• 검색 결과가 없습니다.

Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical-Looping Combustor

N/A
N/A
Protected

Academic year: 2022

Share "Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical-Looping Combustor"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

    

  

* 

   

305-343    71-2

* 

133-791     17 (2003! 4" 5# $%, 2003! 7" 8# &')

Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical-Looping Combustor

Ho-Jung Ryu, Nam-Yun Lim*, Dal-Hee Bae and Gyoung-Tae Jin

Advanced Clean Energy Process Research Center, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea

*Department of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea (Received 5 April 2003; accepted 8 July 2003)

 

  2        !" #

$ %&'() *+,  -." /! 0 1234. 56   

%&'()7 NiO/bentonite (89(:: 0.181 mm, ();,: 4,080 kg/m3)< =>2'  (?: 0.052 m, @ . 1.66 m)AB CD2< /!2' E,(25-1,000oC) C(1-6 atm) F+A GH *+, F+< /! 0

123 E(?: 0.02 m, @. 2.0 m)AB emptying time methodA $  -.(Utr)A IJ E,(25-600oC) KL" /! 0 1234. /!M *+, E, C. N OA GP Q23R,

 -.S E, N OA GP N 234. *+,  -.A IJ T UV /!W" X YZ [\23R X YZ" ]^ _!M YZ" `a234.

Abstract−In order to design and select appropriate operating conditions for the practical operation of chemical-looping combustor, which consists of two interconnected fluidized beds (bubbling fluidized bed and fast fluidized bed), minimum flu- idization velocity and transition velocity to fast fluidization were measured and investigated. Oxygen carrier particle of NiO/

bentonite particle (specific surface mean diameter: 0.181 mm, particle density: 4,080 kg/m3) was used as a bed material. The minimum fluidization velocity was determined by measuring the bed pressure drop in the pressurized fluidized bed (0.052 m i.d. and 1.66 m high) with variations of temperature (25-1,000oC) and pressure (1-6 atm). The transition velocity from bub- bling to fast fluidization was determined by means of emptying time method in the high temperature circulating fluidized bed (0.02 m i.d. and 2.0 m high) with variation of temperature (25-600oC). The measured minimum fluidization velocity was increased with increasing temperature and pressure. The measured transition velocity to fast fluidization was increased with increasing temperature. The previous correlations on the minimum fluidization velocity and transition velocity to fast fluidi- zation were compared with the present measured values to develop new correlation.

Key words: Chemical-Looping Combustion, Transition Velocity, Oxygen Carrier Particle, Circulating Fluidized Bed, Pressur- ized Fluidized Bed

To whom correspondence should be addressed.

E-mail: hjryu@kier.re.kr

(2)

1.  

,  (greenhouse gases)   

        !"#$ %

& '() * +, -..  CO2, CH4, CFC,

NOx, SOx  -/ 01  2 34 ) 

 50% 5 67* 89: -7; <* =>? ) 2@A

 4BC ADE..

FG  >HI J @K2C LM CO2N O P Q) .R) SBI TU7V WX SBI YZ , [\ SB; ] ^  _` B.[1, 2].  )  a b P - c*d > ef7* Y ghi > j(chemical- looping combustion technology, CLC) ) > kl, -..

Y ghi >  m e no * Dp -7; m no qN FrY sH(SsH) ghtC ) no C

FrsH no, .u no C FrsH hvno(>?

 >no) wpk.. S no (no )C i (1)4 x

 Fr sH(M) S   J p Fry(MO)$

zD,,  Fry` hvno * ghp >?> (hvn o )C i (2){ x Fry(MO)sH >?(CH4, H2, CO or CnH2n+2){ no .T Fr sHN zD,, CO2{ H2O/

$ KAT|.. hvno C hvE FrsH .T no * ghp Q 4B$ n}~ E.. Y ghi > C 

SsH(Fr  Fry) m no N ghtC N 2

€  carrier b4 ‚ƒ no C „` …$ hvno

* 2€ …2€Y  b ‚ƒ , -pC 2 T†$  p‡ ˆ ‰) 5HŠ, b P -..

Oxidation: exothermic, (1)

Reduction: endothermic, (2)

M: Metal, MO: Metal oxide

Y ghi >  ‹ >  [J   ˆŒ

$ , -.. nŽ5 >> K2[C CO2N X‘, O P S’Ž7* \b P -$ B ,* “b ”Z 3•

 9-27% B –, K2— 1.3-2.3L ˜ 67* 89:

-.[3, 4]. ™ V Y ghi >  ”Z …3• š› K 2œi4 [) Pž7* Ÿ,[5-7], CO2 KA  Ž7;, nŽ5

¡ L  CO2¢ N2, O2, CO, H2O, NOx, SOx

 £‚ nt Y ghi >  hvno C CO2{ H2O/ LM¤* H2ON o“ ¥t CO2N ,* ¦~

X‘b P -p 5 CO2 X‘N Q) ] §  YZ

¨.[8]. ) no C pV SsH no` 

©(flame) KA ª «C pV¤* thermal NOx KA

$ vŽ7* š—b P -.[9].

