• 검색 결과가 없습니다.

 1.  Observation of Wall Erosion in a Circulating Fluidized Bed Reactor  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Observation of Wall Erosion in a Circulating Fluidized Bed Reactor   "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

    

  

  

(2001

Observation of Wall Erosion in a Circulating Fluidized Bed Reactor

Si-Moon Kim, Jong-Min Lee, Jae-Sung Kim, Euy-Hyun Kim and Jong-Jin Kim

Power Generation Laboratory, KEPRI, KEPCO, Daejeon 305-380, Korea (Received 17 September 2001; accepted 12 December 2001)

 

2 3 4 56, ! !7$ / ! $, %& 89 " :; - "< ,-= 3 >? @

Q6 HI >W [\ ]< 3 ^A BCD EFG . 4_, ` " J=  ! $ J . h4  Y   i?; 89 ?jk( =c l( mMA n(op S8Y  =c g 3

 R(A BCD EFG .

Abstract−The wall erosion characteristics of a circulating fluidized bed reactor(0.25 m-L×0.62 m-W×10 m-H) was observed with various operating conditions, such as fluidizing velocity, total solid inventory and primary to secondary air ratio. The ero- sion rate was affected by solid hold-up and solid circulation rate as well as fluidizing velocity which were varied due to oper- ating conditions. The wall erosion in dilute phase of the CFB riser increased with increasing solid hold up resulted from increasing of the fluidizing velocity and the primary to secondary air ratio. The erosion of the wall in dense phase increased with increasing fluidizing velocity although the solid hold up decreased with fluidizing velocity. The extent of erosion in the transition phase was somewhere in between the dense and the dilute phases. The erosion of the roof of the CFB riser increased with increasing solid circulation rate resulted from increasing the fluidizing velocity, total solid inventory and primary to sec- ondary air ratio. The middle part of the roof where the solid circulation rate was higher than that of the side part of the roof, showed the highest erosion rate. The erosion seemed to be serious at the area around the cyclone inlet duct due to the enlarged down flow of the solid particles at this area.

Key words: Circulating Fluidized Bed, Wall Erosion, Solid Hold-up, Solid Circulation Rate

1.  

(CFB)    - 

    ! "#$, %& ' ( )* 

'   +, -. & /0 1 234 567 8/

9 :; <=:>. :?   -

 @ 1 AB CDE FG # @ H"

?I 0J /&K: L M&(7 NO P GQR: 

+, /&K# ST(7 N7 /&K UV KW: FG #

X>. Y?E, Z[  \ +, /&K UV]^

O, L_` UV YJ a:bc ' `Q 9 UV 9: H

( N7 : G KW: dO N>[1, 2].

  /&K UV ef /&K `g, hg i T, jk jl, YJ mno Sj 9 p qr s >. /&Kt

)*I `g iT uv w\ x: 1 UVmyt )*

 " w\4 wz )* w\% 3%{ u] UV| }Cf 3% ~# € N#‚, jk ƒ\ ' /&K ƒ\ u]

To whom correspondence should be addressed.

E-mail: jmlee@kepri.re.kr

(2)

„_…: †T( ƒ\q‡(400oC)ˆO UV|: ‰>% Š

 ƒ\ ƒ Q‹# Œ UV| 3%% H( N>[3, 4].

, )* e  UV| Ž_ N7 )*%  wB, ‘ )* e ’ UV| “ "”f E•E ,, )*

% – wB UV|: }Cf ‰ 2µm: )* wB

 UV% “ "7EO P ~# € N>. )* †— N

UV Š  qr ›= ~# H( N>[3-5]. y, 

  Q L_`Qœ FQ /&K# ?E wz QR UV Y iT: Sj u] AB >ž †—4 H: ~#

 € N#‚, : G GŸ# wz, Sj Žw:]^O,   1¡ ¢= YJ /&Kt L_` a: £¡ ¢= ' /&K ¤¥

9: N ~# € N>[6-8].

y, :?  L  )* ' +, /&K UV

 2¦§ ¨/jl u]  ©ª ' )\ R@

YJ ª Ž_ 1 qr s 2 N#‚, :? Ž_ «

¬ # ¨/jl uv Ž_Qœ Y qr Œ*4 ­ ® 2 N>. i¯, G°V  H"? KJ ' OH2 N7 /

&K UV™± ²a AB ³´‘ FG UV\ µ¶T u ] KJ ' H2% ™±(7·5 >. Y?E, 2¦§ iT uv +, /&K UV G S AB ›f ™±(7 N#‚, :

¸ S  UV¹F N7 - 2¦§ iT : +, UV ›= qr ­º#‚, ¨/ jl uv FG UV\ ' iT R» 2±º>.

