• 검색 결과가 없습니다.

Engineering Mathematics2

N/A
N/A
Protected

Academic year: 2022

Share "Engineering Mathematics2"

Copied!
364
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

2008_O.D.E(1)

Naval Architecture & Ocean Enginee ring

Engineering Mathematics 2

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering

[2008][01-2]

September, 2008

(2)

2008_O.D.E(1)

Naval Architecture & Ocean Enginee ring

Ordinary Differential Equations (1)

Simple Integration Separable Variables

Spring/Mass Systems : Driven Motion

(3)

2008_O.D.E(1)

Differential Equation

*Zill D.G., Cullen M.R., Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p5

3 /364

(4)

2008_O.D.E(1)

Differential Equation

Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more

independent variables, is said to be a Differential Equation(DE)

Definition 1.1*

dx xy x

dy ( ) 0 . 2

*Zill D.G., Cullen M.R., Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p5

4 /364

(5)

2008_O.D.E(1)

Differential Equation

Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more

independent variables, is said to be a Differential Equation(DE)

Definition 1.1*

dx xy x

dy ( ) 0 . 2

How to solve a

Differential Equation?

*Zill D.G., Cullen M.R., Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p5

5 /364

(6)

2008_O.D.E(1)

Simple Integration

6 /364

(7)

2008_O.D.E(1)

Simple Integration

How to solve a

Differential Equation?

7 /364

(8)

2008_O.D.E(1)

Simple Integration

How to solve a

Differential Equation?

Integration!

8 /364

(9)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

How to solve a

Differential Equation?

Integration!

9 /364

(10)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

How to solve a

Differential Equation?

Integration!

10 /364

(11)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

11 /364

(12)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

Deflection of beam How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

12 /364

(13)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

Deflection of beam

We need 4 initial condition

because we‟ll integrate 4 times (4 integral coefficient)

How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

13 /364

(14)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

There is no vertical

deflection at end points so Deflection of beam

We need 4 initial condition

because we‟ll integrate 4 times (4 integral coefficient)

How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

14 /364

(15)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

There is no vertical

deflection at end points so Deflection of beam

We need 4 initial condition

because we‟ll integrate 4 times (4 integral coefficient)

How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

15 /364

(16)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the

Beam if a constant load w

0

is uniformly distributed along its length

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

There is no vertical

deflection at end points so Deflection of beam

We need 4 initial condition

because we‟ll integrate 4 times (4 integral coefficient)

(4 initial conditions) How to solve a

Differential Equation?

Integration!

X=0 X=L

w0

y

x

16 /364

(17)

2008_O.D.E(1)

Simple Integration

17 /364

(18)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

X=0 X=L

w0

y

x

18 /364

(19)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

X=0 X=L

w0

y

x

19 /364

(20)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

X=0 X=L

w0

y

x

20 /364

(21)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

X=0 X=L

w0

y

x

21 /364

(22)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 ) 0 ( 

y

and

y  ( 0 )  0

gives

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

X=0 X=L

w0

y

x

22 /364

(23)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 ) 0 ( 

y

and

y  ( 0 )  0

gives

0 ,

0

2

1

c

c

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

X=0 X=L

w0

y

x

23 /364

(24)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 ) 0 ( 

y

and

y  ( 0 )  0

gives

0 ,

0

2

1

c

c 0 ) ( L

y

and

y ( L ) 0

gives

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

X=0 X=L

w0

y

x

24 /364

(25)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 ) 0 ( 

y

and

y  ( 0 )  0

gives

0 ,

0

2

1

c

c 0 ) ( L

y

and

y ( L ) 0

gives

6 0 3

3

24 0

0 3 2

4 3

0 4 3

4 2

3

EI L L w

c L

c

EI L L w

c L

c

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

X=0 X=L

w0

y

x

25 /364

(26)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

) ) (

(

4 0 4

x dx w

x y

EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2 3 2

1

24

)

