• 검색 결과가 없습니다.

 1.  Surface and Adhesion Characteristics of Polyimide Film Treated by Corona Discharge  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Surface and Adhesion Characteristics of Polyimide Film Treated by Corona Discharge   "

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

 *

  

*  

(2002 6 15 , 2002 7 31 )

Surface and Adhesion Characteristics of Polyimide Film Treated by Corona Discharge

Soo-Jin Park, Ki-Sook Cho and Sung-Hyun Kim*

Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea

*Department of Chemical Engineering, Korea University, Seoul 136-701, Korea (Received 15 June 2002; accepted 31 July 2002)

 

          FT-IR(Fourier Transform-IR), XPS(X-ray Photoelectron Spectroscopy)   ! "# $%&,   '( ) '*+(peel strength) , - $%&..  /012  3   45678 9 :; <=3 >$?8@ AB

CD >E;@ F@&GH, 12IG  /J) ' KLMN.. O    P QR7S TU CD@ V; W XYZ [ \N.. O3 12   3  

$?8 ] ^ QR7S T_ `a V; # XYZ [ \N..

Abstract−In this work, the effect of corona discharge treatment on surface properties of polyimide film was investigated in terms of FT-IR(Fourier Transform-IR), XPS(X-ray Photoelectron Spectroscopy) and contact angles. And the adhesion charac- teristics of the film were studied in peel strengths of polyimide coatings. As a result, polyimide surfaces treated by corona dis- charge led to an increase of oxygen-containing functional groups or polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. However, the surface energy of the film was decreased as the aging time increased. These results could be discussed in the formation of surface functional groups or deterioration of reactive sites of polyimde film in the presence of corona treatment with aging time.

Key words: Polyimide, Corona Discharge, Aging Effect, Surface Free Energy, Adhesion Characteristics

1.  

       

-O-, -NH-, -CO-     ! "# $, %& '

300oC( )* +,- ./0 12 345 67 ' 1

2 89: ; /< = >?@ =[1-2]. A!  ! B

 CDE  9"F9 G HI, J, KL, M*N G OP, QRSG OP, TUV  G =.

9"F9 G HI  WM FPCB (Flexible Printed Circuit Board), TAB(Tape Automated Bondings), 9 XYP  GZ=.  [ FPCB R\  ]^

_; ` 0 3ab _ ' c* Kd- ` 

efg ' hi"", jklm, (nlm, ophG 9 lm  q

 G =. FPCB( rs G t  HI5 * N WM ut ' v ( TUV; GDE TU tw=. xAy  z{ |". }" ~ €5( T U‚ ƒ@ HI5 €„( …. Wy TU †‡ 

 ˆ =. A! ‰- ŠdD" ‹Œ ( z{

; j! TU- ŠdD" ‹! Ž  =[3-5].

z{ Š$ ‘ ’“ z{Š$ ‘5 4“ z{Š$ ‘

” 4“ z{Š$2 •%y–—, •%˜— ' v™ GJ5 z{Mš- t› ‘0[6], ’“ z{ Š$2 œy, ) ž

Ÿ ¡ , )¢   =[7]. A! z{ Š$ ‘ [ W M œy 92 2Š( 9| £2 9¤- .DE, ¥¦

§D" 9 9"l( ¨! R © §ªDE 9*- « ¬:

=. ­, 2Š( 9| ®¯ °± ² /I ³ ´ µ2 ¶( 9

"l2 ·( ¸WD/© !¹ | ² º| »: ² ¼: 

To whom correspondence should be addressed.

E-mail: psjin@krict.re.kr

(2)

 40 5 2002 10

0, x | R½( 9"l ¾¿ ¨Œ@ R C 9 Wy

À=.

A! œy; Á"[ 9¤( 9- W›{ p" [ o : ÂPD 8 9 Žy "N; )%D .% tw=. 9

 (DE §Ã! 9 Ž2  B$( z{  Ä- Å

 Æ/ z{ ÇÈDÉ Z=. À2 Ê £2 Mš- .Ë 8 ŸÌ˜- ÃDE p"[( •O´ MšDE BN z{ •O;

Í8D | Î "Ž- B$( z{ Qtw=. A! | Î "( §Ï CDE  ( z{ 8Æ/; Ð.t› 

B-%& Ä- Ð.tÑ ÒÓ x TU¾- :tw=

 >?@ =[8-13].

