• 검색 결과가 없습니다.

VÚ Fÿ[öB Ò ßWö &‚ Nê~ 'Ë

N/A
N/A
Protected

Academic year: 2022

Share "VÚ Fÿ[öB Ò ßWö &‚ Nê~ 'Ë"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

VÚ Fÿ[öB Ò ßWö &‚ Nê~ 'Ë

fÖÁ^'SÁ‚;êÁfçî*Á¶Ò›**

š“&v z"

*‚“"VFö z"

**‚“ö.æVF’ö

(2001j 5ú 15¢ 7>, 2001j 7ú 24¢ j)

Temperature Effect on the Slug Properties in a Gas Fluidized Bed

Tae-Woo Kim, Young-Sub Moon, Jeong-Hoo Choi, Sang-Done Kim* and Jae-Ek Son**

Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea

*Department of Chemical Engineering, KAIST, Daejeon 305-701, Korea

**Korea Institute of Energy Research, Daejeon 305-343, Korea (Received 15 May 2001; accepted 24 July 2001)

º £

VÚ Fÿ[öB ‚² Òk ³êf Ò ßWö ~º [ Nê~ 'Ëj –Ò~V *~ *V‚ &>º N F ÿ[(0.1 m i.d., 2.1 m height, 12 kw)öB FCC «¶(ï «ã 0.071 mm, «¶ &ê 1,600 kg/m3)¢ ÒÏ~ F³, [ Nê

~ æzö Vž ‚² Òk ³êf Ò ßW(Ò çß ³ê, Ò ^š, Ò nê)j G; 5 V~&. Fÿ z Vڂº V¢ ÒÏ~&. VÚ F³f ‚² Fÿz ³ê‚¦V 0.15 m/sræ, [ Nêº 25oC¦V 400oCræ æz

;~&. [ Nê& Ã&Žö V¢ ‚² Òk ³êf Ò ^šº Ã&~&b–, Ò nêº 6²~º ãËj ¾æ Úî. Ò çß ³êº [ Nê& Ã&Žö V¢ Ã&~&b–, [ Nê& JB Ò çß ³êö &‚ ç&j B

~&.

Abstract−In order to understand the effect of temperature on slug properties, the onset velocity of slugging and slug prop- erties(slug rising velocity, slug length, slug frequency) have been measured with variations of gas velocity and temperature in a electrically heated gas fluidized bed(0.1 m i.d., 2.1 m height, 12 kw). Air was used as fluidizing gas and FCC particle(specific surface mean diameter: 0.071 mm, apparent density: 1,600 kg/m3) as bed material. The gas velocity was varied from minimum fluidizing velocity to 0.15 m/s and the bed temperature from 25oC to 400oC. The bubble or slug properties were measured with the differential pressure method using two differential pressure transducers connected with a couple of adjacent pressure taps, respectively. As the bed temperature increased, the minimum slugging velocity, slug rising velocity, and slug length increased whereas the slug frequency decreased. A correlation for the slug rising velocity, which expresses the effect of bed temperature, was proposed.

Key words: Temperature, Slug, Properties, Gas, Fluidized-Bed

1. B †

VÚ Fÿ[~ ªÖ6öB WB Vº çß~šB B‚~ Ïòö

~šB Ú>Ú WË~–, F³š Ã&Žö V¢ V ’V& Ã&~

 îŽÚ V~ ç㚠[ çã" ?jæº *çj šº–, š¢ Ò

k(slugging)š¢ ~– B‚ V~ ;¢ Ò(slug)¢ ‚.

Òk Fÿ[ 'öBº V Fÿ[ö jš [~ ¢‚ bš

&~>Ú >wV WË~ &~& .¾>–, &; Fÿ[ >wV~ ãÖ öº Ò& [j Û"~šB ¢Ú¾º {K ºÿö ~š >wV J jö Vê'ž ÏϚ &šæº 7º‚ 6š ®. ‚Þ ; BB 

öBº Òk 'š z® ;WB. Ö"'b‚ çÏ Fÿ[ >wV öB Òk~ Bj Oæ~V *šB _f BBB ²Î Fÿ[ >

wV~ '.‚ scaleupj *šBº Òk '~ vª ßWö &‚ š

Òk '~ vª ßWö &‚ ššº V'b‚ Òk *ç~

· ³ê, Ò nê, Ò ^š, Ò çß³ê ~ Ò ß

To whom correspondence should be addressed.