¬­ Y ghi > j ) > ®, ¯°, ±², ³

´¯ µ Z‘ VŠC ¶K~ wp, -7; ‹ K·E

¸I$ ¹º7* ) (² >»# JC Ryu[10] ¡,

H›1 B‘p -.. ‹ >I$ ¼½¡t Y ghi >

j ) >X ¾~ SsH eK µ noD ¿, SB J= µ ”D À, SBeK 7* VÁ P -.. / <* 

SsH eK µ noD ¿ ) > ÂŽ7* wp: à 7; SBeK ) > ±±) B7* FG £Ä»Å Æ ÇC noD ¿4 ghĻŠÆÇC , ghr ÈB ) ¿ wp: Ã.. / Y ghi >  ˜$ QJC

 m e no  >ÉE T†C noD ¿ wp: 

; { x` ¿ˆÊN Ë, z T† Ë µ ƒÆÇ$

ÌB QJC ®Ž5 H?* noD ¿É4 Í Îϊ P@

Ð0D ) ¿H? щ..

Y ghi >T†`   œi no ÆÒ7*  ËÓ P -7V nŽ7* -, Ô ÕÖ3• ×, … µ yØ 2€ ZP; SBÄ Ùd ĻŠno  <* ,9, - .. no { hvno N Ä»Å7* ,9b ”Z S µ >? Ä (Är) ڊ £Ä»Å, ÛÄ»Å, ,rÄ»Å

  Ä» « \Ó P -7; ˆÊ WÜN Ý, no D$ eÌ QJ ÞÆÇ ,9Ó P -..

Y ghi > ) yØP J SsH - hv$ QJ щ) S { >? Ä $ Ët no 

<s S Ä  hvno  <s  Ä  11L B

, m no q , gh$ QJC m no  V ,rÄ

»Å z« p ).. É4Ž7* Ä  _` no N , rĻŠz«* ,9, hvno  <sE  §m no

ß  QJ Åà,  4 ÛTÔ á¡ \) £Ä»Å$ 

\ 6 đ) 67* q?U.. { x` no z«N ¹º 7* efËN Pl QJC ®Ž7* no (,rÄ»

Å){ hvno ( £Ä»Å)C S {  Är ) ž

щ.. Är ž` ( no C v Ä» z«N „$ P - âÄr ; N QJ £Ä»Å ÆÇC ƒ hv no C SsH âÄ»r ) ¿H? щ

;, ,rÄ»Å7* ƒ no C ,rÄ»Å7* 2

Är ) ¿H? щ..

® >C Y ghi > SsH* q\ Q J Æ) NiO/bentonite sHN ÅyØ* \ Þ £Ä»Å

C { Þ@ ã Úu âÄ»rN ÈB µ J=ä7

r$ ÈBä.. ) ÈBE åI4 ‹ æiI4 [çN èJ

ˆ éÕ) å$ +Èb P - æi$ ÌB, N PB Ä q) ƒÆÇC âÄ»r{ ÛĻŠ2Är$ ÉB

Q) c*d ž$ êëä..

2.  

Fig. 1` SsH âÄ»rN ÈB QJ q\E 

Þ £Ä»Å$ eìŽ7* Víà, -.. ÞÄ»Å` à” 0.052 m,

Ÿ 1.04 m{ à” 0.102 m, Ÿ 0.62 m 5îï(inconel) —æ$ >

É Xð7*Wñ Ÿ 1.66 m ß ä.. ò” . u ·W —æ` Xð7*Wñ Ÿ 1.025 mWñ 1.050 mG

áˆWN m, óô* >Éä.. S H(plenum) PÀ<si7*

ËU7; <sæ ò”` 0.0127 m; Xð7*Wñ 0.165 m

WC S H{ >Ép-.. S H W [T Åà N LM Þ@$ õö QJ ò” 0.022 m æ4 ~÷øùN

Êä.. XL (distributor) ò” 1 mm ú q(ÜÊ(rectangular pitch)* 25e û9- .Sð(perforated plate)$ q\ä7; sH

è4N œ QJ (ASTM 200 mesh)N üý.. Xð, Ä»Å

W(à” 0.052 m), ĻŠW(à” 0.102 m), qþÿ, Ññ ((

6, 20, 20, 3.5, 6 kW vèz Y1ñ{ Æ N \ … µ ¡ä7; Ä»Å7* <s  +…$ QJ 2 \ 

15 kW preheaterN Êä.. Ä»Å7* sH S$ QJ Ä»

Å W ò” 0.114 m, Ÿ 0.33 m N Êä7; [

E sH £Â$ QJ ·ž[•$  ò” 0.0605 m qþÿ$

M 1

2---O2→MO +

CH4+4MO→CO2+2H2O 4M+

(3)

 41 5 2003 10

Êä.. qþÿ W LMæ` , T? N Q) sample pot4 >Ép-.. qþÿC £Â ª` ,  qþÿ  W LMæ4 >ÉE ÑñC £Â; Ññ ¬$ æ  QJ Ññ àW Þ@ãh N Êä.. ƒ BD$ QJ 2e

 ÑñN * Ê ç q\b P -ß ä.. Ä»

* S  q\U7; 5 HP \ $  S ޓ  J S

, Þ@Æ { PX¥\ ÑñN ¥  ±ñ* ¡B) Ø  Ä Ë(mass flowmeter, Brooks Instrument){ MFC controller* B 

p ĻŠSU..

