• 검색 결과가 없습니다.

 1.  Prediction of Removal Efficiency in UV/TiO /H O System usingError Back-propagation Neural Network  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Prediction of Removal Efficiency in UV/TiO /H O System usingError Back-propagation Neural Network   "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

  UV/TiO

2

/H

2

O

2

   

*** 

  

*( ) 

** 

(2001 2 9 , 2001 3 28 )

Prediction of Removal Efficiency in UV/TiO

2

/H

2

O

2

System using Error Back-propagation Neural Network

Tae-Min Kim, Jong-In Choi*, Min Oh** and Tae-Hee Lee

Dept. of Chemical Engineering, Yonsei University, Seoul 120-749, Korea

*HYOSUNG CORPORATION R&D CENTER, Kyonggi 430-080, Korea

**Division of Chemical Engineering and Technology, Hanbat National University, Daejeon 308-710, Korea (Received 9 February 2001; accepted 28 March 2001)

 

   UV/TiO2/H2O2    ,  ! "#$, $

% &'() *+,-. /01 234   !5 67 89 :; <=0>?. @A <=B :;C ?D A EF.G UV/TiO2/H2O2  !5 67 8901 HIJKL MN0>?. 4O PQC <=B 

 R 23S(η)L :TU(α)V WW 0.9 % 0.7 X   !5 67 YZ [\] 230>Q^, 

   %  ! "#$, $  . _` !5 67  a [\] 890>?. VCbc  

V UV/TiO2/H2O2 !5 67 890 dA :;C V(Yef g  hi?.

Abstract−A prediction model of removal efficiency in UV/TiO2/H2O2 system was constructed using the error back propa- gation neural network with generalized delta rule. The network was trained to produce removal efficiency according to initial concentrations of formic acid, dosages of oxidant and concentrations of catalyst. The reliability of removal efficiency predic- tion using the constructed neural network was verified by comparing the experimental data of the system for various condi- tions. The error back propagation network with four layer learned exactly the removal efficiency curve of the system when step size coefficient(η) was 0.9 and momentum(α) was 0.7. It offered reasonable prediction of removal efficiency curve for the var- ious initial concentrations of formic acid, dosages of oxidant and concentrations of catalyst. It was found that the error back propagation neural network is the proper model to predict the removal efficiency of UV/TiO2/H2O2 system.

Key words: UV/TiO2/H2O2, Photocatalyst, Neural Network, Formic Acid

E-mail: leeth@yonsei.ac.kr

1.  

  UV/TiO2/H2O2   

    TiO2  !"# UV, $

H2O2%&' () * OH radical+ ,"- ) ).-/ 0

=>  0?@ 1 23 45+ CO2 H2O% #A

% B;C% < 2D 23 E$F GHI, J67" 45)K L"

+ FM 45 ? N.O  P: 8Q+ FM:.

  TiO2 ).-  .R? 6S TiO2

TUF 1V4  W? % X.<: YZ) 1976[

\ ]^M )_%  .R`? 6a `b% cdN ef

< 13gh V4?@&' 5gV4, phenol V4, $i$, j k$ l m J67" 14? )noC /; FC 45? p<

67 qrF )stu v:[1-6]. w;K, .R? 6S TiO2TU

6 x yF tz: fQH% -/ Sabate l[7] TiO2TU 1 {? -/ 145 67 -|HI, )_% TiO2

TU ? p< } qrF M~ P `b):[8-11]. -C

€,  % < !"Q g, w 45‚ ƒ„ …F%

< W45 †‡ˆ ‰ ƒ-% ‚ W ‰F g<: E

$Q) P:. );< fQ+ 7Š- ‹-/ ŒŽ+ ).-/ . R? 6S  TU ‘NH% 6 y- 89F ’“”

(2)

 39 3 2001 6

HI, )%&'  TU 6a `b?@ 145+ 67 

< _ ŒŽ+ •-/ 6 y- =) `.”:[12-14].

w;K,  –—-/ W# UV/TiO2/H2O2 h

˜™" ?@ c)`"H% -/ $š ‘+ ›œ žŸO

 P  ¡¢) £¤oC $C ¥- P:. ¦@,  ) .<    Y ‹7@  W 89 $š 

‘+ Z$? F§¨  YO  P rF ©ª-I «¬­ )? p

< 7Š® -KF ¯  P:.