E-mail: choijhoo@konkuk.ac.kr

(2)

z B39² B5^ 2001j 10ú

¢ Bž~š Îv çNöB «¶ßW, [ çã, G; ¸š~ 'Ëö &

šB >¯>î[1, 3-7]. Fatahf Flamant[2]º çã 0.1 m~ Fÿ[öB

«¶ ’V 1.18-3.57 mm, «¶ &ê 3,950kg/m3~ «¶(Geldart classification,

D)¢ ÒÏ~ 20-700oC~ Nê æzö Vž ‚² Òk ³ê~ æz

¢ G;~& Nê& Ã&Žö V¢ ‚² Òk ³ê& 6²~º © b‚ ~&.

Ò nêö &šB B ’º &¦ª çNöB «¶ßW, [ çã, Fÿ[ ¸š, G; ¸š, F³, VÚ ªVV~ 'Ëö &šB >¯

>î[1, 3, 7-14]. Ò çß ³êö &‚ Vš~ ’ê "‚ çN öB F³, «¶ ßW, [ çã, Fÿ[ ¸š ~ æ>¢ J~&b–

[9-11, 13-19], Ò ^šö &‚ Vš~ ’ê "‚ çNöB F³,

«ê, [ çã, G; ¸š, Fÿ[ ¸š ~ 'Ëj J~&[7, 9, 11, 13, 20-22]. V¢B Ò nê, çß ³ê, ^šö &‚ Vš~ ç&öB Nê~ 'Ëf Û'b‚ ‚² Fÿz ³ê~ “b‚ò JF > ® º ;êš.

 ’º B Fÿ[ >wV~ –ë –šž N 'öB ‚² Ò

k ³êf Ò ßW~ö &‚ Nê~ 'Ëj V~º ©j Ï' b‚ >¯>î. Òk Fÿ[ 'öB Nêf F³ö Vž ‚² Ò

k ³êf Ò ßW(Ò ^š, Ò nê, Ò çß ³ê)~

2. þ

 ’ö ÒÏB Fÿ[ þ Ë~~ BÛ'ž vªêº Fig. 1ö ¾ æ¾ ®. Fÿ[f Úã 0.1 m, vþ 0.006 mž Êrž.Ê(SUS 316)

&b‚ B·>îb–, ¸š 0.5 mÜ2 ea, 0.58 m, 0.38 m, 0.04 m ' 1 B¢ 2Âæ‚ Ö~ C ¸š& 2.1 m& >êƒ ~&. [ & Ë

~º Ïï 6 kw(Max. 800oC) Ïj <º öÛ; Ö®V 2B¢ Ò Ï~&b–, Fÿ[~  ¶j ‚²z~V *šB Fÿ[~ žãf ceramic wool(vþ 150 mm)‚ ~&. Fÿz VÚº plenum(SUS 316) ö *~‚ >ï&(32 mm-I.D.)b‚ "«>êƒ ~&. ªVV(distributor) º multi-tuyere ;b‚ çã 20 mm tuyere 4Bö '' 3 mm JÒbÊ 12B¢ V~~&b– «¶~ Û"¢ Oæ~V *š Ú(ASTM 200 mesh)

¢ z~.

VÚ Â’(0.05 m I.D.)º ªÖ6b‚¦V 1.97 m ¸šö *~~–, V Úº çR‚ ÖB 1, 2N Қš†(standard proportion: ''~ Úã f 0.1, 0.075 m)" WjV(çëÏ Nomex filter)¢ –öB &V‚ VÂ

>êƒ ~&. Fÿz Vڂº V& ÒÏ>îb–, 75 Nm3/h(15 hp)

~ Ïïj <º {»V‚ />, {K –.V(regulator)f >ª B–

Ï prefilter¢ –‚ ê, Fïê(10, 1, 0.12 Nm3/hr)‚ ;ï>Ú Fÿ[ö

/>î.