ĻŠ“œ# Þ@X£N ÈB QJ Xð7*Wñ −0.15, 0.075, 0.165, 0.905, 1.275, 1.475 m Ÿ  6e Þ@Œ$ m, Þ

@ãh { >Éä7; Þ@ãh C 4-20 mA 2 * ãh E Þ@åI` PLC(programmable logic controller)N ¥ PC ˆ

U.. ĻŠ“œ# X£ Xð7*Wñ −0.15, 0.165, 0.905, 1.275, 1.475 m Ÿ ÊE  5e …2 J ÈBU 7; PLCN ¥ PC ˆU..

âÄ»rN ÈB Q ,BÅCWñ Är$ Ÿt C Xð$ è) Þ@{ Å Þ@N ÈBä.. Xð4 Å Þ@ control panel ÊE  Þ@TË ·TU 7; PLCN ¥ PC ßU..

Fig. 2 ,rÄ»Å7* 2Är ÈB ¿ q\E , ghÄ

»Å ¿ˆÊN Víà, -.. 2 ˆÊ æ(riser), qþÿ, downcomer{ L-valve* Dp -.. æ4 downcomer à”

0.02 m, Ÿ 2.0 m ) ="æ(quartz tube)7* ¨U, downcomer

W qþÿ$ Êä.. , ghĻŠ¿ˆÊ ="æ

7* ¨U  Þ ¿ \b P 7; ,rÄ»Å7

* 2Är )  "#/$ ÈB QJ q\U.. Ä

» * S  q\U7; ±ñ* ¡B)  Ä Ë (McMillan Co., Model 100-12)* B p æ W* <sß

ä.. Åà Þ@ L-valveN èJ ,  ­<s QÊ*W ñ Ÿ 0.05 m{ 1.7 m QÊ) Þ@Œ$ šÞz Þ@ãh { >É

 ÈBä.. æ4 downcomer Æ$ QJ æ`

4 kW \ $  2 1ñ 4e, downcomer 6 kW 2 1ñ 2 [E ,  qþÿC £Âp downcomer{ L-valveN èJ 

æ7* ­<sU..

( ÄrÆÇC Þ@‰» 0D$ ÈB QJ  s{ ~

 ÈBE ÅyØ$ downcomer QÊ) , T? <s ` 

Fig. 2 Q14 Q2 WX S N <s æ 7* ,  gh

ß ä.. æ7* ­<s ,  ` Q1 Ä $ ãT

! Æb P -U.. v Är4 ÆÇC Åà Þ@‰» <

Ž5 ”#$ ¡ N B«* ,9ä7; B«C Å

Þ@‰» N ÈBä.. ,rÄ»Å7* 2Är` emptying time methodN \ ÉBä.[11, 12]. v Är4 ÆÇ

C B«N Ä. L-valveN èJ æ7* ­gh ,

 "#$ 7t æC ,  [ÄM pV Åà ,   –~ ;  Åà Þ@ TÔ $ ڊ –

~ E.. æ7* , ­gh$ ` gÔWñ sH [ J Åà ,   – Åà Þ@  –)  ¥ BJ Ø G TÔ$ emptying time7* ÉBä.. Emptying time

Bá) ÉB$ QJ Åà Þ@N šÞz Þ@ãh { A/D converter J  * ÈBä..

( ¿ÆÇC Þ@ Þ@ãh (šÞz, Validyne, P24D Model)N q\ 2Þ(%5 V)-TÔ * ¹&p H?PÂË(data acquisition system, Real time devices Inc., AD2110 Model)N ¥C PC ˆä.. ( ¿ÆÇC Þ@ 100 Hz <'P*

Fig. 1. Schematic diagram of a pressurized fluidized bed.

1. Mass flow controller 8. Cyclone 2. Water feeding pump 9. Sample pot 3. Steam generator 10. Filter

4. Preheater 11. Condenser

5. Pressurized fluidized bed 12. Water reservoir 6. Electric heater 13. Control valve 7. Solid hopper

Fig. 2. Schematic diagram of hot model circulating fluidized bed.

1. Riser 5. L-valve

2. Cyclone 6. Differential pressure transducer 3. Downcomer 7. A/D converter

4. Solid hopper 8. Personal computer

(4)

10,000eN PÂä..

¿ q\) sH Y ghi > SsH(NiO/

bentonite)*C À(s” 0.181 mm, sH) 4,080 kg/m3.. NiO/

bentonite sH Ɯ*` ‹ ¡,[13] H›1 VíV -7;

NiO/bentonite sH yD4 âÄ»r, ,rÄ»Å7* 2

Är ÈB$ Q) ¿ÆÇ` Table 1 VíV -..

3. 

3-1. 