( x

EI x w

c x

c x c c x

y     

0 ) 0 ( 

y

and

y  ( 0 )  0

gives

0 ,

0

2

1

c

c 0 ) ( L

y

and

y ( L ) 0

gives

6 0 3

3

24 0

0 3 2

4 3

0 4 3

4 2

3

EI L L w

c L

c

EI L L w

c L

c

0 3 2

4 3

2

2 3 6

)

( x

EI x w

c x

c c

x

y     

EI L c w

EI L c w

, 12 24

0 4

2 0

3

  

X=0 X=L

w0

y

x

26 /364

(27)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

4 0 4

dx w y EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

X=0 X=L

w0

y

x

27 /364

(28)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

4 0 4

dx w y EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2

3 2

1

24

)

( x

EI x w

c x

c x c c

x

y     

, 0 ,

0

2

1

c

c EI

L c w

EI L c w

, 12 24

0 4

2 0

3

  

X=0 X=L

w0

y

x

28 /364

(29)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

4 0 4

dx w y EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2

3 2

1

24

)

( x

EI x w

c x

c x c c

x

y     

, 0 ,

0

2

1

c

c EI

L c w

EI L c w

, 12 24

0 4

2 0

3

  

0 4 0 3

2 2 0

24 12

) 24

( x

EI x w

EI L x w

EI L x w

y   

X=0 X=L

w0

y

x

29 /364

(30)

2008_O.D.E(1)

Simple Integration

 Example 1

An Embedded Beam

4 0 4

dx w y EI d

Find the deflection of the Beam

0 )

0 (  y

0 )

0 (  y

0 )

( Ly

0 )

( 

L y

After integrate four times,

0 4 3

4 2

3 2

1

24

)

( x

EI x w

c x

c x c c

x

y     

, 0 ,

0

2

1

c

c EI

L c w

EI L c w

, 12 24

0 4

2 0

3

  

0 4 0 3

2 2 0

24 12

) 24

( x

EI x w

EI L x w

EI L x w

y   

2

0 2

( )

) 24

( x x L

EI x w

y  

or

X=0 X=L

w0

y

x

30 /364

(31)

2008_O.D.E(1)

Separable Variables

31 /364

(32)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

How to solve a

Differential Equation?

32 /364

(33)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

How to solve a

Differential Equation?

Integration!

33 /364

(34)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x

dPIntegration!!

How to solve a

Differential Equation?

Integration!

34 /364

(35)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x

dPIntegration!!

C x

P dx dx

x

dP  

( ) ( )

L.H.S:

dx x P k dx

x

kP

( ) ( )

R.H.S:

P ( x ) C k P ( x ) dx

How to solve a

Differential Equation?

Integration!

35 /364

(36)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x

dPIntegration!!

C x

P dx dx

x

dP  

( ) ( )

L.H.S:

dx x P k dx

x

kP

( ) ( )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

How to solve a

Differential Equation?

Integration!

36 /364

(37)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x

dPIntegration!!

C x

P dx dx

x

dP  

( ) ( )

L.H.S:

dx x P k dx

x

kP

( ) ( )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

How to solve a

Differential Equation?

Integration!

Then, how?

37 /364

(38)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

38 /364

(39)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

transform

39 /364

(40)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

P kdx x dP ( ) 

transform

40 /364

(41)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

Separable Variables

P kdx x dP ( ) 

transform

41 /364

(42)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

Separable Variables

P kdx x dP ( ) 

kx kdx

R.H.S:

kx c

x

P ( )   ln

c x

p P x

dP  

( ) ln ( )

L.H.S:

transform

42 /364

(43)

2008_O.D.E(1)

Separable Variables

Ex) Population dynamics

) ) (

( kP x

dx x dP

Integration!!

C x

dx P x

dP  

( ) ( )

L.H.S:

kP ( x ) k P ( x )

R.H.S:

P ( x ) C k P ( x ) dx

solved?

