강의자료실 - 강의자료실

16  Download (0)

Full text
(1)

특집 18면 2014년 04월 14일

(2)

1. “네트워킹과 리더십을 통해 구성원들이 집단지성을 발휘하게 함으로써 성과를

극대화 할 수 있어야 한다

2. 배움에 대한 지속적인 열의가 필요하며, 변화를 빨리 감지하고 그것을 신속하게 습득하는

능력이 있어야 한다.

3. 진성을 가지고 헌신해야 하며, 다름 사람과 사회에 긍정적인 영향을 끼쳐야 한다.

4. 세계적으로 탁월함을 인정받아야 하며, 지금보다는 미래가 더 기대되는 인물이어야 한다.

5. 지향하는 가치에 대한 설득력 있는 비전, 그리고 목표를 달성할 수 있는 실천 의지와 능력을

갖춰야 한다.

6. 독창성이 있어야 한다. 영화도 독창성이 있어야 파괴력이 있다.

7. 국제 기준에 맞는 가치관이 있어야 한다. 도덕적 양심과 창의성을 갖춰야 한다.

8. 많은 사람의 입장과 생각을 이해하고 동의와 협력을 이끌어낼 수 있는 넓은 포용력의

(3)

Fluid System Design:

(Lumped Parameter Model)

Department of Mechanical Engineering

Chosun University

Yang Jun Kang, Ph.D.

14

th

, April, 2014

(4)

Functional Integration

Blood Test Chip

Issues on Integrated Microfluidic Device

Microfluidic Device Design

Mass Production

Flow Fluctuation techniqueOverall Performance EvaluationMulti-Function Operation Operational Power Sources

- Reliability

- Repeatability & Reproductibility - Full Scale CFD Simulation

- Lumped Parameter Modeling

Performance Test Device

5.0 Introduction

(5)

Lumped Parameter Model

5.0 Introduction

(6)

■ Plasma separation from whole blood using a bifurcation principle

Blood Plasma Separation

Analogous Electric Circuit Analysis

Microfluidic device

■ Cell lysis using cell-cross over mechanism under microfluidic platform

Microfluidic deviceAnalogous Electric Circuit AnalysisDNA Extraction Results

Inlet (A) Inlet (B) 1 R 2 R 3 R 5 R R5 R6 4 R R4 R4 R4 R4 5 R R5

5.0 Introduction

(7)

5.1 Hydraulic resistance (R

f

)

● Two straight channel in series or parallel

a

R

1

b

R

2

c

a

1

R

2

R

a

b

● analogous electrical circuit

1

Q

2

Q

2

R

1

R

1

R

2

R

b

a

c

a

b

1

Q

2

Q

2 1

R

R

R

eq

2 1

1

1

1

R

R

R

eq

Physical Similarity

Ohm’s Law

Poiseuille Flow

e

R

i

V

f

R

Q

P

● ●

(8)

5.2 Compliance (C

f

)

e

C

V

e

C

idt

V

Similarity

Q

i

f e

C

C

P

V

P

P

Qdt

C

f

V

P

V

Flexible balloon

(9)

5.3 Inductance (L

f

)

P

p

p

L

A

u

g

p

u

Dt

D

2

)

(

V

dt

di

L

V

e

: N-S Equation

z

p

z

u

u

r

u

u

r

u

u

t

u

z z z z r z

)

(

z

r

Fluidic resistance 0 0

0

 u

0 ( ) ( )  ( )0        z r u z u r ru r r   0

z

p

t

u

z

L P z p    

L

P

t

u

z

)

(r

u

u

z

z dA t u t Q z



  





dA

L

P

dA

t

u

z



dA

L

P

A

t

Q

t

Q

L

t

Q

A

L

P

f





 

Similarity

dt

dQ

L

P

f

(10)

 Fluid Element similar to the electric component Component Resistance :

R

Capacitance :

C

Inductance :

L

j P i P Relation

Q

R

p

Q

dt

C

p

1

i

R

e

i

dt

C

e

1

dt

di

L

e

1 2 1 u p g dt du        0 0 u A Q 

dt

dQ

A

L

p

Fluidic component1

(Rectangular Shape) Blood vessel

2 (Circular Shape) a 2 b 2 - width : 2a- height : 2b 1 5 , 3 , 1 5 5 3

))