Fig. 3 ·Ž7* 25oC, 5 atmC Ärã ڊ ÈBE X

ð4 Å Þ@ å ãN Víà, -.. ,BÅCWñ Ä r ˜‚ ڊ Xð4 Å Þ@ ˜)  + Är 

Wñ ¥ B) å$ VíàU.. âÄ»r B ڊ

Å Þ@ ˜. BJ T¨ Är7* ÉBä .. ™, Ví ¹{ x Xð Þ@N \ âÄ»

rN ÉB) ”Z{ Å Þ@N \ ÉB) ”Z å

 Äqä..

Fig. 4 25-1,000oC ã{ 1-6 atm Þ@ã ڊ È

BE âÄ»r ãN Víà, -.. ÈBE âÄ»r

  ˜‚ ڊ –ä‡,  Botterill4 Teomann[14], Botterill [15] ¡,N \ J=b P -.. FG  >

HI J âÄ»rN +È Q) æi Tp Ã..

؎7*  ) æi WX Ergun[16]4 Wen4 Yu[17]  ) æi$ %* , -.[18]. Ergun[16] i ( -` §m š

v .7*C, ԗ1 ·Tt ./ i (3)4 x..

(3)

 C k14 k2 sHz(particle sphericity, φs){ âÄ»«

C Å S01(εmf)/ ‚P;, Wen4 Yu[17] C  2Û sHN \ ¿) É4N \ k14 k2 å(k1=24.5,

k1(Remf)2+k2(Remf)–Ar=0 Table 1. Particle properties and experimental variables

Particle NiO/bentonite

Specific surface mean diameter 181 µm

Apparent density 4,080 kg/m3

Bulk density 1,407 kg/m3

NiO: bentonite wt. ratio 3:2

Experimental variables Minimum fluidization velocity Transition velocity to fast fluidization

Temperature 25, 200, 400, 600, 800, 1,000oC (at 1 atm) 25, 250, 400, 600

Pressure 1, 3, 5, 6 atm (at 15oC) 1 atm

Fig. 3. Effects of gas velocity on the pressure drop in the distributor (a) and bed (b).

Fig. 4. Comparison of minimum fluidization velocities between the measured and the calculated values. Solid lines: previous corre- lations. 1: Leva [19], 2: Bayens and Geldart [22], 3: Wen and Yu [17], 4: Goroshko et al. [20], 5: Bena [21]

Dash line: present correlation, Eq. (5).

(5)

 41 5 2003 10

k2=1,650)$ ÉBä7; nŽ7* ,d sHË _ Ž\ 

æi$ Tä.. Botterill4 Teomann[14], Botterill [15]` ®

¿ ÈB3Q{ x Remf 20¡. ¨` ”Z(0.032< Remf< 0.406)

 i (3) 4ã m 56 -5 ŒD@- LŽ7* ¨\,, ڊC Î& i (4){ x ·¬b P -., ¡,ä..

(4)

i (4)C ) , ) 1/1,000 B å$ Víà¤*

Œ [J âÄ»r ±Ê "# Ž7;, Œ

 – 67* q?U..

ÈBE âÄ»r Þ@ ˜‚ ڊ –ä‡, 

Þ@ ˜‚ ڊ Œ B/  ) ˜

 i (4) XH – âÄ»r – 67* q

?U.. / Þ@˜ Úu âÄ»r – 7` 

"# [J ¨~ Ví8‡,  ) å , ) å [ J YZ ¨` å 7* q?U..

Fig. 4 { Þ@ ãb  ‹ æiI J ËE å

I C ÈBå4 [çŽ Äq) å$ +È æiI$ ÌB

 ‚ƒ Víà, -.. ™, Ví ¹{ x ‹ æiI C Leva[19], Goroshko [20], Baeyens{ Geldart[21], Wen4 Yu[17], Bena[21]

 æi .u æiI [J ÈBå4 Äq) å$ +Èä7;

 æiI z« Table 2 VíàU.. /  æiI`

{ Þ@ ˜ Úu âÄ»r –”#$ Ví9 P -U 7V Þ@ "# JC . 4) å$ +Èä.. Knowlton [23]` âÄ»r ) ‹ æiI { Þ@ ã

 Úu âÄ»r ã”#` Ví9 P -:Š ÈBå4

š -$ P -7;  ) ”Z æi BáN eÌ Q JC ·Þ ÆÇC ÈB) âÄ»r å$ æi  s Ä3sH¾ (effective particle size)N 7* Ë,,  å

$ âÄ»r æi s ,, ,ÞC âÄ»r

N Ëb 6$ ;ˆä.. ® >C ·ÞÆÇC ÈB ) âÄ»r å$ \ Ä3sH¾ N Ë,,  å$

æi s ,, ,ÞÆÇC âÄ»r å$ Ë

 ¡ý7V, Fig. 4 Ví , Þ@ ˜ Úu ( æi –

 <  ã ªý7;, ,, ,Þ ÆÇC ÈBå [J Y Z ¨~ +È É4N VíàU.. É4Ž7* ‹ æi7*

SsH âÄ»rN Ž~ +È p9=.. ® >

 ¿3Q àC { Þ@ ã Úu âÄ»r ã

N +È QJ Fig. 4 Ví ‹ æiI C ÈBå4

ˆ Äq) å$ +È) Leva[19] æi$ ¹º7*  ./

Umf dp2p–ρg)g k2µ ---

=

Table 2. Summary of previous correlations for minimum fluidizing velocity, Umf [in SI unit]