Fÿ[~ » OË {K ª¢ G;~V *š ªÖ6b‚¦V 14B(−0.05,

0.02, 0.10, 0.15, 0.24, 0.29, 0.335, 0.385, 0.48, 0.53, 0.58, 0.835, 1.29, 1.97 m)~ {K6j v {K æ~Vf Ö~&. » OË Nê ª

º ªVV‚¦V ¸š −0.05, 0.02, 0.10, 0.53, 0.84, 1.29, 1.97 mö J~B K-;(chromel-alumel) *&(thermocouple)f datalogger(Molytech, Model 2702)ö ~šB ³'b‚ G;>î. Fÿ[ö J~B {K6öB~

{K ^º N{; {K æ~V(differential pressure transducer, Validyne, Model P24D; ±1400, ±560, ±200, ±100 mmH2O)¢ ÒÏ~ *{(−5 V~

+5V)-* ^‚ :ÞÚ ¶ò >÷ê(data acquisition system, real time devices Inc. Model AD2110)¢ –öB PCö &Ë>î. {K ºÿ 

^º 100 Hz~ "2>‚ 100. ÿn 10,000B~ ¶ò¢ >÷~&. F ÿz çöB Fÿ[ Ú¦~ {K ª& n;>, [ Ú Nê ª&

Fÿ[Ú «¶~ ;[ ¸šº 0.8 m‚ Fæ>î. [ b >

w~æ pf FCC «¶¢ ÒÏ~&b–, «¶~ apparent densityº 1,600 kg/m3, bulk densityº 847 kg/m3šî. R«‚ j’Ú çN Fÿ[ö B G;B ‚² Fÿz çöB [ †f 0.47šî. «ê ªº

"‚ 0.15 mm š~‚ «êê Z² ªNj J‚ j‚š' ï «ê (specific surface mean diamter)º 0.071 mmšî. Geldart ª~ö ~ Baeyensf Geldart[1]~ ç&ö ~~š  þ~ Fÿ[öB Ò

& W>º ¸šº ªÖ6b‚¦V 0.19 mš, Úö ~‚ W˚

Z²ê n;'ž Ò& ;W>º ¸šº 0.8 mš–, ¸š 0.19 m¦

Fig. 1. Schematic diagram of the experimental setup.

1. Air compressor 19. Diverter

2. Filter 10. Sample pot

3. Pressure regulator 11. Rotary valve

4. Flowmeter 12. Heater

5. Electrically heated fluidized bed 13. Differential pressure transducer

6. Cyclone 1 14. A/D converter

7. Cyclone 2 15. Personal computer

8. Bag filter 16. Data logger

Table 1. Size distribution of FCC

Sieve size range[µm] −425+300 −300+212 −212+150 −150+106 −106+75 −75+53 −53+0

Weight fraction 0.004 0.006 0.015 0.172 0.450 0.244 0.109

(3)

Bº ¸š 0.335 mf 0.385 m, 0.48 mf 0.53 m~ {K6ö N{ æ~

V¢ '' Ö~(ï ¸š 0.433 m) Ò ßW~ G;j >¯~

G;B ç~ {K ºÿ ^º Ò ßW~ êÖö „BB *¾Ò

>î. b& *Ú ^(100 s)¢ 10B~ ’*b‚ ¾*Ú ' ’*öB

‚² ¶ß»ö ~‚ F; ²æ ªC(linear regression)j >¯~ š¢

šÏ~ ^~ ãËWj B–š "î. ãËWš B–B ' ’*~

^º V& *{(base line) šç~ –&ç(emulsion phase)" š~~

Vç 6º Òç(bubble phase or slug phase)b‚ ’ª>î. V

& *{(base line)f V 6º Ò ^f Úç~ ^& «{~

² ’ªF > ®êƒ ' ’* ^~ ï8b‚ Ö;~&. {K 

^ö ®ÚB V& *{(base line)ö f *(0.03 s š~) ÿn Ú

ž~º ^º Çr(noise)b‚ *">Ú B–>î.

V _f Ò nêº *¾ÒB ç~ {K æ~V ^öB V

6º Ò çö ³~º ^~ * * ï>‚ êÖ>î. Ò

 çß ³ê(Us)º *¾Ò Ñ êöB ãËWò B–B ç~ {K

^~ cross-correlation functionj êÖ~  8š ‚&& >º *

j ï * æ(time delay, td)b‚ b& Ö;~, ç~ N{ G;6 Қ~ –Ò(0.145 m)¢ td‚ ¾*Ú(Us=0.145/td) Ö;~&[16, 19]. Ò

 ^šº Ò çß ³êf {K6š Òf 7/‚ *~  b‚ êÖ>î. Òf 7/‚ *f ç~ ^öB Ò çö

³‚ C* *j C* Ò >‚ ¾*Ú ‚ B~ Ò çö ³~

º ï *b‚ êÖ>î.

