@

;l ­K$ ôõö Í, \"E „¦ª, Ãp ìN . óc›@ ;l ª ›6 ́ ÷9. ø6 Cho F[18]N ´ç T 9IK ) ԁ !† À2ÁÂ} \"E Ãp4ß –ù6 W! A$ ¡ú 9. 1 ;wN ´ç T À2ÁÂ} Ãp4 }6 0)4  M 0)/M  Ö ˆ û ¼f, M 0)N óc›@ 

 üÏý9.

µV= ö 0)= ´ç T À2Á Ãp4 }'· 

¿O5 VOC E < '5 benzene !´ ;l­K$ üÏ'/

'÷9. VOC ¨ þw4 Bacillus sp. }', ¨q ^ÿ$ Ä '· \"E ¶ iq ËN benzene ¨ª$ Ô'÷9. ø6 0Ëq À2Á u$ Ä aÓ¯N . IŸœ(EBCT, empty bed contact time) Îc F ;lWÌ \Q % pH, j

« ì' F Îc '· üÏ'÷9. ø6 23E ËNO

$ Ä'· À2ÁÂ=  µº ;l­K$ '÷9.

2.  

2-1.  

ö ^ÿ= þw4 }6 Bacillus sp. benzene ¨ ­K$ ôõ

·   ÑC' }'÷9. b  „ !(

^  ƒ4 ž' 4„Â ÑC'÷9. hÉb È  „

 500 mL, b „ 1,550 mL4 g_'Å a('· ¨q4

^ÿ'÷9.

p ‹( KNO3 200 mg/L, K2HPO4 900 mg/L, (NH4)2SO4 125 mg/L,

KH2PO4 600 mg/L, MgSO4 200 mg/L, CaCl2 70 mg/L, FeSO4 10 mg/L

  EDTA 20 mg/L ÔK4 ;Ô'· 120oC, 0.8 kgf/cm2=

1œ þ6 9A V´  490 mL Ñ u ž'÷9. s@

;64 56 ^ÿ2D ‹;'b &'· žo V´ Ȅ I b 99.99% O24 p'÷9. ^ÿÔÕ ¯N ~b & 

benzene$ ƒ 4 ^ ( }'· g_² ÑC'· V´ È

„4 Ó6 »  òhb È Ë òh'±= 1gœ ZQ'· b·

¯N Ö4 SMý9. g_bœ Éo Bacillus sp. ‹:$ y

¤¨ (6,000 rpm, 15¨)6 » i‘›4 › •'· z \"E$

þ i‘› 100 mL 6 9A,   10 mL Ö

oC, 150 rpm4 g_'Å a( = ›Ö'÷f, œ4 head space=

gas-tight syringe4 0.5 mL ÑC'· GC(gas chromatography, DS-

1200)4 benzene ¯N ¨'÷9. ø6 í œƒ9 '„

 }'· $ 5 mLï C'· UV/VIS spectrophotometer(Hanson, Optizon II+) }'· ,P 600 nm= OD(Optical Density) _ ñ4ß \"E ¯N )'÷9.

2-2.  

Fig. 1z ^ÿ }£ À2ÁÂ I_ up !qN4ß, À

2Á )Kz Å hÉb, iëb, bcb . "db 4„¨4

£ 9. hÉb È+ 10 cm, # 150 cm yt T $ X$  }'÷9. hÉb „4„ 30 cm œ×4 5 p  ™Q '· H % # gas sampling port4 }'÷f, hÉb '„

= 25 cm œ×4 3 media sampling port ™Q'÷9. Gas &

'z „= aÓ£ '„4 aŒ '‘ Zqf, hÉb 

„ '„ HH 15 cm # ¨s ()5 $ Lý9.

iëb È+ 18 cm, # 152 cm T $ X4 ;|'÷f, '„ ¸PÔ4„ **+ }'· „= ¨N, '÷

, Ȅ pall ring$ %u'· ië WÌ$ #÷9.  23 E

5 benzene Ñ- bcb '„= Ib èb.4ß  2 3 E$ /cv "db4 Ià'÷9. bcb Ib 

benzene Ÿ ±O$ i!¬b & glass bead Ñ- }'÷

Fig. 1. Schematic of experimental equipment of biofilter.