2.  

2-1. 

¸ S a;¼ 3½  loop4 ¾ ¿  «À<=

4 Fig. 1 E•LX>. ¸ ¿  <= ÁLÂ;# ¢z,

¬–(7 ¹` F; ¨/( N 1_¦  H"?4 V a ~# Y 2¦§ iT aT E•L ‘1 ? ¢zŽ

2 G ¢” 1_¦  H"?I "f º>[9, 10].

<= ST ef  QR(riser, cyclone, downcomer, loopseal,

FBHE)t à Ã} zQR, YJ ê ¬7QR ' Ħ Ŕ

QR# ST(7 N#‚, „(7 Æ( )* @Ç ‘1 Ç

™ <=4 ¢=º>.  QR  QR 1’ F ÈK[Riser, 0.25 m(L)É0.62 m(W)É10.0 m(H)], 3½ a:bc[Cyclone, 0.365 m(I.D.)É1.46 m(H)] ' `Q[Loopseal, 0.1 m(I.D.)] YJ %

¨Ê  loop Ë% # ¢=(7 N ÌQ & [FBHE, fluidized bed heat exchanger, 0.3 m(L)É0.3 m(W)É0.5 m(H)] ST(

7 N>. FÈK, `Q YJ ÌQ&  R„¡ bubble cap

•) ÍÎ: ¢=¼ R„¡ a;º>. ÃÃ} *jÏ Ð.

 ”ª jÏ Ñ)\Ò (7N#‚, "xà FÈK ÑR„

¡ 1 Ñ), :xà R„¡ ‘ 0.5 m C Ñ)S4  1 žÓ Å, ˜˜ 4½Ô ¢= Ñ)\Ò ST(7 N>.

Loopseal à R„¡ 1 Ñ)( Ñ_ ÃI dipleg

ÕÖ ×Ø{ ‘1 Ñ)( aeration(grease air) à EÙ7 ˜

˜ ”ª jÏ Ñ)\Ò ST(7 N>.

y,  +, UV ”\4 jk Ž2 u] ­ ‘ 1 Fig. 1 H ÚI Û: /, 7½, Å, 5½ ' Ü, 1½ Y J Ý<Q 3½4 ‘= ' : u] UVmy QÞº>(Table 1ßj). my `à a/ á«À 1 â m U V F—4 ã ­® 2 N »4 äåº#‚, »4 næŒç n è Q7 "”m é žêmë 5^ UV my FÈK +,

 ì L7 íB  ‹# my ” º>. UV my 

 +,ÕÖ qr ÑO P\Ò +,t î±f QÞº#

‚ :4 Fig. 2 E•LX>.

Fig. 1. Cold model circulating fluidized bed reactor.

Table 1. Position and size of the erosion sample plate

Sample plate Position(m) Size(W×L×t)(m)

Front 0.1-0.150 0.05×0.05×0.015

0.35-0.40 0.05×0.05×0.015

0.95-1.00 0.05×0.05×0.015

3.05-3.10 0.05×0.05×0.015

5.45-5.50 0.05×0.05×0.015

6.00-6.05 0.05×0.05×0.015

8.95-9.00 0.05×0.05×0.015

Rear 8.95-9.00 0.05×0.05×0.010

Side 0.95-1.00 0.05×0.05×0.015

3.05-3.10 0.05×0.05×0.010

5.45-5.50 0.05×0.05×0.010

6.00-6.05 0.05×0.05×0.010

8.95-9.00 0.05×0.05×0.010

Roof 10.00 0.10×0.10×0.010

10.00 0.10×0.10×0.010

10.00 0.10×0.10×0.010

(3)

 40 2 2002 4

2-2. 

¸ S  ¨/jl Ž_ uv  Ž_ ·

( +, UV qr ­*  Ž_  qr ›

= FÈK , "-:x à YJ / ª(solid inventory)

Ž_ uv UV my UV”\4 Ŕº>.