3. Ö" 5 V

3-1. ‚² Fÿz ³ê

Fig. 3f  Fÿ[~ Nê¢ æzʖ G;B ‚² Fÿz ³ê¢

¾æÞ. ‚² Fÿz ³êº Nê& Ã&Žö V¢ 6²~º ãËj

¾æÞ. çNb‚¦V 100oC‚ [ Nê& Ã&† r &Ë /ς 6

²¢ ¾æÚî.  ’öB ÒÏB FCCf ?f ^ «¶(Geldart group A, B «¶)~ ãÖöº «¶ö ·Ï~º 6WK(viscous force) “

š &WK(inertia force) “ö jšB æV'šV r^ö ‚² Fÿz ³ êº Nê& Ã&Žö V¢B 6²~º ãËj š² B[23].

3-2. ‚² Òk ³ê

Fig. 4º ‚² Òk ³ê¢ Ö;~º ‚ .‚ [ Nê 200oC~ ãÖö F³j Ã&ʖ G;B V _f Ò nê~ æz¢ ¾æÚ

®. V 6º Ò nêº F³š Ã&Žö V¢ Ã&~ ‚& 8 ö ê‚ ê 6²~º ãËj ¾æÚ ®. V Fÿ[ 'öBº F³š Ã&~š "¯ Vïš Ã&~ V nê& Ã&‚. ê³ 'b‚ F³š Ã&~š V ’V& Ã&>Ú [š Ò 'ö ê

>, Ò 'öBº F³š Ã&Žö V¢B Ò nê& 6

²~º ãËj ¾æږ, V _f Ò nê& ‚& 8j ¾æÚº F³j ‚² Òk ³ê‚ ;‚[1-3].

Fig. 5º G;B ‚² Òk ³ê¢ [ Nêö V¢ ¾æÞ. ‚²

Òk ³êº [ Nê& Ã&Žö V¢B Ã&~º ãËj ¾æÚî Fig. 2. Typical differential pressure fluctuation signals from the lower

and upper differential pressure transducers(Tb=100oC).

Fig. 3. Temperature versus measured minimum fluidizing velocity.

Fig. 4. Gas velocity versus bubble or slug frequency(Tb=200oC).

(4)

z B39² B5^ 2001j 10ú

«¶~ ãÖö ‚² Fÿz ³êº [ Nê& Ã&Žö V¢B 6²~

º ãËj ¾æÚî(Fig. 3). Choi [24]~ ö ~~š ‚² Fÿ z ³ê& 6²~š V~ ªê(breakage) nê& Ã&~ V~ ’ V& ·jæ–, Ö"'b‚ Ò& Â*~º ‚² Òk ³êº Ã

&~² B. ‚Þ Fatahf Flamant[2]º çã 0.1 m~ Fÿ[öB «¶

’V 1.18-3.57 mm, «¶ &ê 3,950 kg/m3~ «¶¢ ÒÏ~ 20-700oC

~ Nê æzö Vž ‚² Òk ³ê~ æz¢ G;~&b–, Nê&

~ [ «¶º ï «ã 2.375 mm‚ Geldart D «¶ö ³~º – «¶

š–, š «¶~ ‚² Fÿz ³êº «¶ö ·Ï~º 6WK(viscous force)

“º &WK(inertia force) “š R æV'šÚB Nê& Ã&Ž

ö V¢ Ã&~² B. Choi [24]~ ö ~~š ‚² Fÿz ³ ê& Ã&~š V~ ªê nê& 6²~ V~ ’V& æ–, Ö

"'b‚ Ò& Â*~º ‚² Òk ³êº 6²~² B. Ö"

'b‚  ’~ Fÿ[" Fatahf Flamant[2]~ Fÿ[f ‚² Fÿ z ³êf ‚² Òk ³êö ®ÚB Nê~ æzö &šB B‚ >&

Fig. 5º Vš~ ç&[1-7]‚ .G>º ‚² Òk ³êf  

’öB G;B 8~ jvê ¾æÞ. âöB ¾æÚº ©" ?š j vB Î Vš~ ç&f  ~ Ö"f ç>B Nê 'Ëj ¾

b‚º ‚² Òk ³êö &‚ Nê~ 'Ëj ¾æâ > ìrj 

&.