«¬­ C° r–+ ‹<  -K%, 1949[ D. O. Hebb?

-/ \ $±S _ M. Minsky, F. Rosenblatt, B. Widrow l?  -/ ²³´µ(perceptron)) ¶ f· r¸ ¹  «¬

­) r–”HK, ) N. º»NH% 6 F°< E$? ¼<

”:. w _ 1970[p 1980[p š9½@ ¾N iF :u C :· «¬­) ’“½@ qrF ‰% ¿”HI, )?

¦ )‚ )`N  ¡ÀH% 7ŠO  G”Á c)`N /

; FC E$ 7ŠO  P¨ ”:[15-17]. , ¾¾ 6Ã?

@ ¾  ¡À, cº»  žŸ$t,  )`Mf, Ä N l? N.- ‹< qrF !“ M~ P:[18-23]. Å< Æ

¬¾ 6Ã?@ pK 5 23 žŸ l? !.- ‹< qr F )stC P:[24].

Ç qr?@ «¬­ 0?@ F8 ÇN 2ÈÉ‚Ê «¬­+ ) .-/ –— `b TiO2 UV, H2O2 Y.-  

 $š ‘ žŸ+ ‹<  ¡+ r"- :Ë< ̂ Í?@ $š

‘+ žŸ-I, ) ZΊ cd-/ «¬­  ¡ N. F°

"+ ÏÐ-|:.

2.    

2-1.   

.R`?@ TiO2 UV? <   W Fig. 1?@ Ñ Ò) TiO2TU band gap energy(=3.2 eV)Ñ: Ó ?ÔC? 7Õ-

?ÔC(390 nm )-) TiO2 TUF †-/ ,"S ‚U (electron, e) (hole, h+) W? -/ “,<:[25, 26]. 

?@ ,"S ‚U  p&6 Ö× e Ø? يV-C€, w ÚC Û ‚U >  ܽ? †ˆt P 14)K .

 g l  x ÆÝ W+ -¨ S:. );<    W ˜™< radical W+ - ÞE? £¤oC ¿< W ¬

%F ßàCC Û PC€, £á W rF N   W r% –Ù â£>/C P:[27].

Uãº) TiO2TU? bandgap ?ÔCÑ: * ?ÔC -½

‚UF äåu PÁ TiO2 valence band?@ ‚UF =æt conduc- tion band% )ç-¨ I, ç? TiO2 valence band? ) ,

"S:. /S ‚U  ܽ? †ˆt P ‚U.  g W-/ superoxide radical(O2

è)+ ,"-I, h‰-/ superoxide radical 46U W-/ hydroxyl radical(OHè)+ ,"<:. ) ç

? TiO2 ܽ?@ ,"S  ? †ˆt P 46UK hydroxyl )é W-/ hydroxyl radical+ ,"-šK 1V4

¤ê W-/ 1V4+ 67- <:. )ë ?@ ,"

S ‚U   ì  x ÆÝ W? -/ OH radical+ ,"

-¨ í, Ollis l )Þ ,"S OH radical) /; FC »b%  0 14 W-/ 67F M~S: Ñ-|:[28]. Fig. 2 )

;< W + < î):.

‹ m + •-/ ?@ ,"S OH radical 0 1

V4+ CO2 H2O% 67-/ $š-¨ S:.

Organic Compound +èOH→H2O+CO2 (1)

2-2.  2-2-1. «¬­ r¸

«¬­  «¬ Œï? pW- ðñ(node)>) @% ˜™-

¨ qŠt P r¸ FM:. ðñ Fig. 3?@ Ñ îë T(

Fig. 1. Generation of primary radicals at surface of irradiated TiO2 par- ticles.