FÈK  a; hg )*(silica carbonate; dp=281µm, ρg= 2,800 kg/m3)% 1_¦  H"?I a ¹F H:

´‘Œ 1.9-3.8m/s4 ¢”º>[8]. "-:x Ã[PA/(PA+SA)] 0.8-1.0

´‘, YJ / ª 100-200 kg ´‘ Ž_4 Ñ7 Y q r ­º>. UV| » UV my áïf4 Ŕ Ü, ×

 «À jl 10m jkÜ ïf ‰ª# UV| Ŕ

º#‚, á UVmy F—4 ZG "f O ‘1 »

 ljƒ\(100oC) ' žêm(72m) 9 "f ¢”º>.

y, ¨/jl Ž_ uv FÈKL ¹F iT_

‘1  ©ª '  ª Ŕº>. L ˜ O‡ 

 ©ª z„ ‘ Ħx: FÈK(9½) ' downcomer(9½) YJ loopseal(15½) ˜˜ Ŕ PC * ð<(\Ò º

>. * ð<¼ Ħñ ˜˜ ‘= uv Ħx:4 z„ ‹ (1) a;  ©ª(ε) z„º>.

(1)

, Ħñ H” ' ²3 ‘1 ˜˜ Ħò manometer4

¢= m ó Ŕ  ô õº>. y,  ª

Ŕ ‘1 ˜˜ downcomer Õö ª slide valve4 :;

 "”mé sampling Y ž Ŕ ª ÷”º>.

3. 

Fig. 3 ¸ «À a;¼ hg G  ' / ª(inventory)

 uv  ©ª \m ~:>. Yø ù 2 Nú: :

3%{ u] ûÜF(dense phase)  ©ª üx ‰

, ýþF(lean phase)  ©ª üx 3% wr

 HÑ N>. :4  ©ª G1 log-plot ÷t Y qr

 Fÿ¯ E• ~ H,(Fig. 3LQ Y ßj) FÈK :

u] ûÜFt ýþF, YJ : q‡ /:(transition) q‡#

EÙ7  ©ª iT: >öf ­( N  2 N>. "

” ûÜF “ "”  ©ª OE 3

% u] üx ‰ wr HÑ N#‚, /:q‡ ' ýþF q‡ "” : u] ‰ wr HÑ N#

E,  G1 üx  ©ª: 3% wr E•>. , /:q‡ ' ýþF q‡  ©ª Ž_ G 

∆P

---L (1–ε) ρ( s–ρg)g gc

= ----

Fig. 3. Effects of fluidizing velocity and solid inventory on axial solid hold-up in the CFB riser; (a) 100 kg, (b) 150 kg, (c) 200 kg.

Fig. 2. Details of erosion sample plate.

(4)

ÏGñ  3% u] üx 3%{ ­® 2 NX#‚, :4 / FÈK  ©ª ‹# ¹, >t Û: E•

2 N>[9, 11].

(2) (3) where,

F ‹ (2)  ©ª "”  ©ª ¾ ûÜF q‡ ñ ›‚, ‹ (3) ûÜF :Ü q‡  ½ q

‡# E•L7 ˜˜ q‡ G O2 Kz4 F2 a ' K4 a

; E• FK‹:>[11, 12]. ûÜF  ©ª ' :, YJ

 ÆS  ©ª ñ  wB F ‹ (2)I (3)#Qœ FÈ K /  ©ª ¹® 2 N>.

 a ' K ˜˜ /:q‡ ' ýþF q‡  Ž _ , ¸ S ;¼ )* G1 Y )* e FK: >

t Û FK Kz% N H Ú N>[10, 13].

a · Uo/Ut=3.6 (4)

K · Uo/Ut=0.37 (5)

y, mnoL / ª 3% u] ûÜF q‡

:% 3%® 5 d ], "”  ýþF q‡  ©ª 3%\ ­(X>. : Û  ûÜF q‡  : 3%

Œ "xÃI  )*  \ 3% Œ1 E•E ¹ F# :1® 2 N>. :? : Œ1  ª\ 3% w r E•L ~# € N>[10, 14].