Author Correlation

Leva [19]

Goroshko et al .[20]

Wen and Yu [17]

Bena [21]

Baeyens and Geldart [22] Ar = 1823 Remf1.07+ 21.27 Remf2 Umf 7.169 10× 4dp1.82p–ρg)0.94g

ρg 0.006µ0.88 ---

=

Umf µ ρgdp --- Ar

1400 5.2 Ar+ ---

 

 

=

Umf µ ρgdp

---( 1135.7 0.048Ar+ –33.7)

=

Umf µ ρgdp

--- 1.38 10

3 Ar

× Ar 19+ ( )0.11 ---

 

 

 

=

Fig. 5. Bed pressure drop versus time (determination of emptying time).

Fig. 6. Effects of temperature and gas velocity on emptying time (deter- mination of transition velocity to fast fluidization).

(6)

i (5){ x` æi$ „$ P -U7;(æËP, r2=0.992), i (5)

J +ÈE âÄ»r å$ Fig. 4 ‚ƒ VíàU.. ™, V í ¹{ x i (5) J +ÈE âÄ»r åI` ÈBå4

×` ÊN VíàU..

(5)

3-2.  

,rÄ»Å7* 2Är$ ÈB œ*` ¾~ , (solid concentration)N \ ÈB œ*4 sH[rN \

ÈB œ*7* VÁ P -.[24]. , N \ œ*` Ä r ڊ Å>?$ ÈB œ*, B) , ghrC Ärã

 Úu ĻŠ“œ# —Q@A Þ@N T ÉB œ

*, B) , ghrC Ärã Úu Åà S01 ãN

T ÉB œ*, Ärã Úu Å B¡ )(bulk density) N T ÉB œ*, Ärã Úu Åà Þ@‰» ãN

\ ÉB œ*, Ärã ڊ Us(1-ε)$ T ÉB

 flooding point method 7* VÁ P -7; sH[0D$ \

 œ*` ÅyØ ­gh$ š— ÅyØ §m [‡ C

‘ TÔ(emptying time)$ ÈB,  å$ Ärã ڊ T

 ÉB œ*(emptying time method), Ärã Úu â , gh (maximum Gs)$ T ÉB œ*, sH¾  Úu [

DD(elutriability)N T ÉB œ*, Är ã Úu £

 , gh (saturated Gs)$ T ÉB œ*, Ärã Ú

Š sH[rN T ÉB œ* 7* VÁ P -.. ‹

¡,I C ÅyØ §m [p Å [E‡ C‘ TÔ (emptying time)$ Ärã ڊ T ™ <  ã Är

$ ,rÄ»Å7* 2Är7* ÉB emptying time method

ˆ _ q\U.[24]. / ‹ ¡,IC Åà ,  § m [‡G C‘ TÔ$ y ê³±ñ(water manometer)  Þ@ËN T(Ž7* æ  œ* J ÈB) ”Z _ý7; 0 1, Är ŸÎC emptying time P % à5 ”Z Bá) È B p9d —Œ -.. ڊC emptying time method J ,r Ä»Å7* 2Är$ ÈB QJC ¡. Bá~ emptying time$ ÈBb P - œ*$ q\J ).. ® >C šÞz Þ

@ãh N \ Åà Þ@N ÈBä,  N X=

Åà ,  WX [‡ C‘ TÔ$ ÉBä..

Fig. 5 ® >C emptying time$ ÉB QJ q\E œ*$

Víà, -.. ™,C 40%G æC [E ,  L-valve N èJ æ7* .T <s, [çŽ < Ž5 Þ@ æ

 B« ”ZN VíF..  ) B« ÆÇ$ Ä.

+ TÔWñ æ7* , ­<s$ 7t æ7* ,

¡G 7¤* sH[ J Åà ,   –~ ; 

æC Þ@ –~ E.. ® >C Å Þ@

–)  BJ T¨ TÔ$ emptying time7* ÉBä..

Þ@ãh * Åà Þ@‰» N ÈB emptying time$ ÉB

 œ*` Þ@Ë T(Ž æ  J ÉB œ* [J Bá) å$ ÈBb P - 67* q?U..

Fig. 6 NiO/bentonite sH J (( C Ärã

Úu emptying time ãN VíàU.. ™, Ví ¹{ x Ä r ˜‚ ڊ sH[r ˜¤* æ àW , N

§m [TH‡ C‘ TÔ5 emptying time I1 –) 

– ”# JU.. ‹ ¡, Ví ¹{ x Ärã Ú u emptying time – <  ã Är$ ,rÄ»Å7* 2

Är, Utr* ÉBä..