3-3. Ò çß ³ê

Fig. 6f Òk 'öB Ò çß ³ê¢ [ Nêf F³~ æz

ö V¢ ¾æÞ. Ò çß ³êº F³š Ã&Žö V¢B Ã&~

–, [ Nê& Ã&Žö V¢B Ã&~º ãËj ¾æÚî. ¢;‚ [ NêöB F³~ Ã&º "¯ VÚ ³ê(U-Umf)¢ Ã&ʖ V¢B Ò çß ³êº Ã&B. ¢;‚ VÚ F³öB [ Nê& Ã&~

š ‚² Fÿz ³êº 6²~– £*~ "¯ VÚ ³ê(U-Umf)~ Ã&

Î"& ®. 6 Choi [24]~ ö ~~š ‚² Fÿz ³ê& 6

²~š î'b‚ "¯ VÚ ³ê(U-Umf)~ Ã& Î"& ®j > ®.

Ö"'b‚ šf ?f 'ž Î"ö ~šB Ò çß ³êº Ã

&~º ©b‚ ÒòB.

Fig. 6öBº Vš~ ç&ö ~šB êÖB Ò çß ³êf 

’~ G;8" jv~ ‚ .‚  G;8" &Ë "7‚ 8j .G~

f Fan[10], Fan [16], Leef Kim[19]~ ç&f Nê 'Ëö ®

[9, 11, 13, 15, 17, 18]f  ’ Ö"f ?š Nê& Ã&Žö V¢ Ò

 çß ³ê& Ã&~º ãËj ¾æÚî. ¾ â~ .öB

¾æÚº ©" ?š jvB Î ç&b‚ .G>º Nê~ 'Ëf

NöB G;B 8j V>b‚ áÚr, Nê~ '˚ ‚² Fÿz ³ ê “òb‚ ‚*>V r^b‚ Òò>î.

Fig. 7f (U−Umf)f (Us−0.35 )~ &ê¢ ¾æÞ. âöB ¾ æÚº ©" ?š(Us−0.35 )º (U−Umf)~ æzö V¢ –~ F;

b‚ Ã&~º ãËj ¾æږ  VÞVº Nê& Ã&Žö V¢ Ã

&~&. Fig. 8f (U−Umf)f (Us−0.35 ) Қ~ &êöB VÞV gDt

gDt

gDt Fig. 5. Bed temperature versus minimum slugging velocity. Symbol:

values measured in this study, lines: correlations. −: Stewart and Davidson[4], …: Baeyens and Geldart[1], ---: Broadhurst and Becker[5], −−−: DiMattia et al.[3], −−−: Fatah and Flamant[2],

−·−: Luca et al.[7], −··−: Lee and Kim[6].

Fig. 6. Gas velocity versus slug rising velocity. Symbols: values measured in this study, lines: correlation of Dry et al.[17].

Fig. 7. U−Umf versus Us−0.35 gDt.

(5)

k1j Nêö V¢ ¾æÞ. âöB ¾æÚº ©" ?š k1f Nê~

æzö V¢ –~ F;b‚ Ã&~&. Ö"'b‚ Nê~ Ã&ö V

ž Ò çß ³ê~ Ã&öº öfb ç~ Ú –ÿ ßW~ æz '˚ Ž>º ©b‚ Òò>î. Nê~ '˚ JB Ò ç

where Tb=bed temperature[oC] (1)

çN(25oC)öBº Us=1.2(U−Umf)+0.35 ‚ Vš~ ç&[25]"

FÒ~&.