2

tanh(

1

192

1

(

4

3

 

a

b

i

i

b

a

ba

L

R

i

3 4 2 6

)

1

(

6

t

E

w

C

- E : young’s modulus of membrane - ν : Poisson’s ratio of membrane - w : width of membrane - t : thickness of membrane

ab

L

A

L

L

4

- ρ : density of fluid h

R

2

Radius Hydraulic  h R w w t 4

8

h

R

L

R

t

E

L

R

C

h

3

2

- E : young’s modulus - L : Vessel length - t : Vessel thickness 2 h

R

L

A

L

L

- ρ : density of fluid a 2 b 2

2

R

h

1. Roland Zengerly and Martin Richter, “ Simulation of microfluid system”, J. micromech. Mircoeng. 4(1994) 192-204

5.3 Inductance (L

f

)

(11)

5.4 Node Method

(12)

 Schematic view of a microfluidic circuit a

P

P

b 1

R

2

R

3

R

i) Flow resistance : , 4

8

h i i

R

L

R

Radius

Hydraulic

R

Length

Channel

L

viscosity

h i

ii) Flow rate :

a

Q

1

Q

2

Q

3

Q

i

Q

iii) Pressure difference :

b a

p

p

p

 The relation of Flow rate and pressure difference

i) Using “Node Method” rather than KCL/KVL1

1. KCL (Kirchhoff’s Current Law), KVL (Kirchhoff’s Voltage Law)

3 2 1

Q

Q

Q

Q

a

1 1 R p Q   2 2 R p Q  3 3 R p Q  

p

R

p

R

R

R

eq

1

)

1

1

1

(

3 2 1 eq a

R

p

Q

, 3 2 1 1 1 1 1 R R R Req    b a

p

p

p

ii) so, fluidic system relation could be calculated by means of electrical law

(13)

5.5 Demonstration (II)

a P b P Z2 Z1 Z3 a P Z4 Z5 Inlet #1 Outlet #1 Inlet #2 Outlet #2 b P

1. Armand Ajdari, “ Steady flows in networks of microfluidics channels: building on the analogy with electrical circuit”,C.R. physique(2004) 539-546

1

Q

2

Q

i) Applying with “Node Method” at point A,

3 2 1

Z

p

p

Q

Q

a

b

ii) Applying with “Node Method” at point B,

4 5 3

Z

p

Z

p

Z

p

p

a

b

b

b

 

0

1

1

1

1

1

1

2 1 5 4 3 3 3 3

Q

Q

p

p

Z

Z

Z

Z

Z

Z

b a Matrix form

Microfluidic networks as analog of electrical circuits

1

(14)

+

-Applying the node method at point A,

*

*

p

p

dt

d

C

R

p

p

p

a hyd hyd a

a

Applying the node method at point C,

c

2 * * 1 *

R

p

p

p

p

dt

d

C

R

p

p

p

c c hyd c

hyd hyd hyd hyd a a

R

C

p

p

R

C

p

dt

dp

*

1 * 2 * 1 1 2

1

1

1

R

C

P

R

C

P

R

C

p

p

R

R

C

dt

dp

hyd hyd hyd c hyd c





a

p

e

C

idt

V

dt

V

C

i

e

e

dt

P

C

Q

f

5.5 Demonstration (III)

(15)

5.5 Demonstration (IV)

[1]

[2]

[3]

[6]

[5]

[4]

[1] Y.J. Kang et al, Lab on a Chip 12, 2012, 1881-1889

[2] Y.J. Kang et al, Microfluidics and Nanofluidics 14, 2013, 657-668

[3] Y.J. Kang et al, Biomicrofluidics 7, 2013, 054111

[4] Y.J. Kang et al, Biomicrofluidics 7, 2013, 044106

[5] Y.J. Kang et al, Biomicrofluidics 7, 2013, 054122

(16)

Figure

Updating...

References

Related subjects :