†Ÿ Ô  œy 9  (!  HI(

z{¾5 x †‡ €5( TU¾( i%; ÎÕDÖ=. œy

 (! z{Î "( i% FT-IR; jDE ×CDÖ0, XPS

; GDE z{( %& ( i%´ TØÙ Ú,- j! z{

8Æ/ i%; ÕDÖ=. A! z{¾  HI( T U¾ Û Ü- … TU¨*(peel strengths) Ú,- jDE

ÕDÖ0 œy  Ý t„ ¶5Í †‡ z{ 8Æ/

( ¶ti% ÁDE >vÞß=.

2.  

2-1.   

Ô àá GZ  HI2 Du Pont  Õ! Kapton - GDÖ0, HI( %& “- Fig. 1 yâã=.

€ Fukuda  V! ¯ä. 50µmC å…- GDÖ=.

œy 9 D" 9  HI- æçè  éÓê ë ì"; GŒ ëì! Ý à) Ëp ’DÖ=. œy 9

 HI z{ œy í‚ 0, 50, 100, 150, 200 watt i%t Ñ 5é„ DÖ0, ÙÙ Z tnî2 œy í‚ †Ÿ PI-0, PI-50, PI-100, PI-150 x PI-200Ÿ DÖ=. ´ €C å …( TU¾- Ú,D" ‹Œ TUV GZ ut / Î

 ut èïC bisphenol A( diglycidylether of (DGEBA, ð*%

&(h), YD-128, E.E.W=185-190 g/mol, c* 1.16 g/cm3); GDÖ=.

¶%V DDM(4,4'-Diamino Diphenyl Methane)- GDÖ=.

2-2.    

œy 9  †‡  HI( z{ Î "( i%;

×CD" ‹DE KRS-5 reflection element. RUZ Digilab FTS-165 spectrometer; GŒ wave number 4,000-400 cm−1( FT-IR ñò–

ó ôDÖ=. z{  †‡  HI( %&  2

XPS(ESCALAB MK-II); jDE ôDÖ0, XPS Ú, GZ

X-ray source Mg Kα; GDÖ0, chamber( ¤‚2 10−1-10−9torr

 rDÖ=.

2-3.    

œy 9 †‡  HI( z{ 8Æ/ i%

TØÙ Ú, lÛ; GDE ×CDÖ=. Ô  sessile drop

‘(SEO 300A)[14]- GDE 20±1oC( )*’ 

( z{ 8Æ/; Ú,DÖ=. ~ TØÙ Ú,- ‹Œ GZ ÒÓ J2 éÐõ , diiodomethane, x ethylene glycol 3./; GDÖ=.

 HI( œy  †‡ /å…( TU‚2

© Pn tá"(Universal Testing Machine, Lloyd LR5K); GDE

ASTM 1876-72 öDE … TU¨*; Ú,DÖ=. TUt÷2 T

UVC ut;  HI5 å…  *øDE 120oC

2t„ ¶% tw Ý Ú, DÖ=. TUt÷( ù" 25×100 mm0, constant head speed 254 mm/min Ú, DÖ=.

3. 

3-1.      

Fig. 2 œy 9  †‡  z{ Î "( i%;

yâ FT-IR spectra=. Ô àá GZ  pyromellitic dianhydride/oxydianiline(PMDA/ODA); úûN ! 

Fig. 2 Þ ü´ µ ! ¶ HI( ¾ XùC 1,780 cm−1

 C=O( symmetric5 1,720 cm−1 C=O( asymmetric stretching

 (! Xù. yây, 1,370 cm1 C-N stretching Xù. yâ ý=. M{ œy 9 ; Íþ  HI }ãÿ 3,600- 3,200 cm−1( carboxylic acid( O-H stretching (! Xù. yâ

 À- ×C` ã=.   DÖ Á"[ œ

y 9 t §Ã! 9 Ž  z{ ÇÈDE £2 Mš

- .Ë 8 ŸÌ˜- ÃDE p"[( •O´ MšDE BN z{

 •O; Í8D | Î ". *øË À nZ=.