Fig. 2. The reaction scheme of TiO2.

Fig. 3. Artificial neuron with activation function.

(3)

«ò -/ Šó+ æ(- «¬­ Äg f‹)I, ô ðñ

?@ hS Š :\ · ô ðñ>% ‚S:. )Þ ðñ æ (ó ¢ (2)% ܖO  P:[15-17].

(2)

/@ xi T(«ò)I, wij F09, w f !" õ  ö<:.

«¬­+ r"- ·(layer) /; ’ ðñ ÷ø% Kù-/ €

>tM úV%, -K ·€H% r"S «¬­+ f· «¬­

(single layer neural network)) <:. )? c-/ :· «¬­

ì ’ )` f·H% r"I, @% :× ·? ‰< ðñ> Y)

 ûh 9NH% ܖ< F09 ).-/ <:.

2-2-2. «¬­ ¾ü

«¬­ ¾ü) F09  + •-/ p` + ܖ

-¨ í, )Þ Y.- ýþ+ ¾üþ(learning rule)) <:.

¡ÿþ );< «¬­ ¾üþ -K% ) ).< «¬­ F 09   :\ m:.

ƒ ¢ (3)+ ).-/ ðñ æ(ó+ h< :\, ¢ (4)%&' F 09 + ‹< 2D δ r<:. Å< hS 2Dó δ ¢ (5) ).-/ %Ì F09 ó+ h<:[29].

(3)

(4) (5)

/@ xi wij ôô jðñ T(«ò F09)I, η 0 1Y ) óH% ¾ü`):.

2-2-3. 2ÈÉ‚Ê «¬­

:·H% r"S 2ÈÉ‚Ê «¬­ S ¡ÿþ+ ).- / «¬­ æ(+  ‹< DM~(feed-forward) «¬­ F0

9 Í# ‹< 2ÈÉM~(error-back-propagation)+ ˜NH%

~õH% ô ðñe F09 ¨ S:[30, 31]. Fig. 4 :·H

% r"S «¬­+ Kÿ îH% ¢ (6) (7) );< :· «¬­

DM~?@ q·-jðñ æ(ó /?@ Y.S !"õ):.

(6)

(7)

/@ xrk r·-kðñ æ(), ðñ wqkj r·-kðñ q·-jð ñ e F09):.

ÉM~ ¬? æ(· 0e·? p-/ ôô ¢ (8) (9) ) .-/ F09 + ‹< δó+ HI, ¢ (10) (11)%&' F09

 Í h<:.

Output layer (8)

Hidden layer (9)

Output layer (10)

Hidden layer (11)

);< 2ÈÉ‚Ê «¬­ ¾ü = N.‹ C€ ¾ü‰

F : fQ) P:. ¦@, ¾ü‰ ’º+ ‹-/ Rumelhart, Hinton, Williams l ¢ (12) m F09 Í=+ $±-|:

[15, 31].

(12) /@ α   H% F09 Í ¬ + 1C- ‰

…F#¨ S:.

3.   

3-1. 

Ç ZÎ?@ Y.< W 89 Fig. 5? Kÿؔ:. W (5)

yi f xi

i=1 n

wij

 

 

 

=

yj f xi

i=1

n wij

 

 

 

= δ=dj–yj

w w old( ) ηδx x2 --- +

=

SUMqj xrkwqkj

k

=

yqj 1

1 e+ SUMqj ---

=

δpi=ypi(1 y– pi)(di–ypi) δqj yqj(1 y– qj) δpiwpij

i

 

 

=

wpij

∆ =ηδpiyqj wqjk

∆ =ηδqjyrk

wpij(new)

∆ =ηδpiyqj+α∆wpij(old)

Fig. 4. Three-layer back propagation network.

Fig. 5. Schematic diagram of UV/TiO2/H2O2 system.