1. Humidification column 16. Nutrient solution tank 2. Mixing chamber 17. Flow meter

3. Water bath 18. Water pump

4. Vaporization column 19. Air pump 5. Biofilter column 10. Needle valve

(3)

f, UM 4 bcb Ià Ib :$ Ô0ñ4ß ÁJ6

¯N ý9. "db iëb= iëo ^ÈIb bcb4„ Ià benzene bp! y® "dN, 5 Z˜$ ™Q6 T $ Hԁ }'÷f, "db4„ g_¯N4 "do !´

hÉb4 aÓN, '÷9.

Ãp4 }6 ´ç T(scoria) Ãp b j«ì' 6 u

[17] Í= Ó+ 10 mm 5 + aÓa² i! µº j«Ú^ Îc! l ¼ ˆ4 1234 ö 0)=N à p /p j«Ú^ 6 %$ 4b &'· ´ç T b

12-17 mm b4 ½'· hÉb 1.2 m #4 %u'÷9. 

ê % „ 10 L, % <²z 6.3 kgý9. ´ç T % 6 »

 „4 E$ ¨ã'· ´ç T •6 » \"E$ qš'÷9.

ê I࣠\"E ¯N MLSS4 15,000 mg/Lýf, H hÉb 5 2 Lï wÓ' À2Á \"E %¨® „¦6 ê7 (  23 E5 benzene ¯N 40 ppmv, EBCT 1 min4

_'· u'÷9. hÉb aÓ benzene ¯NÎc bcb

 Ià Ib a²$ a²€4 Ô0'· u'÷9.

2-10 p ‹( ÔK g'Å ;Ô6 » 10‹ '· *+

18 P¦'· g_œ œ×4 „= 1g 0.5 L aË4 Ià'÷9. b ¯N b ÑC)4„ gas-tight syringe  }'·  ÑC » GC }'· ¨'÷f, g_œ œ×4 ()5› pH %u j« ì' _'÷9.

2-3. 

benzene ¯N ¨z fid(flame ionization detector) P¦6 GC (Donam, DS 1200) }'÷9. ¨ ÔÕz carrier gas(He) a²z 1 mL/min, Oven N 70oC= 10oC/min4 150oC 7( i!

v 1 minœ a('÷9. ø6 wӄ N 150oC, üŒ„ N

 250oC4 '÷9.  gas-tight syringe(Hamilton® #1001)4 

 0.2 mL ÑC'· ¨'÷9. \"E ¯N ¨z UV/VIS spectrophotometer(Hanson, Optizon II+) }'· ,P 600 nm=

]rN _'÷9. u µº j« ì' Durablock Manometer

(DWYER, USA)4 H ÑC)= _'÷f, pH pH-meter

(ORION, model 420A) }'· ()5› ¨'÷9.

3. 

3-1.   benzene  

Benzene$ 9@y4 } \"E iq \Q %$ ôõ

:9. …b \"E ¯N 110-120 mg/L4 ', benzene …b

¯N! 100, 500, 1,000, 2,000, 3,000 ppmvg + œ µº H K¨M ¯NÎc \"E ¯NÎc Ôñ4ß \"E K P . benzene ;l ­K$ ôõ:9.

Fig. 2 œ µº benzene ¯N . \"E ¯N Îc N

6 ˆ9. ;=  À < …b ¯N 1,000 ppmv '

ÔÕ= 99%  ;lýf, \"Ez = 10-20% _N i!

 ÷9.

\"E ¶iq ËN ¯Nœ X€ Monod q4 ¿o9.

(1)

·b= µ \"E ¶iqËN (hr1), X \"E ¯N(mg/L), µm

z > ¶iq ËN (hr1), Ks /c› (mg/L), S b ¯N (mg/L)9.