3-4. Ò ^š

Fig. 9º Ò ^š¢ [ Nêf F³~ æzö V¢ ¾æÞ. Ò

 ^šº ² Vf ®b¾ F³š Ã&Žö V¢B Ã&~, [ Nê& Ã&Žö V¢B Ã&~º ãËj ¾æÚî. ¢;‚ [ Nê öB F³~ Ã&º "¯ VÚ ³ê(U−Umf)¢ Ã&BB Ò çß

³ê& Ã&B(Fig. 6). Ò çß ³ê~ Ã&º ç~‚ ž7‚ Ò

 7 ÊVšº Ò~ ç& ³ê¢ Ã&BB Ò Қ~

Ú¢ Ã&Ê  Ö" Ò ^š¢ Ã&ʺ ©b‚ ÒòB . ¢;‚ VÚ F³öB [ Nê& Ã&~š Ò çß ³êº Ã

&>–(Fig. 6), *f ?f Î"‚ Ò Қ~ Ú¢ Ã&BB Ò

~ ^š¢ Ã&ʺ ©b‚ ÒòB. ‚Þ Nê& 200oCöB 300oC‚ Ã&† r Ò ^š& ß® z ’² Ã&~º ãËj š

º–  þ~ Ö"òb‚º  šF¢ ;{~² šC~Vº ÚJÚ

©b‚ Òò>–, š ’*öB Ò~ çß ³ê& z ’² Ã&~º

©(Fig. 6)ö '˚ ®º ©b‚ FºB.

Fig. 9öBº Vš ç&b‚ êÖB Ò ^šf  ’~ G;

8" jv~ ‚ .‚  G;8ö &Ë "7‚ 8j .G~º Nakamura

þÖ"f >&‚ Nê& Ã&Žö V¢ Ò ^š& 6²~º ãË j ¾æÚîb–, Luca [7]" Lee[13]~ ç&f  þ º*öB r~ 8j ¾æÚÚ 'Ï º*& B‚Nj r > ®î. <~ ç&

^š& Ã&~º ãËj ¾æÚîb¾ âöB "º ‚ .f ?

NöB >¯B þÖ"‚¦V áÚr, Nê~ '˚ B® ‚² Fÿz ³ê “òö ~šB ‚*>V r^b‚ Òò>î.

3-5. Ò nê

Fig. 10f Ò nê¢ [ Nêf F³~ æzö V¢ ¾æÞ. '

Fÿ[ NêöB Ò nêº ² Vš ®b¾ F³š Ã&Žö V¢ 6²~º ãËj ¾æږ, [ Nê& Ã&Žö V¢B 6²~&

º ‚B‚ Ò WË 'ö ³~V r^ö VÚ F³š Ã&Žö V

¢B Ò ^šº Ã&~(Fig. 9) >šö Ò nêº 6²~º

©b‚ ÒòB. ‚Þ Nê& Ã&~º ãÖöê Ò ^š& Ã&

~(Fig. 9) Ò nêº 6²~º ©b‚ ÒòB.

Fig. 10öBº Vš~ ç&b‚ êÖB Ò nêf  ’öB

G;B 8~ jv~ ‚ .‚  Ö"f &Ë "7‚ 8j .G~º Nakamura

[9]~ ç&"~ jvê ¾æÞ. Baeyensf Geldart[1], DiMattia

[3], Verloopf Heertjes[8], Noordergraaf [12]~ ç&f Nê~

'Ëj .G† > ìî. âöB .‚ ¾æÚº :f ?š jvB ç

&[7, 9-11, 13]f  G; Ö"f FÒ~² Nê& Ã&Žö V¢B Ò nêº 6²~º ãËj ¾æÚî. ¾ ç&š .G~º Us=(0.01Tb+0.97)(U U– mf)+0.35 gDt

gDt Fig. 8PP Bed temperature versus k1.

Fig. 9. Gas velocity versus slug length. Symbols: value measured in this study, lines: correlation of Nakamura et al.[9].

Fig. 10. Gas velocity versus slug frequency. Symbols: value measured in this study, lines: correlation of Nakamura et al.[9].

(6)

z B39² B5^ 2001j 10ú

‚² Òk ³êº [ Nê& Ã&Žö V¢B Ã&~&. Nê~ Ã

&ö Vž ‚² Òk ³ê~ æz ãËf ‚² Fÿz ³ê~ æz ãË" >&~ ãËj ªj {ž~&. [ Nê& Ã&Žö V¢ Ò

 çß ³êf ^šº Ã&~&b¾ Ò nêº 6²~&. Ò

 çß ³êº Nêö F;b‚ jf~&. [ Nê& JB Ò

 çß ³êö &‚ ç&j B~&.

