# 강의자료실 - 강의자료실

Full text
(1)

특집 18면 2014년 04월 14일

(2)

(3)

th

### , April, 2014

(4)

Functional Integration

Blood Test Chip

### Issues on Integrated Microfluidic Device

Microfluidic Device Design

Mass Production

Flow Fluctuation techniqueOverall Performance EvaluationMulti-Function Operation Operational Power Sources

- Reliability

- Repeatability & Reproductibility - Full Scale CFD Simulation

- Lumped Parameter Modeling

Performance Test Device

(5)

(6)

### ■ Plasma separation from whole blood using a bifurcation principle

Blood Plasma Separation

Analogous Electric Circuit Analysis

Microfluidic device

### ■ Cell lysis using cell-cross over mechanism under microfluidic platform

Microfluidic deviceAnalogous Electric Circuit AnalysisDNA Extraction Results

Inlet (A) Inlet (B) 1 R 2 R 3 R 5 R R5 R6 4 R R4 R4 R4 R4 5 R R5

(7)

f

1

2

1

2

1

2

2

1

1

2

1

2

2 1

eq

2 1

eq

● ●

(8)

f

f e

## 

(9)

f

2

: N-S Equation

z z z z r z

### r

Fluidic resistance 0 0

### 

0 ( ) ( )  ( )0        z r u z u r ru r r   0

z

L P z p    

z

z

z dA t u t Q z

  

z

f

f

### 

(10)

 Fluid Element similar to the electric component Component Resistance :

Capacitance :

Inductance :

j P i P Relation

### 

1 2 1 u p g dt du        0 0 u A Q 

### 

Fluidic component1

(Rectangular Shape) Blood vessel

2 (Circular Shape) a 2 b 2 - width : 2a- height : 2b 1 5 , 3 , 1 5 5 3

 

i

3 4 2 6

### 

- E : young’s modulus of membrane - ν : Poisson’s ratio of membrane - w : width of membrane - t : thickness of membrane

### 

- ρ : density of fluid h

### 2

Radius Hydraulic  h R w w t 4

h

h

3

### 

- E : young’s modulus - L : Vessel length - t : Vessel thickness 2 h

### 

- ρ : density of fluid a 2 b 2

### R

h

1. Roland Zengerly and Martin Richter, “ Simulation of microfluid system”, J. micromech. Mircoeng. 4(1994) 192-204

f

(11)

### 5.4 Node Method

(12)

 Schematic view of a microfluidic circuit a

b 1

2

3

### R

i) Flow resistance : , 4

h i i

h i

ii) Flow rate :

a

1

2

3

i

### Q

iii) Pressure difference :

b a

### 

 The relation of Flow rate and pressure difference

i) Using “Node Method” rather than KCL/KVL1

1. KCL (Kirchhoff’s Current Law), KVL (Kirchhoff’s Voltage Law)

3 2 1

a

### 

1 1 R p Q   2 2 R p Q  3 3 R p Q  

eq

3 2 1 eq a

### 

, 3 2 1 1 1 1 1 R R R Req    b a

### 

ii) so, fluidic system relation could be calculated by means of electrical law

(13)

### 5.5 Demonstration (II)

a P b P Z2 Z1 Z3 a P Z4 Z5 Inlet #1 Outlet #1 Inlet #2 Outlet #2 b P

1. Armand Ajdari, “ Steady flows in networks of microfluidics channels: building on the analogy with electrical circuit”,C.R. physique(2004) 539-546

1

2

### Q

i) Applying with “Node Method” at point A,

3 2 1

a

### 

b

ii) Applying with “Node Method” at point B,

4 5 3

a

b

b

b

2 1 5 4 3 3 3 3

b a Matrix form

1

(14)

*

*

a hyd hyd a

2 * * 1 *

c c hyd c

### 

hyd hyd hyd hyd a a

1 * 2 * 1 1 2

### dp

hyd hyd hyd c hyd c

a

e

e

e

f

(15)

### [4]

[1] Y.J. Kang et al, Lab on a Chip 12, 2012, 1881-1889

[2] Y.J. Kang et al, Microfluidics and Nanofluidics 14, 2013, 657-668

[3] Y.J. Kang et al, Biomicrofluidics 7, 2013, 054111

[4] Y.J. Kang et al, Biomicrofluidics 7, 2013, 044106

[5] Y.J. Kang et al, Biomicrofluidics 7, 2013, 054122

(16)

Figure

Updating...

References

Related subjects :

Install 1PDF app in