Fig. 2 ¨q ^ÿ́ q (1) O}'· ¶½t>©(r2=0.83)

  )6 > ¶iq ËN /c › 0.037 hr1. 0.153 mg/L

ý9. M ?$ q (1) Ó'· )6 €sÍ ^ÿ́ Fig. 3

 ¶ò'· 1Èý9. ;=  À < €sÍ ^ÿ Í @ gQ'÷f, 4„Â ö 0)= benzene$ b4 6

\"E ¶iq ËN Monod !Aq$ µB ˆ$ ‰ › ý9.

3-2.   benzene  

Fig. 4 À2Á u benzene aÓ ¯NÎc µº aŒ ¯ NÎc œ '· N6 ˆ9. u…b \"E É$

&'· benzene aÓ ¯N 100 ppmv4 '· EBCT 30 sec= ^ ÿ'÷9. À2Á u…b bœ aÓ¯N! i! ø %×

„'! w£( +, Cz EBCT! G@ + Îc  \"

E OÉ' Ébœ ÁJ'9[19, 20]. Éœz À2Á

^; P O} DEKª äz %$ wÅ  Éœz

!´ &' t, b 23E ­K Ãp ­K µV V 9[21]. ö ^ÿ= u | 5g + » benzene aŒ ¯ N! _( F:f, 10g  (ËvN aŒ ¯N _(

FA µV benzene aÓ¯N ܀O4 100-1,200 ppmv4 i

µ 1

X---- dX ---dt µmS

Ks+S ---

⋅ =

=

Fig. 2. Benzene degradation and cell growth ratio for Bacillus sp.

Fig. 3. Effect of benzene concentration on the specific growth rate of Bacillus sp.

(4)

 41 6 2003 12

!v ^ÿ$ Ö'÷9. ;=  À < ö 0)= \

"Ez ¯NÎc  p4 5-6g È OÉ' ˆ$ ‰ ›  ý9.  6 Í Martin Lohr[20]! compost Ãp4 '·

toluene ;l = 9g OÉœ ÁJ'9 6 ˆ ¶ò'± G

º Ébœ$ ÷9.

Fig. 5 benzene aÓ¯N 600 ppmv4 g_'Å '= EBCT

 5-60 sec4 Îcv EBCT Îc µº ;l ^ÿ$ 6 ́  1H ˆ9. EBCT! 20 sec 5 + benzene l 100%

;lýf, EBCT! 10 sec= 90%  ;lý9. ø6 EBCT

 5 sec4 °I +N benzenez 50%  ;lý, EBCT

! 10 sec5 + ;lWÌ 90%  a(ý EBCT! 5 sec4 °T(±= ;lWÌ 50%4 G@' ˆz u[17] óc›

@ Í ƒJ!(4 aÓ „'! 2‹4 i!'÷bê S TUV aÓa² 2‹4 #TK µº À2Á Ȅ Gº ½ËN 

 benzene bp! Ãp ¿± \"EL4 %¨® Çs( M'÷

b ê 4 o9.

3-3.   

aÓ¯N i! EBCT G@ 6 aӄ' i!4 ;lÌ

 G@ñ4ß ;l}²z g_6 ? N'Å o9. ê ?$

> ;l}²V 'f, > ;l}²z ´N \"E K  6 ¸|} ¼ OP ›  > „' e69.  ´N  uÔÕ . Ãp š‘ µV V(f, ^; ´N ™€ . u

 £= í <J6 5/9[11].