Fig. 7 NiO/Bentonite sH J 25oCWñ 600oCG  ã Úu ,rÄ»Å7* 2Är ãN VíàU.. ™, V í ¹{ x  ˜‚ ڊ ,rÄ»Å7* 2Är ˜

 ”#$ VíàU.. { x` ”#` ã Úu sH[

r ã”#4 æë J=b P -.. ,rÄ»Å7* 2

Är4 x` Ÿ` Är3Q(Newton’s region)C  ˜‚ Ú

Š sH 2Kr ˜, sH[r –¤* ,rÄ»

Å7* 2 wp QJC : Ÿ` Är щ) 67*

q?U.. Þ@ ˜‚ ڊ ,rÄ»Å7* 2Är –

). Tsukada [25] É4 sH[r{ æë J=b P -.. B ÄrC sH[r Þ@ ˜‚ ڊ ˜

[23, 26-29], : õ` ÄrC ,rÄ»Å7* 2 D J 67* q?U..

NiO/Bentonite sH J ã ڊ ÈBE ,rÄ»Å7*

 2Är4 ‹ æi J +ÈE É4N Fig. 7 ‚ƒ Ví àU.. ( æi z« Table 3 H›1 VíV -.. ™, V í ¹{ x Chehbouni [34] æi J ËE ,rĻŠ7* 2Är å ® >C ÈBE å4 ˆ Äqä7; . u æiI J ËE åI` ÈBå [J 4~ +ÈU .. { x` ”#` ® ¿ q\E ghĻŠÅò”4 æë

 ,9b щ -.. Chehbouni [34]` Åò” ˜‚ ڊ

Umf 2.997 10× 3dp1.636p–ρg)1.128g ρg

0.0247µ0.446 ---

=

Fig. 7. Comparison of transition velocity to fast fluidization between the measured and the calculated values. Symbols: measured val- ues, Solid lines: previous correlations.

1: Lee and Kim [30], 2: Perales et al. [31], 3: Bi and Fan [32], 4: Adanez et al. [33], 5: Tsukada et al. [25], 6: Chehbouni et al. [34].

Dash line: present correlation, Eq. (6).

Table 3. Summary of previous correlations for transition velocity to fast fluidization, Utr

Authors Correlations

Lee and Kim [30] Retr= 2.916Ar0.354 Perales et al. [31] Retr= 1.41Ar0.483 Bi and Fan [32] Retr= 2.28Ar0.419 Adánez et al. [33] Retr= 2.078Ar0.463 Tsukada et al. [25] Retr= 1.806Ar0.458 Chehbouni et al. [34] Retr= 0.169Ar0.545 (Dt/dp)0.3

(7)

 41 5 2003 10

,rÄ»Å7* 2Är ˜ 67* ¡,) ¹ -7; ™I

 æi Åò” "# £‚p -.. ® ¿ q\E gh ĻŠò”` ‹ >IC q\E ¿ˆÊ [J . ¨

 ,rÄ»Å7* 2Är õ~ VíV nt ‹ æi I` ® > ¿ˆÊ [J Åò” L Ä»ÅC ¿) É4 N ¹º7* TE æi¤* ® ¿É4 [J ,rÄ»Å7*

 2Är$ ¾~ +È 67* q?U.. Chehbouni [34]

æi ® >C ÈBE ,rÄ»Å7* 2Är$ [çŽ M +È Ä .u æiI4 €‘ ™I æiC Åò”

"#$ ,9N 7* q?E.. É4Ž7* ,rÄ»Å7* 2

Är$ Bá1 +È QJC Åò” "#$ ‚ƒ ,9 6

 ŽÒ) 67* q?U..

® > ¿3Q àC ã Úu ,rÄ»Å7* 2

Är ãN +È QJ Fig. 7 Ví ‹ æiI C È Bå4 ˆ Äq) å$ +È) Chehbouni [34] æi$ ¹º7

*  ./ i (6)4 x` æi$ „$ P -U7;(æËP, r2=0.997), i (6) J +ÈE ,rÄ»Å7* 2Är å$ Fig. 7

‚ƒ VíàU.. ™, Ví ¹{ x i (6) J +ÈE ,r Ä»Å7* 2Är åI` ÈBå4 ×` ÊN VíàU..

(6)

® >C ÈB µ J=E âÄ»r ) { Þ@

"#4 ,rÄ»Å7* 2Är )  "#` Y ghi

>  no { hvno  ƒÆÇ ÌB µ no  ËN Q) ‰) H?* ¶\Ó P -.. ‹ ¡, Ví æi I$ ®z«* ,9 TE NiO/bentonite sH âÄ»r

 µ ,rÄ»Å7* 2Är ) æiI` ® > ¿ 3Q àC âÄ»r{ ,rÄ»Å7* 2Är$ +È

‡ q\Ó P -.. )O ® >C ,9 P) ,rÄ»Å7*

2Är ) Þ@ "#$ ,9 QJC ,, ,Þ ÆÇ

C ƒ D) ghĻŠ¿ˆÊ щ.. ® >C ÈBE ¿É4I$ ¹º7* …  ž 50 kW Q§ 2R ÞghĻŠz

« Y ghi >  ) Ë{ ¨ wpØ +B;,

 ˆÊN \t ,rÄ»Å7* 2Är ±Ê Þ@ "#

$ ÈBb P -$ 67* E..