 3% uv  ª Fig. 4 E• ÚI Û: 3%

 u] O2 # 3%‚, log-plot# \mº wB óä #

 {  2 N>. , a:bc '  loop% 3½Œ ¸ mn

o wB, %¨Ê loop  ª: žÅ 1 1.5M 

H: N#‚, : žÅ, Sj x:üt Š7 FÈK

 flux% FG # %¨Ê %< e :>.

y, Fig. 3 E•  Ž_ uv +, UV ef U V my ‘= u] Fig. 5(Uo=3.2 m/s, inventory=150 kg) HŒ

ÚI Û:  QR UV†—% ­(X>.   ,  \%

AB , _ ¹F: AB CDf "7E ûÜF q‡

UV †—, UV myt hgt : >ž ˜\ YJ A B CDf "7E UV my , †F: AB ° †— U V% ­(X>[Fig. 5(a)].   /:q‡ UV †—

F ýþF q‡t  ûÜF q‡ wzO‡ iT: ã L

@¼ UV †— UV ”\ ûÜF q‡ ># p: "7E‚, Y †—  )* FÈÕÖt ÕÖ: x q‡# U Vmy , †F: ‘ d  V HÑ N>[Fig. 5(b)].

ÿ  FÈK 9 m Oü QÞ¼ my G ýþF q‡

 UV†—  )* û\% FG # d AB ›ÿ  , ‰¹F HÑ N>[Fig. 5(c)]. Fig. 5(d) FÈK Ý<Q R QÞ¼ UV my , ‰ HÑ N#‚, : FÈK Å , UVI 0J )* 2ó C  UV% Ñ "7E my ,: : †F HÑ N#‚, i¯, a:bc# MÆ (  r# %ˆ¨ ,(my !Å,): Š p UV4 H: ~#

 E•">.

/ ª(inventory=150 kg): "”® wB, ¨/  Ž_ Œ

 FÈK +, UV| Kz4 Fig. 6 E•LX>. Yø

ù 2 N ÚI Û:, FÈK +, UV| Ž_ Fig. 3 

 ©ª R@ wrt AB a{  2 N>. #, ûÜF q‡

 UV| H:‚, µ /: q‡ :  UV| µ”\

 ñ ¾ ~# ­(X>. , : 3%{ u] /:q‡

εssd, for h H< d

εs=(εsd–εHX)ea h H( d)eixteK H( exith), for Hd< <h Hexit εHXexiteK H( exitHd)

Fig. 4. Effect of fluidizing velocity on solid circulation rate with differ- ent particle size.

Fig. 5. Erosion at different height of the riser(Uo=3.2 m/s, solid inventory

=150 kg).

(5)

 40 2 2002 4

t ýþF q‡ : uv UV| üx 3% wr H

Ñ N7, :6 q‡ N7  ©ª: +, UV N7 ó

Œ Kz4 ¾ N  2 N>. Y?E, Yø E• ÚI Û: ûÜF q‡ UV †—  ©ªt ó FKKz

% %`O P ­® 2 N>. #, ûÜF  ©ª R@

FÈKL : 3%{ u] üx ‰ ,, UV|

 : 3%{ u] üx 3% wr HÑ N>. : "

”  ©ª :F: & wB  ©ª 3‰H>  

iT 80 ”\% UV  qr ›= ~# :1® 2 N>.

, : "”® wB,  ©ª: ûÜF "” ñ

 H: N ~t 0J, FÈK +, UV| R„¡ Ú

‘ FG #  ñ H: N>. : R„¡ Ú ‘ 

    FÈ 't Œ1 : qr( N +,

 )*6 FG \ ‰   iT: # 

# :1 ® 2 N>. ÷t # ûÜF UV|  

©ª Ž_H> @ iTt : uv   80: UV  qr ›= ~# :1® 2 N>.

Fig. 7 FÈKL (Uo=2.9 m/s): "”® wB, L

/ ª uv UV| Ž_4 E• ~:>. Yø H Ú I Û: / ª: 3%{ u] : uv ˜ ‘=) UV|\

3% wr H: N#‚, : Fig. 3 E• / ª

uv  ©ª wrt\ Û  2 N>. #, * ­ ÚI Û: / ª 3% uv  ©ª 3% UV| 3%4

%+#‚, i¯ /:q‡: üx ûÜF  : 3% Œ1 ûÜ F q‡# Ú,7 UV|: }Cf 3%{ ­® 2 N>. ,

"”  jk# Œ1 @ iT: ef Ú,O Pd, ˜ q

‡  ©ª 3% ó # UV| { ­® 2 NX>. Y?E, / ª: %<  100 kg" wB, R„¡ Ú

‘ FÈK +, UV| Y wr: F:f E•E @

qr 5 d ], `Q ªt ûÜF  : Ž_ Œ 1 Y qr s ~# ꘼>[1, 15].