6 Ò

š ¢^f 1999jê ‚“Fê‹Ò~ ’jö ~~ æö>î Ûî(KRF-99-041-E00384).

ÒÏV^

Dt : column diameter [m]

g : gravitational acceleration, 9.8 [m/s2] k1 : coefficient [-]

Tb : bed temperature [oC]

td : average time delay between upper and lower signal [s]

U : superficial gas velocity [m/s]

Umf : minimum fluidization velocity [m/s]

Ums : minimum slugging velocity [m/s]

Us : average slug rising velocity [m/s]

^^ò

1. Baeyens, J. and Geldart, D.: Chem. Eng. Sci., 29, 255(1974).

2. Fatah, N. and Flamant, G.: “Velocity at the Onset of Slugging in Large Particle Fluidized Systems at High Temperatures,” in Fluidiza- tion and Fluid Particle Systems, Casal, J. and Arnaldos, J.(eds.), Uni- versitat Politecnica de Cataluya, Spain, 103(1990).

9. Nakamura, K., Masaaki, G. H. and Katsuhiko, H.: Kagaku Kogaku Ronbunshu, 2(6), 577(1976).

10. Satija, S. and Fan, L. S.: AIChE J., 31, 1554(1985).

11. Shichun, C., Heling, Z. and Feichen, J.: “A Study of Hydrodynamic Behavior of the Slugging Fluidized Bed,” in Fluidization, Kwauk, M.

and Kunii, D.(eds.), Elsevier, Amsterdam, 75(1985).

12. Noordergraaf, I. W., Van Dijk, A. and Van Den Bleek, C. M.: Pow- der Technology, 52, 59(1987).

13. Lee, S. H.: “Slug Properties in a Fluidized Bed of Polymer Pow- ders,” Master Thesis, Korea Advanced Institute of Science and Tech- nology, 1(1997).

14. Lee, S. H., Lee, D. H. and Kim, S. D.: Korean J. Chem. Eng., 18, 387(2001).

15. Lanneau, K. P.: Trans. Instn. Chem. Engrs., 38, 125(1960).

16. Fan, L. T., Ho, T. C. and Walawender, W. P.: AIChE J., 29, 33(1983).

17. Dry, R. J., Judd, M. R. and Shingles, T.: Powder Technology, 39, 69 (1984).

18. Clark, N. N., McKenzie, E. A. and Gautam, M.: Powder Technology, 67, 187(1991).

19. Lee, G. S. and Kim, S. D.: Korean J. Chem. Eng., 6, 15(1989).

20. Park, W. H., Kang, W. K., Capes, C. E. and Osberg, G. L.: Chem.

Eng. Sci., 24, 851(1969).

21. Matsen, J. M. and Tarmy, B. L.: Chem. Eng. Prog. Symp. Ser., 66(1), 1(1970).

22. Hovmand, S. and Davidson, J. F.: in “Fluidization,” Davidson, J. F. and Harrison, D.(eds.), Academic Press, Yorkshire, 193(1971).

23. Kunii, D. and Levenspiel, O.: “Fluidization Engineering,” 2nd ed., Bu- tterworth-Heinemann, 68(1991).

24. Choi, J. H., Son, J. E. and Kim, S. D.: Ind. Eng. Chem. Res., 37(6), 2559(1998).

25. Kehoe, P. W. K. and Davidson, J. F.: “Continuously Slugging Fluid- ized Beds,” CHEMECA’70, Inst. Chem. Eng. Symp. Ser., No. 33, Butter- worths, Australia, Melbourne, 97(1970).

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

LV systolic and diastolic dyssynchrony index was determined as the difference of time interval from QRS onset to peak systolic velocity and peak early diastolic velocity

Measured transition velocity from turbulent to fast fluidization increased with increasing temperature.. The previous correlations on transition velocity to fast

플록 구조의 측면에서 볼 때 폴리머를 일차 응집제로 사용하면 플록 강도와 크기가 향상되었지만, 다른 처리 옵션과 비교해 볼 때 플록 침전 속도에는 개선이 없었으며 유기 물질

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

To improve the adsorption capacity and to prevent the dissolution of chitosan in acidic medium, mechanical prop- erties and various modified chitosan have been