1. Tank 6. H2O2 input system

2. Pump 7. 2-way on/off valve

3. Flow meter 8. Check valve

4, 10. 3-way valve 9. TiO2 separation unit 5. Reactor

(4)

 39 3 2001 6

annular »b W%   ûØ? U㺠 ‹< 

û) PHI, ) û Ø? U㺠F 9t P:. ¦@, TiO2

(Degussa P-25)  –—a W .R û   û

Y)% ;FI Uãº+ ⣠W+ -¨ S:. U㺠ÝH%

Straight type 30W UV-C(254 nm) Y.-|:. ï+ õ1<

.R (1)% TS _, TiO2 F- d-/ –—a :\

 ).-/ W Ø&% )S:. $% g T - ¬?  (6)? -/ < eç± 7M Ë 

gF WØ% T ? S:. W) J .R

ŒŽ ©' ).<  y 89(9)?@ !æ % 6S :. ZÎ 0 " #$(10)+ •-/ ä%< :\ 6-|:. );<

ZÎ 89 YË ̂ ¸& Table 1? -/ Kÿؔ:.

3-2. 

Ç ZÎ?@ 67 p` 45% ï+ Y.-|:. ï  67 ‰F  ÖnI ef< 6Ur¸ FC P+ '€ £(

W _? H2O CO2€+ ,"- &4+ ,"-C Û: 8Q ) P:. Å< W ¬% )¨ žŸO  PHI 4? p< .7F

 …*) +£ ZÎ? Pt@ 2D ÄgO  P:. ï+

õ1< W .R …È ).-/ /; ,% $¸-/ ZÎ-

|HI, $¸S ï .R? 7M ,% TiO26-+ –—.:.

g  ? < /T 89 ).-/ W% T

‚, 1È g , l+ Ÿ-|:.

e? ¦× ï $š ‘?  + ö2  P Í%@  We,  ,, ï i ,, g T l+

-|:. ¦@,  ,, ï i ,, g i -|:. ï $š ‘ £á ¢ (13)+ ).-/ r-|:.

Removal efficiency = (13)

3-3. 

W .R? 1È- ï , Ÿ- ‹-/ ‚‚

h(Metrohm 660 Conductometer, Swiss) Y.-/ W .R ‚

‚ Ÿ-|:. W) M~½ ï) 67t 4+ ,"-

 )% -/ .R ‚‚ g-¨ S:. ¦@, Fig. 6

ï ,? ¦× ‚‚ Ü4 5º+ €> ) ).-/  W _ ï , h-|:. ï .R ‚‚ ï

 ,F 0-300 mg/L ‹?@ , º»N ûh Ñ|:.

Å< ä%< " 0? 1È- g , 0.01 N-KMnO4

% N< _ :\ ¾W¢? -/ r-|:.

(14)

3-2.       

«¬­ S ¡ÿþ+ Y.< 2ÈÉ‚Ê «¬­H% r"

-|HI,  ‰ …F ‹-/ F09 1% ¹ bias ðñ

 ·6: 7F- bias ðñ )‚ F09 Í ^-/ F 09 -   =+ Y.-|:. ) m) r"S «¬­

PC ).-/ ZÎU" ¾ü-|:. ¾ü 8Ü9 «¬­ æ (9 U9:; 2D(mean square error)F < )` g-C Û+ Þ oC ˜-|:. Å< ¾üS «¬­+ ).-/  ̂ Í

‘? p< ̂ Í  + j=Ñ>:.

4.   

4-1.   ! 

«¬­ r¸ Š- ‹-/, ZÎ Š 0 ]? $š ‘ 5

? Kÿؔ:. )Þ  @ ¬? Pt@ ¾ü m F09?@ X -|HI, ¾ü` η   α 0.9 0.7)”:. «¬­ 0e·+

C0–C C0

--- 100 %× ( )

5H2O2+2MnO4+6H+→5O2+2Mn2++8H2O Table 1. Specifications of UV/TiO2/H2O2 system

Total sample batch volume 2.0 L Effective reactor volume 0.126 L Volumetric flow-rate 0.85-2.85 L/min

TiO2 Degussa P-25

UV wavelength UV-C(254 nm)

UV lamp type Straight

Lamp Power 30 W

UV output 10 W

Fig. 6. Electrical conductivity vs. formic acid concentration in water.