Separable Variables

P kdx x dP ( ) 

kx kdx

R.H.S:

kx c

x

P ( )   ln

c x

p P x

dP  

( ) ln ( )

L.H.S:

transform

43 /364

(44)

2008_O.D.E(1)

Separable Variables

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

44 /364

(45)

2008_O.D.E(1)

Separable Variables

) , ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

45 /364

(46)

2008_O.D.E(1)

Separable Variables

) , ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

46 /364

(47)

2008_O.D.E(1)

Separable Variables

g x y g x dx c dx

dy ( ) ( )

) , ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

47 /364

(48)

2008_O.D.E(1)

Separable Variables

g x y g x dx c dx

dy ( ) ( )

) , ( x y dx f

dy

) , ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

48 /364

(49)

2008_O.D.E(1)

Separable Variables

g x y g x dx c dx

dy ( ) ( )

) , ( x y dx f

dy

) , ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

49 /364

(50)

2008_O.D.E(1)

Separable Variables

g x y g x dx c dx

dy ( ) ( )

) , ( x y dx f

dy

g x dx c

y h y dy

h x dx g

dy ( )

) ) (

( ) ) (

, ( x y dx f

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

50 /364

(51)

2008_O.D.E(1)

Separable Variables

g x y g x dx c dx

dy ( ) ( )

) , ( x y dx f

dy

g x dx c

y h y dy

h x dx g

dy ( )

) ) (

( ) ) (

, ( x y dx f

dy

Separable Equation A first order differential equation of the form

is said to be separable or to have separable variables Definition 2.1*

) ( )

( x h y dx g

dy

*Dennis G. Zill, Michael R. Cullen, Advanced Engineering Mathematics 3rd Edition, Johns and Bartlett, 2006, p45

51 /364

(52)

2008_O.D.E(1)

Separable Variables

52 /364

(53)

2008_O.D.E(1)

Separable Variables

 Population Dynamics

 Modeled by English economist Thomas Malthus in 1798

① Population varies in time P=P(t)

② Population of country grows at a certain time is proportional to the total population

53 /364

(54)

2008_O.D.E(1)

Separable Variables

 Population Dynamics

 Modeled by English economist Thomas Malthus in 1798

① Population varies in time P=P(t)

② Population of country grows at a certain time is proportional to the total population

dP dP

P or kP

dtdt

54 /364

(55)

2008_O.D.E(1)

Separable Variables

55 /364

(56)

2008_O.D.E(1)

Separable Variables

 Newton‟s Law of Cooling/Warming

 The rate at which the temperature of a body changes is proportional to the difference between temperature of the body and the temperature of the surrounding medium

56 /364

(57)

2008_O.D.E(1)

Separable Variables

 Newton‟s Law of Cooling/Warming

 The rate at which the temperature of a body changes is proportional to the difference between temperature of the body and the temperature of the surrounding medium

( )

m m

dT dA

T T or k T T

dt   dt  

m

T :body temperature

T :Surronding medium temperature

57 /364

(58)

2008_O.D.E(1)

Separable Variables

58 /364

(59)

2008_O.D.E(1)

Separable Variables

t

T

o

T

A

T

1

T

2

Ex. )Newton’s law of cooling

59 /364

(60)

2008_O.D.E(1)

Separable Variables

t

T

o

T

A

T

1

T

2

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

Ex. )Newton’s law of cooling

60 /364

(61)

2008_O.D.E(1)

Separable Variables

t

T

o

T

A

T

1

T

2

Great Idea !!