/ FÈK# Ñ)( ê: "”® (Uo=2.9 m/s, Inventory

=150 kg) "-:x Ã[PA/(PA+SA)] uv FÈK  ©

ª "-:x Ã% 3%{ u] ýþF q‡  ©ª ü x 3% wr E•-#‚, , /:q‡ ' ûÜF 

 ©ª üx ‰ wr E•LX>. : "x Ã Ñ )ª % b wB ûÜF q‡ R : †T(, "x ÃI )*  \\ e  :xà Ñ): N w

: 3% ~# :1® 2 N>[10, 16]. y, Å,# Ã}(

:x ê uv .y FÈK +, UV| Fig. 8 E

•LX>. FÈK +, UV| :x ê: 3%®2Ò ûÜ F Å, UV|: üx 3%{ ù 2 N#‚, /:q‡ ' ýþF q‡ “=, UV| ‰4 ­® 2 N>. : :x Ã Ñ ) 3% u] ûÜF    r: .y FÈK +,#

 –;  UV|: 3% wr E•LX#‚, /: q

‡ ' ýþF q‡ üx  ©ª ‰ qr sd UV|

: ‰ ~# ­(X>. Y?/, :x à 3% ûÜ F ÁQ UV| 3%4 %0 ,, ýþF UV üx ‰m$ ÷t4 %0 ~# E•">.

FÈK Ý< Q‘ UV +, UV ¹Ft 0J )a

˜\% 2ó %ˆ¨ C  UV ¹F E•>. :?

 C UV G1 "” ª(inventory=150 kg) FÈKL

 jk t ‘= uv UV| Fig. 9 E•LX>. : ü x 3%{ u] ˜ ‘= UV| G 3% wr H º#‚, i¯  3%| 1 UV|: 12 ef 3%{ ­

® 2 NX>. :   L /&K: 3 UV  Fig. 7. Effect of solid inventory on erosion at different height of the riser.

Fig. 8. Effect of secondary air on erosion at different height of the riser.

Fig. 6. Effect of fluidizing velocity on erosion at different height of the riser.

(6)

­\ H( ~# G # )*  ¬4  U V% ™±( ~# E•E N7[16] ¸ «À÷t :? 

 qrt Š7  ª 3% qr# ¬4:F UV|

3%% 5F¼>. y, %¨Ê Ý< QR UV% ž Å Ý< QR

1 UV|: FG #  ­ ® 2 NX#‚, :  

ª x: 1 E•E ~#, žÅ  loops 1 1.5M ”\

  ª: p %¨Ê QR UV|:   2 N X>. Y?E,   L /&K UV N7  ª 3% G1 óä # > HI 0J[17],  ª:

1.5

UV| 3%5: ­(X>. :  ª: 3%{ u] )*

 8 3%  Cª ‰ qr# ê˜& 2 N>.

FÈK 9  )* Fr ÕÖwr Q ûÜ F q‡Qœ Æ8 FÈK front(a:bc ¢=, G ‘=

,)4 “: Ý<Q‘ ' `Q4 1 >m FÈK# Ñ)( w

4 ¾ ~# € N>[1, 15]. Y?E, Fig. 10 E• ÚI Û :  FÈK FQ(H=8.975 m) UV wr front,:E Å,H> rear,(a:bc ¢=,) UV% ;Š e‚ Y > front ' Å,  UV|: ef E•E ~# ­(X>. :  )* Fr ÕÖwrt 0J FÈK FQ +, UV Ý<Q‘E a:bc Ñ)S QR 8ê rÕÖ  )

*  qr: ef E•E‚ :?  )* rÕÖ a:

bc Ñ)S QR %< p: E•E ~# :1& 2 N>.

4. 