Fig. 6z aÓ „' µº ;l}²$ N6 ˆ4 ;= 

 À < benzene > ;l}²z 720 g/m3·hr4 £Q9.   6 Í Zhou F[22] :! Ra %u6 hÉb= P. putida

P. fluorescens "d \"E 6 0)= benzene ;l}²

11.5 g/m3· h, Sene F[23] S›› Ãp4 6 0)Í= benzene

 ;l}² 3.5-3.8 g/m3·hr, Kennes F[24] perlite Ãp4 6 0 )= ethylbenzene ;l}² 85 g/m3·hr, Lu F[25] trickle-bed 0)= BTEX ;l}²z 115 g/m3·hr, Oh Bartha[26] peat- perlitr Ãp4 6 + BTX ;l}² 40-50 g/m3·hr, ø6 Park F[13] GAC Ãp4 }6 + BTX ;l}²z 160 g/m3·hr 5 ˆ ¶òT ê ö 0) ÔÕ= í #z ;l}²$ ·

wý9.

3-4.  !" # pH $%

ghO4 pH À2ÁÂ Kª %$ \Q wJ6 5/<

 '9. \"Ez pH! í #l °z ÔÕ= "# U M9. ø6 pH! Îñ µV= äz EMz }N! V(Å 

, N \"E œŸO5 %$ w J5 o9[27]. À2Á  0Ë u' + À2ÁÂÈ pH! Îcé › , 

 23bp „¨ À2ÁÂÈ= "EO4 Î*

(biotransformation) + s "Kb ê  ghO4 Pb

œ u pH! °T( ˆ4 ‰Š† 9[11]. ¶, Thiobacillus

 <z acidophilic \"Ez sulfide <z EM$ sc¬ ª«$

!( b '(S À2ÁÂ= „¨ \"E 6 >O pH

 6-8V&9[28]. µV= À2Á pH O0® a('b &'

· ", @, limestone, dolomite, marl, slags ø chalk F$ <

c;4 }'bN 69[29, 30].

Fig. 7z 0Ëu µº pH Îc j« ì' X6 Í9.

ö 0)= ;= · (W À2Á = 200g [ P bœ uN pH 6-74 g_'Å a(ý,  Kiared F [31] 0) Í= ™ o ˆYX nutrient Y!£ buffer S

4 pH a('b ê 4 o9.

À2Á Z Pn< ' [( @¶² °9 ˆ9. À

2Á [( @¶²z %u$ Ä'· &B &' 6 j

«ì'  Ê, ghO4 j«ìc $ Ä'· &B

&' ­K, baË, ø Ãp ­K ÔK Êo9. ö 0 )= ´ç T Ãp4 6 + j« Ú^z Fig. 7=  À

 < þ 5 mmH2O/m4 í °Å a(ý,  Kiared F[31]

Fig. 4. Inlet and outlet concentrations of benzene as a function of oper- ating time at biofilter.

Fig. 5. Removal efficiency of benzene as a function of EBCT at inlet concentration of 600 ppmv.

Fig. 6. Elimination capacity of the biofilter as a function of inlet load- ing rate.

(5)

 polystylene$ Ãp4 }6 0)= j« ì'! 60 mmH2O/m, Lim F[32] •Vá Ãp + j«ì'! 77 mmH2O/m5 ˆ

¶òé ê °z j«Ú^$ ÷9.   Namkoong F[33] GAC

 %u6 À2ÁÂ= \Ø] !´ Y  j«Ú^ 1 mmH2O/

m5 ˆ ¶= 9@ #z ?$ ÷9.

3-5. & ' () 

  µº ¯N Îc ́ ^ 'b &'· Ottengraf

Oever[33] 0D hÉ !Aq 1D hÉ !Aq$ O}'· üÏ'÷9.

0D hÉ !Aqz q (2) <f

(2)

 9 _ '± 9A < o9.

(3)

·b= Cg, Cgi: PQ Ó) . Œ)= !´ ¯N(ppmv)

·b= As: Ãp ¶¿±O(m2 m3)

·b= k0: 0D hÉ ËN › (ppmv min1)

·b= δ: "EÆ L_(m)

·b= ug: ¿± !´ ËN(m3 m2 min1)

·b= H:  (m)

·b= K0a=Asδk0: `b 0D hÉ ËN ›(ppmv1 min1) q (3)=   N'± bab4„ `b 0D hÉ › K0a! ) 9.