A! z{ Î "( - ë¿ Þ" ‹DE  H

Fig. 1. Chemical structure of polyimide.

Fig. 2. FT-IR spectra of corona discharged polyimide film.

Fig. 3. XPS survey scan spectrum of corona discharged polyimide film.

(3)

I( XPS spectra; Fig. 3 yâã=. x 5  Ä

Æ/ 285 eV R½ çO Xù, 404 eV R½ $OXù, x

532 eV R½ •O Xù. yâ À- ×C` ã=. œy

9  (Œ  HI mDE œy í‚( Ð. †Ÿ ç O ² $O Xù mDE :Á •O Xù( ë". ùÉ Ð.

DÖ=.  †‡  HI( •OÍû i%; Table 1 O1S/ C1Sm yâã=. x 5 Z HIC PI-02 23.1% mŒ

œy 9 ! HI2 œy í‚ Ð.`  O1S/C1Sm. Ð .DE PI-150=58.45%, PI-200=58.2% ùÉ Ð.! À- ×C`

ã=.

 HI z{ •O; Í8! G"; :ë¿ ôD

" ‹Œ XPS oxygen 1S core level scan spectra ÙÙ( "$- m ôDE Fig. 4 yâã=.  HIC Fig. 4(a)( ¶ 531.8 eV (C=O)´ 533.9 eV(Ph-O-Ph)( z{ Î "; ×C` ã0, œ

y ! HIC Fig. 4( ¶ ®¯ 533.1 eV(O=C-O) Î "

. ÃZ À- ×C` ã=. ²! A! 5 :"( z{ Î " 5 œy  (Œ wave number 3,600-3,200 cm−1

carboxylic acid( O-H stretching ÃZ À- ÎÕ` ã=. œ

y 9  †‡  HIz{( •O; Í8! Î "Ž

( i%; Fig. 4 yâ ÙÙ( Î "( {- GDE Fig. 5 y âã=. x 5,  mŒ œy í‚ Ð.`  •O;

Í8! Î "Ž ®¯ Ð.! À- ÎÕ` ã0, ¾¿

531.8 eV(C=O) ùÉ Ð.! À- ×C` ã=.

Table 1. Results of the O1S/C1S ratio of corona-discharged polyimide PI-0 PI-50 PI-100 PI-150 PI-200 O1S/C1S ratio [%] 23.10 35.54 49.95 58.45 58.20

Fig. 4. High resolution O1S XPS spectra of corona-treated polyimide film with corona discharge power; (a) PI-0 (b) PI-50, (c) PI-100, (d) PI-150, (e) PI-200.

(4)

 40 5 2002 10

A! 5Rg  HI œy 9; Íþ HI z{ •O; Í8! Î "Ž Ð.DÖ0, ²! œy í

‚ Ð.`  £2 9c*. Q Þ= 2 ŸÌ˜ Ã

 œy í‚ †Ÿ HI z{ •O; Í8! Î ". ùÉ § ÏDE •OÍû Ð.! À nZ=. ¾¿ œy í‚ 150 W

: ùÉ Ð.! À- ×C` ã=.

3-2.    

Fig. 62 œy 9 (!  HI( | ˆO, m|

 ˆO, x z{ 8Æ/; yâã=. x 5 œy í‚

†Ÿ z{ 8Æ/ [ m| ˆO ·( i%. } M{ |ˆ

O. ùÉ Ð.D À- ÎÕ` ã0, |ˆO( Ð. †Ÿ

z{ 8Æ/ ²! Ð.D À- ×C` ã=.  :"(  5 Õ! ü´ µ œy 9  †Ÿ Ð.! •O; Í8

! C=O, O=C-O, Ph-O-Ph´ µ2 | Î "( Ð. (Œ O  C  z{   ùÉ Ð.DE z{ 8Æ/( |

ˆO. Ð.! À nZ=. ²! :"( 5 ×C DÖ

•OÍû ùÉ Ð.! œy í‚ 150 W : ! HI( |

 ˆO´ z{ 8Æ/ t ùÉ Ð.! À- ×C` ã=.

Fig. 72 œy 9  Ý t„ †‡  HI( z{

8Æ/( | ˆO Á! ¶ti%; yâã=. x 5 œy

 Ý t„ ¶5`  | ˆO. 1W Ý ùÉ OD x Ý t„ †Ÿ ‰a OD À- ×C` ã=. A! ¬:- 

%¬:(aging)Ÿ D”  œy 92  t ù; i%t

›/  B$( z{©- Íþ,  z{ QZ •O

; Í8! Î "Ž t„ ¶5 †Ÿ  ( ù +¹

åD{ PK  O  Ð. | ˆO. O!= >

?@ =[10-11, 14]. t„ †‡ z{ 8Æ/( | ˆO(  O; Þ{ PI-1505 PI-200 =‡ ¶ mDE ùÉ O! À - ×C` ã0 3W Ý | ˆO( O ·( i%.

} À- ÎÕ` ã=. A! 5 CŒ Fig. 6 ×CDÖ

 | ˆO( Ð. CŒ Ð.Z z{ 8Æ/ ²! t„

¶5Í †Ÿ %¬: (! | ˆO( O CDE z{ 8

Æ/ t O` À nZ=. ( 5 Þß œ

y  (Œ  HI Ð.Z •O; Í8! Î "Ž

2 5 HI( z{ 8Æ/( | ˆO; ùÉ Ð.t

y œy  Ý t„ ¶5`  OD ¬:- yâ À- TØÙ Ú,- jDE ÎÕ` ã=.

3-3.  /  

O C  z{( $ CDE €5( TU‚ ƒ

@ HI5 €„( …. Wy TU †‡  ˆ

 =. A! TU2 "# B(mechanical interlocking), %&

Ä(chemical bonding), B Ä(physical interaction)  õ

0 ÁR ( ¶  ë ./ TU". ®¯ GDE RUB 

( TU- . DÉ !=. xAy B$( ÒÓ y ¶ „(

Fig. 5. Effect of corona treatment on surface functionalities on the poly- imide film.

Fig. 6. The surface free energy of corona-discharged polyimide film.

Fig. 7. Effect of aging on the polar component of surface free energy of corona-discharged polyimide film.

Fig. 8. T-peel strengths of corona-discharged polyimide film/copper foil adhesive joints as a function of corona power.

(5)

TØ // v  ! TU‚- yâ" = >?@

=[15-18]. A! TU¾ œy  †Ÿ É i%D

/; T-Peel ‘- jDE TU…¨*; Ú,DE >vÞß=.

Fig. 8 œy í‚ †‡ /å…( TU ¾C …

TU¨*(peel strengths); yâã=. Ô àá5 œy í‚ †

Ÿ HI( … TU¨*. Ð.DÖ0 œy í‚ 150 W :

 ùÉ Ð.D À- ×C` ã=. A! 5 :"!  5 Õ! ü´ µ œy  †Ÿ HI z{ | Î

". §ÏDÉ ,  CDE  ( z{ 8Æ/; Ð.t

þ =‡ B$ Á! ÒÓ : TU‚ Ð.! À

 nZ=. ¾¿ œy í‚ 150 W : £2 … TU¨*;

yâ À2 œy í‚ Ð.`  œy 9 c*. £v@ 

 HI z{ Î "( §Ï Ð. †Ÿ TU‚ ²!  :Ë À nZ=.  z{ Ð.Z •O; Í8!

|Î " z{Æ/; Ð.t›, x †Ÿ ( TU

‚- :t› hˆ! C  G! À nZ=. ²!, Fig. 7

 Õ! ü´ µ œy  Ý t„( ¶5 †‡ 

 HI( | ˆO( O ( TU‚ ³ Ü- 

À nZ=.

4.  

Ô  FPCB( rs G  HI-  ut ' v ( TUV; GDE *NC €5( TUt TU‚- :t›" ‹Œ  z{ œy 9 ; D Ö=. z{ †‡  z{¾, z{ 8Æ/´ x

†‡ TU¾ ÁDE ÎÕDÖ0, œy  Ý t„ †‡ ¶ ti%; ÎÕDÖ=. àá5 œy  (Œ  z{

•O; Í8! Î ". œy í‚ Ð.Í †Ÿ §ÏDE z{

Æ/; ùÉ Ð.tÑ 5 ( TU¾ :

ã=. ²!, %¬:(aging) (Œ  Ý t„ ¶5 †Ÿ z { Æ/. OD À- ×C` ã=. Ô àá œy 

 (Œ z{ §ÏZ •O; Í8! Î " (Œ z{ 8Æ /( | ˆO. Ð.DÉ   C!  HI( ÒÓ

 Ð., 5 ´ *NC €5( TU¾  :Ë À- ×C` ã=.

Ô  5&"R 5&"ðV%  !F ðVpå

(5V!": 01-H02-00-152-000) (DE ã0,  

#<=.



1. Laius, L. A.: Polyimide: Thermally Stable Polymer, Consultants Bureau, New York(1987).

2. Qu, W. L. and Ko, T. M.: J. Appl. Polym. Sci., 82, 1642(2001).

3. Yu, J., Ree, M., Shin, T. J., Wang, X., Cai, W., Zhou, D. and Lee, K.

W.: J. Polym. Sci. Polym. Phys., 37, 2806(1999).

4. Lu, Q. H., Li, M., Yin, J., Zhu, Z. K. and Wang, Z. G.: J. Appl.

Polym. Sci., 82, 2739(2001).

5. Patel, H. S. and Patel, V. C.: Eur. Polym. J., 37, 2263(2001).

6. Anucci, E. R., Sandgren, A., Andronova, N. and Albertsson, A. C.: J.

Appl. Polym. Sci., 82, 1971(2001).

7. Park, S. J. and Kim, J. S.: J. Colloid Interface Sci., 244, 336(2001).

8. Seto, F., Fukuyama, K., Muraoka, Y., Kishida, A., Kishida, A. and Akashi, M.: J. Appl. Polym. Sci., 68, 1773(1998).

9. Süzer, S., Agrun, A., Vatansever, O. and Aral, O.: J. Appl. Polym. Sci., 74, 1846(1999).

10. Novák, I. and Folrián, Š.: Polym. Intern., 50, 49(2001).

11. Park, S. J. and Kim, J. S.: J. Colloid Interface Sci., 232, 311(2000).

12. Park, S. J. and Jin, J. S.: J. Colloid Interface Sci., 236, 155(2001).

13. Adamson, A. W.: Physical Chemistry of Surfaces, 5Ed., John Wiley, New York, Chap. 10(1990).

14. Lee, J. H. and Lee, H. B.: J. Biomed. Mater. Res., 41, 304(1998).

15. Kinloch, A. J.: Adhesion and Adhesives, Chapman and Hall, New York(1987).

16. Lewis, A. F.: Epoxy Resin: Chemistry and Technology, Marcel Dek- ker, New York(1988).

17. Postor-Blas, M. M., Martín-Martínez, J. M. and Dillard, J. G.: Surf.

Interface Anal., 26, 385(1998).

18. Sánchez-Adsuar, M. S., Papon, E. and Villenave, J. J.: J. Appl. Polym.

Sci., 82, 3402(2001).

참조

관련 문서

Levi’s ® jeans were work pants.. Male workers wore them

Finally, the quanti- tative properties by EDX spectra were examined, which observed homogeneous surface state as treated silver was removed and as the carbon fiber surface

Sorption of chromium is related to the surface pH of the carbon sorbent and the concentration of the carbon - oxygen groups of acid type on the carbon surface, particularly

Key words: Polyimide, Fluorination, Dielectric Constant, Thermal Properties,

Fractional free volume changes for 6FDA-based polyimide films as a function of aging time.. Van Den

Because the oxygen vacancies of MgO are formed easily at the surface of (200) plane that has low surface energy, it is very important to increase the (200) surface at the top of

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the