Fig. 7. Training data recall for various number of layers.

(5)

ôô Œ ’, A ’, :B ’ ·H% r"- 50,000y )` ˜-/

¾üa ¬, ‚·) 5· )`)  ¬ «¬­) C - C Û>HK, ‚·) 4·H% S «¬­) F8 ¿< ٖó+ Ñ )½@ õ+ ]  P”:.

«¬­ ¾ü`   + Š- ‹-/ ¾ü`  

D 2D Table 2? Kÿؔ:. ¾ü`F 0.9)   ) 0.7

Þ «¬­ F8 N 2D Ñ|HI, )Þ U9:;2D 6.8300 E10−4)”:. Fig. 8 /; FC ¾ü`   ?@ ˜ y?

¦× U9:;2D Kÿ ¾ü5ºH% ¾ü`   ) 0.9

0.7 ¬ ˜ yF …Fõ? ¦ 2DF QQ g-|:. w;K,

¾ü`   )  ì 0.9 ¬? «¬­ U9:;2DF 0.04)-% g-C Û>HI )? ¦ $š ‘ 5º+ $p%

¾üO  G\+ ]  P”:. ¦@, $š ‘ žŸ+ ‹< «¬

­ ¾ü`   0.9 0.7% -|:.

Fig. 9 ÄNH% 0e·+ FH% -, ¾ü`   + 0.9

 0.7 ¬ ˜ y? ¦× «¬­ æ( Š):. 5,000y ˜

?@ $š ‘ 5º _& $p% ¾üO  G”HK, 10,000 y ˜?@ ¾üU"? êG- ˜ yF …Fõ? ¦ 2D F g-I 20,000y )` ˜õ? ¦ $š ‘ 5º ¬ + $ p% ¾üO  P”:.

4-2. "# $% 

4-2-1.  , Í

Š Fig. 10? Kÿؔ:. ¾ü U9:;2DF < )` g-C Û+ ÞoC ˜-|HI, ¾üU" ï , 100 mg/L, 1‰ 1.9 Table 2. LMS errors for various momentums and training steps

Momentum(α)

0.1 0.3 0.7 0.9

Training step (η)

0.1 1.2001E2 1.1832E2 1.1004E2 5.2710E3 0.3 1.1088E2 1.0329E2 5.3730E3 3.3580E3 0.7 6.1510E3 4.8640E3 2.5830E3 1.6590E3 0.9 5.4220E3 4.0540E3 6.8300E4 4.2425E2

Fig. 8. Training curves for several momentums training step pairs.

Fig. 9. Performance curve regeneration during the training(αααα: 0.7, ηηηη: 0.9).

Fig. 10. Training data recall for various catalyst concentrations(formic acid 100 mg/L).

Fig. 11. Estimation of removal efficiency curve for catalyst concentra- tion(formic acid 100 mg/L).

(6)

 39 3 2001 6

L/min ¸&?@ g Y.-C Û>+ Þ ZÎU" Y.

-|:.  ,F 2.0 g/L, 1.5 g/L ¬ ¿ ¾ü”HK, 2.5 g/

L ¬ 26 )- W e?@ ¾ü? He 2DF ,I+ J

 P”:. )î  ,F 2.5 g/L ¬F :×  ,? c -/ `pNH% ¾üU" KDF  ÞEH% ,ôI, < }

¾üU" Y.O ¬ );< E$Q 7ŠO  P+ îH% ,ô S:.

Fig. 11 ¾üS «¬­+ ).-/  ,F ¾üU" ‹ L?

P 1.0 g/L ¬ žŸ< Š ZΊ cd< î):. W i? He 2DF P”HK W e ‚? MN U9:;2D F 10-2ö€)A% cdN ¿ žŸO  P\+ ]  P:.