1D hÉ !Aqz 9A <f

(4)

·b= φ=δ(K1/De)1/2: Thiele€›(ãDy›)

·b= K1: 1D hÉ ËN ›(min1)

·b= De: aW Çs €› (m2 min1)

·b= m: b ›

·b= K1a= : `b 1D hÉ ËN ›, (min1)

 9 _ '± 9A < o9.

(5)

q (5)=   N'± bab4„ `b 1D hÉ › K1a! ) 9.

Fig. 8z EBCT 30 sec= benzene aÓ¯N 600 ppmv4 6 +

 _6 À2Á   µº benzene aŒ¯NÎc Í

9. ö ^ÿ= z  µº ¯NÎc ́ q (3) . q

Cg Cgi

--- 1 AskoδH Cgiug ---

– 1 HK0a

Cgiug --- –

= =

1 Cg Cgi --- H

Cgiug --- K⋅ 0a

= –

1 Cg Cgi ---

– H

Cgiug ---

Cg Cgi

--- HAsDeφtanhφ δmug

--- HK1a mug --- exp

= exp

=

AsDe ---δ

 

 φtanhφ

Cgi Cg ---

 

 

ln H

mug ---K1a

=

Cgi Cg ---

 

 

ln H

mUg --- Fig. 7. Pressure drop and pH change at the biofilter as a function of

operating time. Fig. 8. Variation of benzene concentration as a function of bed depth

(Inlet concentration: 600 ppmv, EBCT: 30 sec, Temp.: 25oC).

Fig. 9. Linear plot for the determination of (a) apparent zero and (b) first order reaction constant (Cgi: 600 ppmv, m: 0.23, ug: 0.64 m/sec).

(6)

 41 6 2003 12

(5) O}'· N6 ́ Fig. 9 1Èý9. b › mz Angela[11] 0)= ^ÿO5 Z©$ Ä'· )6 N! 25oC5 + ?5 0.23$ }'÷9. ;=  À < ö ^ÿ Í

 q (3) 0D hÉ !Aq9 q (5) 1D hÉ !Aq @ Sc'÷f,ê )6 1D `b hÉ › ?z 1.83 min1ý9.

 6 Í u[17]= ¡d óc›@ + 0D hÉ$ µ º Í 9º ́ ÷9.

5. 

;wN æ s1  ´ç T À2Á %u Ãp4 '

 \"E þw Bacillus sp. }6 À2ÁÂ= benzene ; l­K$ ôõö Í 9A ́ ý9.

Benzene 6 Bacillus sp. ¶iq ËN 0.037 hr14 £Q9.

À2Á u= benzene aÓ¯N ܀O4 100-1,200 ppmv4 i!e$ ê \"Ez ¯NÎc  p4 5-6g È

OÉ'÷9. Benzene aÓ¯N! 600 ppmvg ê EBCT! 20 sec 

= l 100% ;lýf, EBCT 10 sec4 °~fVN ; lWÌz 90%  a(ý9. Benzene 6 > ;l}²z 720 g/m3·hrý9. À2Á = 200g [ Pbœ uN pH

6-74 g_'Å a(Þ4ß nutrient Y!£ buffer S4 pH

 a('÷9. ´ç T Ãp4 6 + j« Ú^z þ 5 mm

H2O4 °z j« ì' ÷9.   µº benzene ¯N Îc

 0D hÉ !Aq9 1D hÉ !Aq @ Sc'÷f,ê ) 6 1D `b hÉ › ?z 1.83 min1ý9.

 

ö 0) 2001gN „+ò ¥0)¶ (y  ›Öý

f,  G(ðU9.



1. Arnold, M., Reittu, A., Wright, A. V., Martikainen, P. J. and Suihko, M. L., “Bacterial Degradation of Styrene in Waste Gases using a Peat Filter,” Applied Microbiol. Biotechnol., 48, 738-744(1997).

2. Sukesan, S. and Watwood, M. E., “Continuous Vapor-Phase Trichlo- roethylene Biofilteration using Hydrocarbon-enriched Compost as Filtration Matrix,” Applied Microbiol. Biotechnol., 48, 671-676(1997).