4.  

Y ghi >  no { hvno  ƒÆÇ ÌB µ ËN Q) ® H?* \ QJ SsH5 NiO/bentonite sH âÄ»r ±Ê  µ Þ@ "#4 ,rÄ»Å7

* 2Är ±Ê  "#$ ÈB µ J=ä.. ® >

¿3QC „pk Éÿ$ ‰St ./4 x..

(1) NiO/bentonite sH âÄ»r { Þ@ ˜‚

ڊ –ä7; ,rÄ»Å7* 2Är`  ˜‚ Ú

Š ˜ä.. âÄ»r{ ,rĻŠ2Är ) ‹ 

˜ Úu ,rÄ»Å7* 2Är ˜”#$ +Èb P -U 7V ÈBå4 šN ¡ä..

(2) ® > ¿3Q àC NiO/bentonite sH âÄ»r

{ ,rÄ»Å7* 2Är$ +È QJ ÈBå4 ˆ Äq) å$ +È ‹ æi$ ® z«*  PBE æi$ T

ä.. TE æi` ÈBå$ Äq~ +Èb P -U..



Ar : archimedes number, ρgpg)gdp32 [−] dp : particle diameter [m]

Dt : column diameter [m]

g : gravitational acceleration [m/s2] Gs : solid circulation rate [kg/m2s]

k1 : constant in Eq. (3) [−] k2 : constant in Eq. (3) and (4) [−]

Remf : reynolds number at minimum fluidization velocity [−]

Retr : reynolds number at transition velocity to fast fluidization, dpUtrρg/µ [−] Umf : minimum fluidization velocity [m/s]

Umf : minimum fluidization velocity [m/s]

Us : velocity of the solids [m/s]

Utr : transition velocity to fast fluidization [m/s]

 

ε : void fraction in a bed [−]

εmf : void fraction in a bed at minimum fluidization condition [−] µ : gas viscosity [kg/m-s]

ρg : gas density [kg/m3]

ρp : apparent particle density [kg/m3] φs : sphericity of particle [−]



1. Mimura, T. H., Shimayoshi, H., Suda, T., Iijima, M. and Mituoka, S.,

“Development of Energy Saving Technology for Flue Gas Carbon Dioxide Recovery by Chemical Absorption Method and Steam Sys- tem in Power Plant,” Energy Convers. Mgmg., 38, S57-S62(1997).

2. Herzog, H. J. and Drake, E. M., “Long-Term Advanced CO2 Capture Options,” IEA/93/0E6, IEA Greenhouse Gas R&D Programme, Chelten- ham, UK(1993).

3. Akai, M., Kagajo, T. and Inoue, M., “Performance Evaluation of Fossil Power Plant with CO2 Recovery and Sequestering System,” Energy Convers. Mgmt, 36, 801-804(1995).

4. Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisma, S., “The Characteristics of Pulverized Coal Combustion in O2/CO2 Mixture for CO2 Recovery,” Energy Convers. Mgmt., 36, 805-808(1995).

5. IEA Greenhouse Gas R&D Programme Report, “Greenhouse Gas Emissions from Power Stations,” available on http://www.ieagreen.org.

uk/sr1p.htm(2000).

6. IEA Greenhouse Gas R&D Programme Report, “Carbon Dioxide Capture from the Power Stations,” available on http://www.ieagreen.org.uk/sr2p.

htm(2000).

7. Wolf, J., Anheden, M. and Yan, J., “Performance Analysis of Com- bined Cycles with Chemical Looping Combustion for CO2 Capture,”

Proceedings of 18th Pittsburg Coal Conference, December 3-7, new- castle, NSW, Australia, session 23, CD-ROM(2001).

8. Ishida, M. and Jin, H., “A New Advanced Power-Generation System Using Chemical-Looping Combustion,” Energy, 19(4), 415-422(1994).

9. Hatanaka, T., Matsuda, S. and Hatano, H., “A New-Concept Gas-Solid Combustion System MERIT for High Combustion Efficiency and Low Emissions,” Proceedings of the Thirty Second IECEC, 1, 944- 948(1997).

10. Ryu, H. J., “CO2-NOx free Chemical-Looping Combustion Technology,”

Retr 0.0428Ar0.5866 Dt dp ---

  0.5208

=

(8)

KOSEN Advanced Technology Report, available on http://www.

kosen21.org(2003).

11. Shin, B. C., Koh, Y. B. and Kim, S. D., “Hydrodynamics and Coal Combustion Characteristics of Circulating Fluidized Beds,” HWA- HAK KONGHAK, 22(5), 253-258(1984).

12. Han, G. Y., Lee, G. S. and Kim, S. D., “Hydrodynamic Characteris- tics of a Circulating Fluidized Bed,” Korean J. of Chem. Eng., 2(2), 141-147(1985).