4-2-2. ï i , Í

ï i , 50, 100, 200 mg/L% ÍO Þ $š ‘+ ¾ üa Š Fig. 12? Kÿؔ:. ¾ü U9:;2DF <)`  g-C Û+ ÞoC ˜-|HI, ¾üU"  , 2.0 g/L, 1‰

1.9 L/min ¸&?@ ï i ,? p< g T c

1 : 1% -|+ Þ ZÎU" Y.-|:. «¬­ ï i

 ,? ¦× $š ‘ Í ¿ ¾ü- î+ J  P:.

) m) ¾üS «¬­H% ï i ,F 150 300 mg/L ¬ $š ‘+ žŸ-|HI, ) ZΊ cd-/ Fig.

13? Kÿؔ:. ¾üU" ÉØ U" 150 mg/L É L 300 mg/L ¬  ì He 2DF P -|C€, U9:;2DF 10-2 ö€H% ZÎ9 ¨ OtKC Û>:.

4-2-3. g T Í

14? Kÿؔ:. ¾ü É U9:;2DF < )` g-C Û+

ÞoC ˜-|HI, ¾üU" ï i , 100 mg/L,  ,

 2.0 g/L, 1‰ 1.9 L/min ¸&?@ ZÎU" Y.-|:. 

g T 50, 100, 200 mg/L ¬  ì ¿ ¾ü< î+ J

 P:.

)m) ¾üS «¬­+ ).-/ g T) 150 mg/

L ¬ $š ‘+ žŸ-|HI, ) ZΊ cd-/ Fig.

Fig. 12. Training data recalls for various formic acid concentrations (H2O2 dosage ratio 1 : 1, catalyst 2.0 g/L).

Fig. 13. Estimation of removal efficiency curve for various formic acid concentrations(H2O2 dosage ratio 1 : 1, catalyst 2.0 g/L).

Fig. 14. Training data recalls for various H2O2 concentrations(formic acid 100 mg/L, catalyst 2.0 g/L).

Fig. 15. Estimation of removal efficiency curve for H2O2 concentration (formic acid 100 mg/L, catalyst 2.0 g/L, H2O2 150 mg/L).

(7)

15? Kÿؔ:. W ‚?@ ZΊ ¿ 9-/ «¬­

$š ‘ žŸ+ «QO  P\+ ]  P:.

5.  

 –—¢ UV/TiO2/H2O2 ?@ ï $š ‘? û

< ZÎ U" RSH% ? p< 2ÈÉ‚Ê «¬­  ¡+ r

"- ) ).< $š ‘ ¾ü x žŸ+ •-/ :\ m Š µ+ ”:.

(1) 4’ ·H% r"S 2ÈÉ‚Ê «¬­ ¾ü`(η)   (α) ) ôô 0.9 x 0.7 ¬  –—¢ UV/TiO2/H2O2 ?@

ï $š ‘+ F8 ¿ ¾ü-|HI, )Þ U9:;2D

6.8300E104)”:.

(2) «¬­  ¡  ,, ï i , x g  T Í? ¦× $š ‘ 5º Í ¿ ¾ü-|HI, ¾ü S «¬­+ ).-/ žŸ< $š ‘ ZΊ C 9-|:.

)Þ, «¬­ žŸ Š ZΊ Äp 2D 5% ö€)”:.

(3)  –—¢ UV/TiO2/H2O2 ?@ 1 23 45 $š

‘+ žŸ- ‹<  ¡% 2ÈÉ‚Ê «¬­+ Y.O  P\+

]  P”:.



e : electron h+ : hole w : weight x : input signal [-]

y : neuron output [-]

&'( )*

α : training momentum constant [-]

η : training step constant [-]

+,*

i, j, k : node order p, q, r : layer order

 

Ç qr <¼¾Ùf C <Tp¾d Ƭ’º» «gÙ ’“U ' CÝ? < îT(:.

 !