3. EPA IM, I/M Briefing Book, EPA-AA-EPSD-IM-94-1226, US EPA (1995).

4. EPA Air, National Air Pollutant Emission Trends (1900-1993), EPA- 454/R-94-027(1994).

5. KOSHA, “Hazardous Guide of Chemicals,” Last Volume G-Z, 315 (1990).

6. Han, H. J. and Jo, O. S., “Study on Evaluation of Emission and Reduction Technology on VOC Discharge Sources,” Kor. Petro- leum Assoc(1996).

7. KOSHA, “Design Guide of VOC Control Construction (Anyeon 98- 17-248)”(2000).

8. Tang, H. M. and Hwang, S. J., “Waste Gas Treatment in Biofilters,”

J. Air & Waste Manage. Assoc., 46, 349-354(1996).

9. Sorial, G. A., Smith, F. L., Suidan, M. T., Pandit, A., Biswas, P. and Brenner, R. C., “Evaluation of Trickle Bed Air Biofilter Perfor- mance for BTEX Removal,” J. Environ. Eng., 123(6), 530-537(1997).

10. Zhao Wang, “Biodegradation of Volatile Organic Compounds (Ben- zene, Toluene, Xylene) in Biofilter,” Ph.D. Dissertation, University of Washington, Washington, U.S.A., 55-110(1996).

11. Bielefeldt, A. R., “Biotreatment of Contaminated Gases in a Sparged Suspended-Growth Reactor: Mass Transfer and Biodegradation Model,”

Ph.D. Dissertation, University of Washington, Washington, U.S.A., 4-55(1996).

12. Park, K. J. and Yeom, J. S., “Odor and VOC Removal Equipment using Biological Media and Intermittent Recycle Solution (BIOCAT),” J.

Environ. Hi-Technol., 102-109(1999).

13. Park, S. J. and Lim, J. S., “Removal of Volatile Organic Compounds and Inorganic Odor by Biogilter,” Theor. & Appl. Chem. Eng., 5(2), 3437-3440(1999).

14. Park, S. J., “Development of Biological Deodoring Technology for Odor and VOC Removal,” J. Environ. Hi-Technol., 28-34(1999).

15. Lee, M. G., Kang, J. H. and Kang, Y. J., “A Study on the Filtration Rate and the Capacity Factor of Brown Seaweed Wastewater with Scoria Filter Bed Height,” HWAHAK KONGHAK, 30(6), 731-737 (1992).

16. Lee, M. G. and Suh, K. H., “Study on Adsorption of Heavy Metal Ions by Cheju Scoria,” J. Kor. Environ. Sci. Soc., 5(2), 195-201(1996).

17. Lee, M. G., Bin, J. I., Lee, B. H., Kim, J. K., Choi, H. and Kwon, S.

H., “Removal Characteristics of Hydrogen Sulfide in the Biofilter Packed with Volcanic Rock (Scoria),” HWAHAK KONGHAK, 39(3), 379-384(2001).

18. Cho, K. S., Ryu, H. W. and Lee, N. Y., “Biological Deodorization of Hydrogen Sulfide using Porous Lava as a Carrier of Thiobacillus Thiooxidans,” J. Biosci. Bioeng., 90(1), 25-31(2000).

19. Deshusess, M. A., “Transient Behaviour of Biofilters: Start-up, Carbon Balances, and Interactions between Pollutants,” J. Environ. Eng., 563-568(1997).

20. Martin, G. T. and Loehr, R. C., “Effect of Periods of Non-use on Bio- filter Performance,” Jour. Air and Waste Manage. Assoc., 46, 539-546 (1996).

21. Corsi, R. L. and Seed, L., “Biofiltration of BTEX: Media, Substrate, and Loadings Effects,” Environ. Prog., 14, 151-158(1995).