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

Ex. )Newton’s law of cooling

61 /364

(62)

2008_O.D.E(1)

Separable Variables

t

T

o

T

A

T

1

T

2

Relation between and T T

A

Great Idea !!

dt t dT ) (

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

Ex. )Newton’s law of cooling

62 /364

(63)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

t A T

o

T

A

T

1

T

2

Relation between and T T

A

Great Idea !!

dt t dT ) (

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

Ex. )Newton’s law of cooling

63 /364

(64)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

t A T

o

T

A

T

1

T

2

Relation between and T T

A

Great Idea !!

dt t dT ) (

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

) ( T T A dt k

dT  

Ex. )Newton’s law of cooling

64 /364

(65)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

t A T

o

T

A

T

1

T

2

Relation between and T T

A

Great Idea !!

dt t dT ) (

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

) ( T T A dt k

dT  

Ex. )Newton’s law of cooling

65 /364

(66)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

t A T

o

T

A

T

1

T

2

Relation between and T T

A

Great Idea !!

dt t dT ) (

T T

T

T

1

 ,

2

 ratures Body tempe

Initial :

t) re(constan temperatu

outside :

rature body tempe

:

2 1

,T T T T

A

) ( T T A dt k

dT  

dt T k

T

dT

A

 

Ex. )Newton’s law of cooling

66 /364

(67)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

Ex. )Newton’s law of cooling

67 /364

(68)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

T A

T Y  

Ex. )Newton’s law of cooling

68 /364

(69)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

 1 dT dY

T A

T Y  

Ex. )Newton’s law of cooling

69 /364

(70)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

 1 dT dY

T A

T Y  

dT dY

Ex. )Newton’s law of cooling

70 /364

(71)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

 1 dT dY

T A

T Y  

dT dY

dt T k

T dT

A

 

Ex. )Newton’s law of cooling

71 /364

(72)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

dt Y k

dY  

 1 dT dY

T A

T Y  

dT dY

dt T k

T dT

A

 

Ex. )Newton’s law of cooling

72 /364

(73)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

dt Y k

dY  

 1 dT dY

T A

T Y  

dT dY

dt T k

T dT

A

 

dY Y k dt

Ex. )Newton’s law of cooling

73 /364

(74)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

dt Y k

dY  

 1 dT

dY L R

c kt

c

Y   

A ln

T T

Y  

dT dY

dt T k

T dT

A

 

dY Y k dt

Ex. )Newton’s law of cooling

74 /364

(75)

2008_O.D.E(1)

Separable Variables

0 ),

(  

k T T k dt

dT

A

dt T k

T

dT

A

 

dt Y k

dY  

 1 dT

dY L R

c kt

c

Y   

A ln

T T

Y  

dT dY

dt T k

T dT

A

 

dY Y k dt

c kt

c c

kt

Y R L

 ln

Ex. )Newton’s law of cooling

75 /364

(76)

2008_O.D.E(1)

Separable Variables

0

), (

k

T T

dt k dT

A

c kt

Y   ln

① ② ③

Ex. )Newton’s law of cooling

76 /364

(77)

2008_O.D.E(1)

Separable Variables

0

), (

k

T T

dt k dT

A

c kt

Y   ln

c Y kt

e e ln

① ② ③

Ex. )Newton’s law of cooling

77 /364

(78)

2008_O.D.E(1)

Separable Variables

0

), (

k

T T

dt k dT

A

c kt

Y   ln

c Y kt

e e ln

c

e kt

Y

① ② ③

Ex. )Newton’s law of cooling

78 /364

(79)

2008_O.D.E(1)

Separable Variables

0

), (

k

T T

dt k dT

A

c kt

Y   ln

c Y kt

e e ln

c

e kt

Y

e kt

c Y  ~

① ② ③

Ex. )Newton’s law of cooling

79 /364

참조

관련 문서

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering.. 학부 4학년 교과목“창의적

Department of Naval Architecture and Ocean Engineering Department of Naval Architecture and Ocean Engineering Department of Naval Architecture and Ocean Engineering, Department

Department of Naval Architecture and Ocean Engineering, Seoul National University... 2009

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering.. Ship Motion & Wave Load

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering@. 서울대학교 조선해양공학과 학부4학년

Department of Naval Architecture and Ocean Engineering, Seoul National University.. Naval Architecture

School of Mechanical and Aerospace Engineering Seoul National University..

School of Mechanical and Aerospace Engineering Seoul National University..