13. Ryu, H. J., Lim, N. Y., Bae, D. H. and Jin, G. T., “Carbon Deposi- tion Characteristics and Regenerative Ability of Oxygen Carrier Par- ticles for Chemical-Looping Combustion,” Korean J. of Chem. Eng., 20(1), 157-162(2003).

14. Botterill, J. S. M. and Teoman, Y., “Fluid-Bed Behaviour at Elevated Temperatures,” in Int. Fluidization Conf., edited by Grace, J. R. and Matsen, J. M., Plenum Press, New York, 93-100(1980).

15. Botterill, J. S. M., Teoman, Y. and Yuregir, K. R., “The Effect of Operat- ing Temperature on the Velocity of Minimum Fluidization, Bed Voidage and General Behaviour,” Powder Technology, 31, 101-110(1982).

16. Ergun, S., “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., 48, 89-94(1952).

17. Wen, C. Y. and Yu, Y. H., “A Generalized Method for Predicting the Minimum Fluidization Velocity,” AIChE J., 12, 610-612(1966).

18. Ryu, H. J., “Slug Characteristics and Transition Velocity to Turbu- lent Fluidization in Gas Fluidized Beds,” Ph.D. Dissertation, Konkuk University, Seoul(2000).

19. Leva, M., Fluidization, McGraw-Hill, New York(1959).

20. Goroshko, V. D., Rozembaum, R. B. and Toedes, O. H., “Approxi- mate Relationships for Suspended Beds and Hindered Fall,” Izvestiya Vuzov, Neft'i Gaz, 1, 125(1958).

21. Bena, J., Chemchy Prumysl, 10, 285(1960).

22. Baeyens, J. and Geldart, D., Int. Symp. on Fluidization, Toulouse, 182(1973).

23. Knowlton, T. M., “Pressure and Temperature Effects in Fluid-Parti- cle System,” in “Fluidization VII,” edited by Potter, O. E. and Nicklin,

D. J., Engineering Foundation, New York, 27-46(1992).

24. Bae, D. H., Ryu, H. J., Shun, D., Jin, G. T. and Lee, D. K., “Effect of Temperature on Transition Velocity from Turbulent Fluidization to Fast Fluidization in a Gas Fluidized Bed,” HWAHAK KONGHAK, 39(4), 456-464(2001).

25. Tsukada, M, Nakanishi, D. and Horio, M., “The Effect of Pressure on the Phase Transition from Bubbling to Turbulent Fluidization,” Int. J.

Multiphase Flow, 19(1), 27-34(1993).

26. May, W. G. and Russel, F. R., Paper Presented at the North Jersey Section of the A.C.S., Jan(1954).

27. Zenz, F. A. and Weil, N. A., “A Theoretical-Empirical Approach to the Mechanism of Particle Entrainment from Fluidized Beds,” AIChE J., 4, 472-479(1958).

28. Chan, I. H. and Knowlton, T. M., “The Effect of Pressure on Entrain- ment from Bubbling Gas-Fluidized Beds,” in “Fluidization,” Proc.

4th Int. Conf. on Fluidization, edited by Kunii, D. and Toei, R., Engineering Foundation, 283-290(1984).

29. Knowlton, T. M., Findlay, J. and Sishtla, C., “Attrition and Entrain- ment Studies Related to Fluidized-Bed Gasifiers,” Final Report for U.S. Dept. of Energy, DE-AC21-85MC22061(1990).

30. Lee, G. S. and Kim, S. D., “Bed Expansion Characteristics and Tran- sition Velocity in Turbulent Fluidized Beds,” Powder Technology, 62, 207-215(1990).

31. Perales, J. F., Coll, T., Llop, M. F., Puigjaner, L., Arnaldos, J. and Cassal, J.,

“On the Transition form Bubbling to Fast Fluidization Regimes,” in

“Circulating Fluidized Bed Technology III,” edited by Basu, P., Horio, M.

and Hasatani, M., Pergamon Press, New York, 73-78(1990).

32. Bi, H. T. and Fan, L. S., “Existence of Turbulent Regime in Gas-Solid Fluidization,” AIChE J., 38(2), 297-301(1992).

33. Adanez, J., de Diego, L. F. and Gayan, P., “Transport Velocities of Coal and Sand Particles,” Powder Technology, 77, 61-68(1993).

34. Chehbouni, A., Chaouki, J., Guy, C. and Klvana, D., “Effets de Dif- ferents Parametres Sur Les Vitesses de Transition de la Fluidisation En Regime Turbulent,” Can. J. Chem. Eng., 73, 41-50(1995).

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

LV systolic and diastolic dyssynchrony index was determined as the difference of time interval from QRS onset to peak systolic velocity and peak early diastolic velocity

Bubble drift velocity from the bed collapse technique in three-phase fluidized beds.. SungSoo Park, SeokMin Kang, Gui Young Han, DongHyun Lee * , and Sang Dong Kim 1

Measured transition velocity from turbulent to fast fluidization increased with increasing temperature.. The previous correlations on transition velocity to fast

Abstract − The wall erosion characteristics of a circulating fluidized bed reactor(0.25 m-L×0.62 m-W×10 m-H) was observed with various operating conditions, such as

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them