22. Zhou, Q., Huang, Y. L., Tseng, D. H., Shim, H. and Yang, S. T., “A Trickling Fibrous-bed Bioreactor for Biofiltration of Benzene in Air,” J.

Chem. Technol. Biotechnol., 73, 359-368(1998).

23. Sene, L., Converti, A., Felipe, M. G. A. and Zilli, M., “Sugarcane Bagasse as Alternative Packing Material for Biofiltration of Ben- zene Polluted Gaseous Streams; a Preliminary Study,” Bioresource Technol., 83, 153-157(2002).

24. Kennes, C., Cox, H. H. J., Doddema, H. J. and Harder, W., “Design and Performance of Biofilters for the Removal of Alkylbenzene Vapors,” J. Chem. Technol. Biotechnol., 66, 300-304(1996).

25. Lu, C., Lin, M. R. and Chu, C., “Effects of pH, Moisture, and Flow Pattern on Trickle-Bed Air Biofilter Performance for BTEX Removal,”

Adv. in Environ. Res., 6, 99-106(2002).

26. Oh, Y. S. and Bartha, R., “Construction of a Bacterial Consortium for the Biofiltration of Benzene, Toluene and Xylene Emissions,” J.

Microbiology and Biotechnol., 13(6), 627-632(1997).

27. Atlas, R. M. and Bartha, R., “Handbook of Microbiological Media,”

CRC Press, Boca Raton, FL(1995).

28. Ottengraf, S. P. P., in Rehm, H. J. and Reed, G.(ed.), “Exhaust Gas Purification,” Biotechnology, Vol. 8, VCH Verlagsgesellschaft, Wen-

(7)

heim, 425-452(1986).

29. Hartenstein, H. V., “Biofiltration and Odor Control Technology for a Wastewater Treatment Plant,” M.S. Thesis. Univ. of Florida, Gainsville, FL(1987).

30. Leson, G. and Winer, A. M., “Biofiltration: An Innovative Air Pollu- tion Control Technology for Benzene, Toluene, Xylene Emissions,”

J. Air and Waste Manage. Assoc., 41, 1045-1053(1991).

31. Kiared, L. B., Brzezinski, R., Viel, G. and Heitz, M., “Biological Elimination of VOCs in Biofilter,” J. of Envir. Progress., 15(3), 148- 152(1996).

32. Shareefdeen, Z. and Baltzis, B., “Biofiltration of Toluene Vapor under

Steady-State and Transient Conditions: Theory and Experimental Results,” Chem. Eng. Sci., 49, 4347-4360(1994).

33. Lim, J. S., Koo, J. K. and Park, S. J., “Removal of Toluene Gas using Porous Ceramic Biofilter,” J. Kor. Soc. Atmosph. Environ., 14(6), 599-606(1998).

34. Namkoong, W. Park, Y. J. and Park, J. S., “Removal of High Con- centration Toluene Gas by Granular Activated Carbon and Compost Biofilters,” J. Kor. Solid Waste Eng. Soc., 17(8), 969-977(2000).

35. Ottengraf, S. P. P and Oever, V. D., “Kinetics of Organic Removal from Waste Gases with a Biological Filter,” Biotechnol. Bioeng., 25, 3089-3102(1983).

참조

관련 문서

temperature and the equilibrium liquid composition associated with a vapor mixture of benzene and toluene containing 40 mole% benzene at 1 atm. If condensation proceeds

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

Ultimately, we believe that our efforts to install pad  machines and increase community understanding of menstrual health will promote global gender  equity and ensure that

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

수명 수명 연장 연장 : : 신규설비 신규설비 보유에 보유에 대한 대한 비용부담 비용부담 해소 해소 및 및 Decommissioning Decommissioning 까지 까지 안정적 안정적 운전 운전

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

Plot of power density vs current density (panel A) and plot of COD removal efficiency and coulombic efficiency (panel B) at different temperatures with 3 g L −1

The NO removal efficiencies and the particle charac- teristics were measured and analyzed as the function of initial concentrations of NO, H 2 O, and NH 3 at the