1. Pruden, A. L. and Ollis, D. F.: Journal of Catalysis, 82, 404(1983).

2. Kraeutler, B. and Bard, A. J.: J. Am. Chem. Soc., 100(19), 5985 (1978).

3. Matthews, R. W.: J. Chem. Soc., Faraday Trans., 80, 457(1984).

4. Piccinini, P., Minero, C., Vincenti, M. and Pelizzetti, E.: Catalysis Today, 39, 187(1997).

5. Augugliaro, V., Loddo, V., Marei, G., Palmisano, L. and López- Muñoz, M. J.: J. of Catalysis, 166, 272(1997).

6. Maurino, V., Minero, C., Pelizzetti, E., Piccinini, P., Serpone, N. and Hidaka, H.: J. Photochem, Photobiol. A: Chem., 109, 177(1997).

7. Sabate, J., Anderson, M. A., Kikkawa, H., Edwards, M. and Hill Jr., C. G.: J. of Catalysis, 127, 167(1991).

8. Nogueira, R. F. P. and Jardim, W. F.: Solar Energy, 56(5), 471(1996).

9. Tennakone, K., Tilakaratne, C. T. K. and Kottegoda, I. R. M.: J. Photo- chem. Photobiol. A: Chem., 87, 177(1995).

10. Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B. and Rouse, M.: Applied Catalysis B: Environmental, 17, 25(1998).

11. Sirisuk, A., Hill Jr., C. G. and Anderson, M. A.: Catalysis Today, 54, 159(1999).

12. Butters, et al.: U. S. Patent, 5,462,674(1995).

13. Butters, et al.: U. S. Patent, 5,554,300(1996).

14. Butters, et al.: U. S. Patent, 5,589,078(1996).

15. Wasserman, P. D.: “Neural Computing(Theory and Practice),” Van Nostrand Reinhold, NY(1989).

16. Khanna, T.: “Foundations of Neural Networks,” Addison-Wesley, NY (1990).

17. Caudill, M. and Butler, C.: “Understanding Neural Network(com- puter explorations),” MIT Press(1992).

18. Ungar, L. H., Powell, B. A. and Kamens, S. N.: Compters Chem.

Engng., 14, 561(1990).

19. Bhat, N. and McAvoy, T. J.: Compters Chem. Engng., 14, 573(1990).

20. Ydstie, B. E.: Computers Chem. Engng., 14, 583(1990).

21. Psichogios, D. C. and Ungar, L. H.: Ind. Eng. Chem. Res., 30, 2564 (1990).

22. Lee, W. J., Kim, S. J., Shul, Y. G. and Lee, T. H.: HWAHAK KONG- HAK, 33, 610(1995).

23. Himmelblau, D. M.: Korean J. Chem. Eng., 17, 373(2000).

24. Sohn, S. H., Oh, S. C. and Yeo, Y. K.: Korean J. Chem. Eng., 16, 382(1999).

25. Matthews, R. W.: Wat. Res., 20, 569(1986).

26. Linsebigler, A. L., Lu, G. and Yates Jr., J. T.: Chem. Rev., 95, 735 (1995).

27. Sakata, T.: “Photocatalysis: Fundamentals and Applications,” ed. Ser- pone, N. and Pelizzetti, E., John Wiley & Sons, Inc., New York, 311 (1989).

28. Turchi, C. S. and Ollis, D. F.: J. of Catalysis, 122, 178(1990).

29. Widrow, B. and Stearns, S.: “Adaptive Signal Processing,” Prentice- hall, Englewood Liffs, NJ(1985).

30. Leonard, J. A. and Kramer, M. A.: Computers Chem. Engng., 14, 337 (1990).

31. Rumelhart, D. E., Hilton, G. E. and Williams, R. J.: “Parallel Distri- buted Processing,” Cambridge, MA(1986).

참조

관련 문서

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

The NO removal efficiencies and the particle charac- teristics were measured and analyzed as the function of initial concentrations of NO, H 2 O, and NH 3 at the

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

Ultimately, we believe that our efforts to install pad  machines and increase community understanding of menstrual health will promote global gender  equity and ensure that

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing