• 검색 결과가 없습니다.

 1.  Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film    "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

       

   *

  

305-600   100

*  

136-709    5 1 (2003 1 15! "#, 2003 3 25! $%)

Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film

Soo-Jin Park, Ki-Sook Cho and Sung-Hyun Kim*

Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea

*Department of Chemical Engineering, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-709, Korea (Received 15 January 2003; accepted 25 March 2003)

 

          X-ray photoelectron spectroscopy (XPS)    !" #$%&, '(·)*( + thermogravimetric analysis (TGA) ,-./0   &

5 AB  C%1. D6 45 EFG 7   HIJ (electron polarization) C

KL&, M  NO@ ," HNO0 =7KP>@Q    CKR ST6 ,H@ UV6 W

>@ XYG1. Z6  23    '(·)*(  M [\ E] ^+ W #$_ ` ab1.

Abstract−In this work, the effects of fluorine treatment of polyimide thin film on surface and dielectric characteristics were studied using X-ray photoelectron spectroscopy (XPS) and dielectric constant, respectively. And, their thermal and mechanical properties of the polyimide film were characterized by thermogravimetric analysis (TGA) and tensile strength, respectively.

The fluorine content of the polyimide film was increased with increasing the amount of the treatment gas, resulting in decreas- ing the dielectric constant of the film. It was explained that the replacement of fluorine led to the decrease of the local electron polarization of polyimide, or to the increase of the free volume which can be attributed to the relatively large volume of flu- orine. Nevertheless, the fluorination didn’t significantly affect thermal or mechanical properties of the polyimide film under a mild condition in this system.

Key words: Polyimide, Fluorination, Dielectric Constant, Thermal Properties, Mechanical Properties

1.  

       

-O-, -NH-, -CO-     !" #, $% &

300oC' ()* +,- ./0 12 345 67 &

12 89:; /< = >?@ =[1-2]. A  B

 CDE  9!·9 F  GH, I, JK, L*

MF NO, PQRF NO, STU  F =.

EA VWF X) YZ [ \] .^$/  L*M

& 9 VW2 N '  !_`a b c d- e f ag

h   ILD (interlayer dielectric) B# i !_' `a j

k/ =. ILD B# ) 89l mn 8 op,  q r) st/' uN, vp, :t stw (cross-talk) /, xp, stw / ry*' z. C q$/NP$ . , {p, NP$ q$ .|}u & ~  ' ! : . , c

 =€p, 9!·9 F GH Q‚   ƒ„ r;

h  0 3…† r & y* J‡- h   ˆ‰Š

& ‹Œ!!, sŽ, 'Ž, ‘’ ‹F 9 Ž  F . 8=[3-4].

“L 89l” 89M, • Q*M' 9!C d- –—

 mn d ˜ ™N š›œ   ž@ Ÿ

+−moment 2 bQ)  ¡ 9 "' ¢£Œ$ ¤¥ ¦§

(polarization)¨=. ©ª bQ 9 "' Œ$ «w B# Q'

To whom correspondence should be addressed.

E-mail: psjin@krict.re.kr

(2)

 41 4 2003 8

+− moment. ¦§ ,*; 89l¬ ­®h  =[5]. A 89l- UD nC2 op, N$*' Œ$, vp, 8Q¯

(free volume)' Œ$, xp, ¦§' ,* (polarizability); [  =

[6]. A ° !CDE ±Z ILDB# šN; ²8³´

' µ2 ¦§5 ¶ 8Q¯ Cw 12 89:; ·

 }B# i . j ¸ / =. df 12 89 l,  ¹!" # Cw ILD B#) ;  F šNº» i . j k ¼=[7-9].

šN†  =½ † ¾ ¢DE ¸= ¶ 9 ¿$*¾ ($

potential- ./ 0, .Ž À2 9! Á*; ./  =½

$ÂB5' LÃ Ä ÅD=. “L šN Æ! D) B#

- Çh È N†  šN¾ º»DÉ  m–

conjugated bond šN 'w) Ê$¨=. A šN =½ †N

¾ ÂDE  a, Ë Ì},  9! d, ST,  ' d- –— Í Î2 X) F/ =[10-12].

Ϭ) Ð ) šN$ Ç '  GH' ­Ñd

5 c Ͻ 89l' Œ$; iÒDÓ=[13-14]. Ð °Ô) Â

¨ ÕÖV' $ ,*; Fourier Transform-IR (FT-IR);  w iÒDÓ0, šN$ Ç ' GH' ­Ñ & 89d- XPS

¾ 89l ×,- w ØCDÓ=. Ù ·!" d2 TGA¾ CŽÅ* ×,- DE ÒDÓ=.

2.  

2-1.   

Ð °Ô F¨ dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride; D BTDA)¾ diamine (4,4'-oxydianiline; DODA)2

Aldrich) ÚV ÛÜM; ݒÞ$ß ,U; DE FDÓ=.

FÄ Aldrich' N-methyl-1-pyrrolidinone (NMP, anhydrous quality);

FDÓ0, ÛÜM & FÄ' $% à- Fig. 1 –—á=.

' šN$ ­ÑÇ Žº UµDE FDÓ0 šN

F2 .â; FDÓ=.

' 9MC ÕÖV(polyamic acid; PAA) FI- Â

D! Æw 3 ã¬âä; #N purging å, NMP diamine- æ

 ç' dianhydride; è9f æE 24³éê+ Lóë ÂDÓ

=. ¨ ÕÖV FI' M#Ü l2 15 wt% }DÓ=.

¨ ÕÖV FI- substrate F¨ 8ì Æ applicator (Sheen Instrument, S220403); FDE í± îK' ïð. 50µm

*ñ òâó å FÄ; za³ô! Æw 80oC) 24³é ê+

prebakingDÓ=. Fig. 2 –—õ (*Û" ÕÖV- ö$³ë í±  îK- U DÓ0, ö$ Û"÷ $%à- Fig. 3

 –—á=.

U¨  GH ­Ñ „S šN$ ÇD! 9 

 GH- øùú ^) ûÁü ýþ!; Fw ýþ å GH' ÿ E - UD! Æw ) Dk: ³ë) FDÓ=. 

 GH- šN$ ­ÑÇD! Æw ‡ #N.â fluorination reactor line- purging å < boat GH-  reaction tube <

 boat; ŽTDÓ=. < boat; - ³ reaction tube [. V N¾  - UD! Æw =³ #N.â purging =Á reaction line- r9ݒ 10−2 torr / J!³=. GH- ­ÑÇD!

Æw reaction line šN.â; 0 kPa(D F0), 5 kPa(F5), 10 kPa(F10), 30 kPa(F30), 50 kPa(F50)  ‹ DE šN .âÜ- }DÓ

0, :() 10 ê+ Ló å r9ݒ  >k–

- 5³ë 102 torr / J!³=.

Fig. 1. Chemical structures of dianydride, dianiline, and solvent.

Fig. 2. Heating cycles for thermal imidization of polyamic acid.

Fig. 3. Preparation of polyimide via polyamic acid precuror solution.

(3)

2-2. 

Ð °Ô) Â ' $ ,*; ØCD! Æw 

ÕÖV FI5 ö$¨  GH- KRS-5 reflection element . QT¨ Digilab FTS-165 spectrometer; Fw) wave number 4,000-400 cm−1' FT-IR â DÓ=.

2-3. 

U¨ GH- šN$ Ç Ͻ  GH' $%  2 XPS (ESCALAB MK-II); DE DÓ0, XPS ×, F¨

X-ray source Mg Kα; FDÓ0, chamber' 2 10−1-10−9 torr }DÓ=.

2-4.    

 GH' šN$ Ç 9·å' 89(*' Œ$ DSC (Dupont 9,900: model 2,910); FDE Þ(^* 10oC/min :(

) 400oC / ×,DÓ0,  d' Œ$ #N Æ! D) Þ(^* 10oC/min :() 800oC / TGA (Dupont 9,900:

model 2,950); FDE ×,DÓ=.

šN$ Ç Ͻ  CŽÅ*  O ³Ô!(Universal Testing Machine, Lloyd LR5K); FDE ASTM D412 DE ³

¦- UµDÓ0, cross head speed 50 mm/min ×,DÓ=. × ,˜2 ' ³¦ «DE 10r ×,DE c ™˜- FDÓ=.

2-5.  

Ð °Ô) šN$ Ç 9·å'  GH' 89l Œ$;

×,D! Æw Dielectric Spectrometer (Novocontrol GmbH, Model:

CONCEPT 40)- FDE ×,DÓ=. 89l ×, 2 :()

‹ü; 101 HzQŠ âò à 106 Hz / Œ$³ôÑ) 89 l- ×,DÓ=.

3. 

3-1. 

Fig. 4 ' $ ,*; ØCD! Æw ÕÖV5

ö$’,-  U¨  GH' FT-IR spectra 5=. “ L KV' $ ³ =Á5 2 ï Û"' ’,- 

¿=. op, ï ÛÜM; FÄ æÑ BTDA' . Ñ) ODA

¾ `»m LÃ “– ÕÖV FI- ÂDÉ ¨=. vp, `

»m 'w Ú¨ B .  'w za, ï ÛÜM .¢

; k '  $. ± Ý=[15].

A 5,QŠ ÕÖV FI' FT-IR spectra; –— Fig. 4(a)

; iÒDÑ, c) ¸ ¾  `»Là ' ÕÖV F I' d ¯äC  !³V' O-H (3,400-2,400 cm−1)¾ Õ"' N-H (3,500-3,100 cm−1); ØCh  0, dianydride' C=O (1,660, 1,535 cm1)¾ C6H5' C=C (1,513 cm1) ' ¯ä. –—õ #- ØCh  á=[6, 16].

LÑ ÕÖV FI- 80oC) 24³éê+ FÄ; za³ô

prebaking ’,- ¿ å 50oC) 290oC / Û"÷ ö$’,- 

¿  GH' FT-IR spectra; Fig. 4(b) –—á=. Ð °Ô

5, ÕÖV) –—õ O-H (3,400-2,400 cm−1)¾ N-H (3,500- 3,100 cm−1). $ÂLÃ 'w B ; Ú³ô  'w 

$. Ý%Ñ) ¯ä. ¬Ý #- ØCh  á0, A 5,

 Cw Ú¨   (725 cm−1); iÒh  á=. Ù ,

' 9PC d¯äC C=O (1,780, 1,720 cm−1), C-N (1,370 cm−1) c (OC)2NC (1,100 cm−1) ' ¯ä. Ú¨ #- iÒh 

á0[6, 16], A 5QŠ $. 100% Ý%áÁ- Ø Ch  á=.

3-2. 

šN$ Ç9·å'  ­Ñ' i ! - ýf &'¸

! ÆDE  GH' XPS spectra; Fig. 5 –—á=. c

5 Ç ' ö Â(/ 285 eVQY) ùN ¯ä,

404 eVQY) #N¯ä c 532 eVQY) VN ¯ä. –—õ

#- ØCh  á=. LÑ šN$ Ç ö 694 eV QY) š N ¯ä. )*É –—+0, šNÇ .â  z.hñ, • Ç

 .âÜ z.hñ ' šN ¯äý!. z.D #- iÒh  á=. A ' $%- Table 1 –—

5, šN$ Ç 'w ' ùN, #N, VN' ²Ü2 Ç

.â  Ϭ uND LÑ, šN' ²Ü2 z.D #- ØC

Fig. 4. FT-IR spectra of polyamic acid and cured polyimide thin film.

Fig. 5. XPS survey scan spectra of polyimide thin film.

Table 1. Chemical composition of polyimide thin film

C1S N1S O1S F1S F1S/C1S

F00 F50 F10 F30 F50

69.7 55.0 56.0 49.5 49.1

10.30 8.0 5.7 4.6 4.7

20.0 24.0 21.7 16.0 13.0

0 13.0 16.6 29.9 33.2

0 23.6 29.6 60.4 67.6

(4)

 41 4 2003 8

h  á=.

“L šN†  =½ † ¸= ¶ 9 ¿$*¾ ($

potential- ./ 0, .Ž À2 9! Á*; ./ ,

=½ $ÂB5' LÃ Ä ÅD=. df F2.â LÃ -) .^- ʲ «Q ' $ÂB5 LÃD0, df ùN$ÂB5 Ía

 LÃD0 LÃ - aÚ³=. 5* LÃ  aÚÑ (*

:Þ Cw C-C  w– \ äÉ  = >?@ 

=[10-12]. •, šN Æ! D) B#- ­ÑÇDÑ B# ­Ñ' š +, Â // LÃ À2 ¬01 Ú šN¾ º

»DÉ 0, m– conjugated bond šN 'w) Ê$ ¨

= >?@ =[12]. cA,  GH ­Ñ šN; ²8 µF!; 2 \ :ýf D! Æw) XPS carbon 1S core level

scan spectra ' !#- ¢ DE Fig. 6 –—á=.

Ð °Ô5, šN$ ÇD/ 32  GHC Fig. 6(a)' ö

284.6 eV (C=C), 285.6 eV (C-N), 286.2 eV (C-O-C) c 289.2 eV

(C=C)) ' 9PC d¯ä; ØCh  á=. šN

$ Ç ö ' šNº» 'w Fig. 6(b)¾ (c)) )

*É 288.7 eV (C-F)¾ 291.1 eV (CF2)' ¯ä. Ú¨ #- ØCh   á0, Ù Fig. 6(d)¾ (e)' ö 288.7 eV¾ 291.1 eVb 290.5 eV (CF2 in trifulorobenzene)) ¯ä. Ú¨ #- iÒh  á=.  A 5 F2.â; FDE  GH- šN$ Ç ³ :

!) 45 šN' Là ø-<65  ¾ šN† ' Là C-F Ù CF2  º»¨ #- ØCh 

á=. Ù Fig. 6(d)¾ (e)) 7  ª šN.â  30 kPa

:C ö  º»¨ šN²Ü äÉ z.DE C=C

¯ä¸= C-F ¯ä. \ äÉ a8D 5; –—á0 È' F1S/C1S. Table 1) ØCh  ª  60.4%¾ 67.6% =

½ GH' ö w ¶ ˜- –— #- iÒh  á=.

3-3.    

šN$ Ç Ͻ ' DSC9‡- Fig. 7 –—á=.

c 5, Ç ' Tg (glass transition temperature). 283.6oC Fig. 6. High resolution C1S XPS spectra of polyimide thin film with fluori-

nation concentration; (a) F0 (b) F5, (c) F10, (d) F30, and (e) F50.

Table 2. Mechanical properties of polyimide thin film

Tensile strength [MPa] Ultimate elongation [%]

F00 F50 F10 F30 F50

116±10.7 115±13.5 115±11.0 118±14.5 118±12.3

33±4.3 34±3.1 32±2.9 38±4.5 37±3.2

(5)

–—+0 šN$ Ç ö F50' Tg. 282.7oC uN 5;

ØCh  á=. “L Tg :- º C ) Ü, ’ mÂM, ,$*, $% ,  0, A C [' Œ

$ Cw  ' 8Q¯. z.DÑ c : 'w Tg. uN = >?@ =[17]. :! XPS 5) Ò ¾ , 

 º»¨ šN† ' Q¯. N– ùN¸= ä! È;  ' 8Q¯; z.³´ Fig. 7) –—õ ¾  Tg. u N # ìÛ¨=.

Fig. 82 ' TGA9‡- –— 5=. A TGA9

‡QŠ Table 3 IDT (initial decomposition temperature); –—

á=. c 5, F0' ö IDT. 555oC –—+0 šN$ Ç

ö F5¾ F10' ö ¶ …; –—/ 3<– F30' ö =N uNDÓ0 F50' ö û! w `³ (*. äÉ uN #- ØCh  á=. “L     

   -O-, -NH-, -CO-     !"

 # & 300oC' ()* +,- –—= >?@ =

[1-2]. cA– 5Ü' šN¾ LÃ Cw :! šNLà ø-<6

) 45DÓª '    =/Ñ) F50 ' º»¨ C-F ¯ä. äÉ z.  Cw û! w (*. ä É uN # ìÛ¨=[6, 16, 18]. cA– F50- Ub =½ 

' ö, šN$ Ç ³ šN²Ü 30% D º»¨ 

 šNÇ 'w +, ¶ :- º/ 3/ šN² Ü 30% :C ' ö +, =N uN #- i Òh  á=.

šN$ Ç 9·å'  GH' CŽÅ*(tensile strength)¾ üÛ sl(ultimate elongation)- Table 2 –—á=. Ð °Ô5  Ç C F0' CŽÅ* 116 MPa, üÛ sl2 33%

–—á0, šN$ Ç  GH' ö Ç GH'

˜5 ¢DE ¶ Œ$; –—/ 32 #- ØCh  á=. A 5 „S šN$ Ç 'w  * ¨ šN. 

' !" B ¶ :- º/ 32 # ìÛ¨=

[6, 9, 19].

3-4.  

89d2 (* & ‹ü Ϭ c J' ±£ & ®: 8¬Ý

= >?@ =[5]. Ð °Ô) šNÇ 9·å ' 89 l- :() ‹ü; 101 HzQŠ 106 Hz / Œ$³ôÑ) ×,D Ó0 c 5; Fig. 8 –—á=. Ð °Ô5, Ç 

C F0' ö 89l ‹ü>Æ Ϭ 3.1-2.9' Ê; ¸ Ó0 ×, ™˜ 3.04 9PC ' ˜- –—á

=[13-14]. cA– šN$ Ç GH' ö :! ­Ñi ! 5

) Ò ¾  Ç.â  z.DE * ¨ šN²Ü z .hñ 5 GH' 89l uND ö- iÒh   á=. •, ×,¨ ‹ü >Æ) 89l ™˜ F5=2.99, F10=2.68, F30=2.67 c F50=2.55 ®Ëf uN #- ØCh  á=.

:! )?) 45 ¾  89l2 N$*, 8Q¯, ¦§

' ý ./ nC äÉ :- @0 N$*¾ ¦§5 A D0 8Q¯¾ LA =[6, 8-9]. Ð °Ô) GH „S šN

$ Ç; ² * ¨ šN Cw    8Q¯ z.D ¦§2 uNDE 5 89l uN #

 ìÛ¨=. A 8 op, DSC5) Ò ¾  š N$ Ç 'w  º»¨ šN† . '

  8Q¯; z.³ë 89l uN # iÒ¨=[20].

vp, 9 . B) C D@   9 . B ÅDÉ E

  ¸= \ FÉ ¦§D, 9 [ B G ÛÛDÉ E

 šN† ' ¦§2 µ=. Ù , ù$šN 2 Ü- . Fig. 7. DSC diagrams of polyimide thin film.

Fig. 8. TGA thermograms of polyimide thin film.

Table 3. Thermal stability parameter of polyimide thin film

F0 F5 F10 F30 F50

IDT [oC] 555 549 550 533 395

Fig. 9. Dielectric constants of polyimide thin film.

(6)

 41 4 2003 8

Ý ù$N¾ ¢h È Ä Hb IJ 10 A  8 K) 45 « šN†  Ä 12 ¦§ È; van der

Waals C  Ջ µÕ/! È;=. cA, C-F Â' 9 ¦§

 C-H  ¢DE ¸= µ! È; šN$ Ç 

' 89l uN # ìÛ¨=[20].

4.  

Ð ) ILD (interlayer dielectric) B# L F 

' 89l- uN³ô! Æw šN$ ÇDE GH' ­Ñd

& 89d- iÒDÓ=. Ð °Ô5 šN$ Ç 'w =Á5  2 5; iÒ h  á=.

(1) U¨  GH Æ šN$ Ç; DÓ0, °Ô5 Ç.â  z.hñ, • Ç .âÜ z.hñ GH * ¨ šN²Ü z. #- ØCh  á=.

(2) ' ·!" d' ö šNÇ. GH' B

äÉ :- º/ 32 #- iÒh  á=. LÑ F50' ö IDT . =½ ³¦ w äÉ uNDÓ–, û! w `³ (*. F30 / 530oC :)   d- –— #- ØCh 

á=.

(3) šN$ ÇDE  GH * ¨ šN†  Cw ' ¦§- uN³ô 8Q¯; z.³ë 5 8 9l uN #- iÒh  á=.



1. Laius, L. A., Polyimide; Thermally Stable Polymer, Consultants Bureau, New York(1987).

2. Qu, W. L. and Ko, T. M., “Studies of Dielectric Characteristics and Surface Energies of Spin-Coated Polyimide Films,” J. Appl. Polym.

Sci., 82(7), 1642-1652(2001).

3. Singer. P., Changing the Promise of Faster Chips, Semiconductor International, November, 52(1994).

4. Ghosh. M. K. and Mittal. K. L., Polyimides; Fundamentals and Applications, Marcel Dekker, New York(1936).

5. Hippel., Dielectric Materials and Applications, Artech House(1954).

6. Banerjee, S., Madhra, M. K., Salunke, A. K. and Maier. G., “Synthe- sis and Properties of Fluorinated Polyimides. 1. Derived from Novel 4,4'-Bis(aminophenoxy)-3,3'-trifluoromethyl Terphenyl,” J. Polym.

Sci., A, Polym. Chem., 40(8), 1016-1027(2002).

7. Lee, Y. K. and Murarka. S. P., “Characterization of Charges in Flu-

orinated Polyimide Film with Different Thermal History by Using Capacitance-Voltage Methods,” Mater. Res. Bull., 34(6), 869-876(1999).

8. Jiang, L. Y., Leu, C. M. and Wei, K. H., “Layered Silicates/Fluori- nated Polyamide Nanocomposties for Advanced Dielectric Materi- als Applications,” Adv. Mater., 14(6), 426-429(2002).

9. Yang, C. P., Hsiao, S. H. and Chen, K. H., “Organosoluble and Optically Transparent Fluorine-Containing Polyimides Based on 4,4'-Bis(4-amino-2-trifluoromethylphenoxy)-3,3',5,5'-Tetramethylbi- phenyl,” Polymer, 43(19), 5095(2002).

10. Chen, K. Y. and Kuo, J. F., “Synthesis and Properties of Novel Flu- orinated Aliphatic Polyurethanes with Fluoro Chain Extenders,”

Macromol. Chem. Phys., 201(18), 2676(2000).

11. Chaiyasu, C., Tsuda, T., Kitagawa, S., Wada, H., Monde, T. and Nak- abeya, Y., “Pressurized Flow Driven Electrochromatography Using Fluorinated-Bonded Silica,” J. Microcolumn. Sep., 11(8), 590(1999).

12. Sharts, C. M., “Organic Fluorine Chemistry,” J. Chem. Educ., 45(3), 185(1968).

13. Park, S. J. and Kim, J. S., “Role of Chemically Modified Carbon Blacks Surfaces in Enhancing Interfacial Adhesion between Carbon Blacks and Rubber in a Composites System,” J. Colloid Interface Sci., 232(2), 311-316(2000).

14. Park, S. J. and Jin, J. S., “Effect of Corona Discharge Treatment on the Dyeability of Low-Density Polyethylene Film,” J. Colloid Inter- face Sci., 236(1), 155-160(2001).

15. Bessonov, M. I. and Zubkov, V. A., Polyamic Acids and Polyimides;

Synthesis, Transformations and Structure, CRC Press(1993).

16. Madhra, M. K., Salunke, A. K., Banerjee, S. and Prabha, S., “Syn- thesis and Properties of Fluorinated Polyimides, 2Derived from Novel 2,6-Bis(3'-trifluoromethyl-p-aminobiphenyl ether)pyridine and 2,5- Bis(3'-trifluoromethyl-p-aminobiphenyl ether)thiophene,” Macro-mol.

Chem. Phys, 203(9), 1238-1248(2002).

17. Van Krevelen. D. W., Properties of Polymers, Elsevier Science Pub- lishing Company Inc., New York(1990).

18. Park, S. J. and Kim, H. C., “Thermal Stability and Toughening of Epoxy Resin with Polysulfone Resin,” J. Polym. Sci., B, Polym. Phys., 39(1), 121-128(2001).

19. Chern, Y. T. and Shine, H. C., “Low Dielectric Constant Polyimides Derived from 1,3-Bis(4-aminophenyl)adamantane,” Macromol. Chem.

Phys., 199(6), 963(1998).

20. Grahan Solomons, T. W. and Fryhle, C. B., Organic Chemistry, John Wiley, 7th, New York(2001).

참조

관련 문서

Poly(vinyl phenol)(PVP)/TiO 2 nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate

Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray

Although the amino acid composition and solution viscosity of sericin were very similar among the silkworm varieties, the mechanical properties of sericin film

The magnetic doping of the copper sites in (Cu, Cu)-HDS has a strong influence on the interlayer structure, the bonding nature of M-NO 3 − , and on the thermal and

Abstract: In this work, the thermal and mechanical properties of vapor grown carbon nanofibers (VGCNFs)-reinforced difunctional epoxy (EP) composites were investigated in

We have discovered such a material, and report its deposition as thin-film barrier, tests of its permeability on OLEDs, and its physical and

Kim, “Catalytic Behavior of 3-Mercapto-1- Propane Sulfonic Acid on Cu Electrodeposition and Its Effect on Cu Film Properties for CMOS Device Metallization”, J..

,  and Jeong Woo Choi Department of Chemical Engineering, Sogang University,