 FÈK +, UV| ‘= ' : uv 

©ª '  ª, YJ )*  < _ \ qr

 s ~# ­(X>.  ýþF _ \ 3

% ' "-:x à 3% uv  ©ª 3% Œ1 +,

 UV| 3%% ­(X#‚, , ûÜF  ©ª H> _ \ 3% < :x à Ñ) uv Ž_ G 1 UV|: ef qr s ~# E•">. /:q‡ G UV

| ýþFt ûÜF µ ”\ UV| H:‚, GQR jk jl G qr\ ûÜFt ýþF q‡ µ ”\ Ž_4 ¾

~# E•">. , / ª 3% u]  ©ª 3%

 Œ1 UV|: 3%º#‚, ûÜF  : 3% Œ UV q

‡ =G\ ­(X>.

y, L  3% uv  ª 3% u] F ÈK Ý<Q‘ UV| %¨Ê Q‘% %< ef E•"#‚,

 u] Y UV”\% O2 # 3% ~# ­(X

>.  FÈK FQ +, UV wr )* rÕÖ: %< p : êT( a:bc Ñ)Q +, %<  UV| H: ~#

 E•">. :? UV wr 1 L_` ' /&K UV ü² '

OH2 G > ¢” ' ²a ;:T ? 2 N ~#  G¼>.

 

¸ S @OKJÐ A”@O½8 O×ak "# 2

±(X#‚, : ‰aB >.



a : decay constant in transition region [m1] dp : particle size [m]

h : height [m]

Hd : dense bed height [m]

Hexit : exit height [m]

K : decay constant in dilute phase [m−1] Umf : minimum fluidizing velocity [m/s]

Uo : superficial velocity in the riser [m/s]

Ut : terminal velocity [m/s]



ε : void fraction [-]

εexit : volume fraction of solid at exit [-]

εs : volume fraction of solid [-]

ε*s : the lowest volume fraction of solid in the riser [-]

εsd : volume fraction of solid in the dense bed [-]

ρs : density of solid [kg/m3] ρg : density of gas [kg/m3]



1. Stringer, J. and Stallings, J.: Proceedings of the 11th Int. Conf. on FBC, Montreal, Canada, 589(1991).

2. Wang, B. Q. and Lee, S. W.: Proceedings of the 13th Int. Conf. on FBC, Orlando, FL, USA, 1427(1995).

Fig. 10. Erosion of the upper part of the riser wall.

Fig. 9. Effect of fluidizing velocity on erosion at the roof of the riser.

(7)

 40 2 2002 4

3. Stringer, J.: Proceedings of the 9th Int. Conf. on FBC, New York, USA, 685(1987).

4. Macoy, D. E., Garver, D. L. and Hileman, G.: U. S. Patent No. 4,724,049 (1987).

5. Stringer, J. and Ehrlich, S.: ASME Paper No. 76-WA/CD-4, 11(1976).

6. Bixer, A. D.: EPRI Report GS-6747, Paper No. 35, California USA (1990).

7. Slusser, J. W., Bartlertt, S. B. and Bixer, A. D.: EPRI Report GS-6747, Paper No. 16, California USA(1990).

8. Kim, S. M., Kim, E. H., Lee, J. M. and Kim, J. S.: KEPRI Report, TM.00GJ06, P2000.448, Taejon, Korea(2000).

9. Lee, J. M., Kim, S. M., Kim, J. S., Kim, J. J. and Song, K. K.: Energy Engg. J., 9, 348(2000).

10. Lee, J. M., Kim, J. S. and Kim, J. J.: Korean J. Chem. Eng., in press

(2001).

11. Zhang, W. and Johnsson, F.: Report A91-193, Dept. of Energy Con- version, Charmers Univ., Sweden(1991).

12. Johnsson, F. and Leckner, B.: Proceedings of 13th Int. Conf. on FBC, Florida, USA, 671(1995).

13. Lee, J. M., Kim, J. S. and Kim, J. J.: International Sym. on Chem.

Eng., Cheju, Korea, 263(2001).

14. Kim, J. H.: Korean J. Chem. Eng., 16, 840(1999).

15. Kaneda, H. and Oki, K.: EPRI Report GS-6747, Paper No. 14, Cal- ifornia USA(1990).

16. Choi, J. H., Park, J. H., Choung, W. M., Kang, Y. and Kim, S. D.: Korean J. Chem. Eng., 12, 141(1995).

17. Bis, Z., Gajewski, W., Krzywanski, J. and Leszczynski, J. S.: Proceedings of 5th International Conf. on CFB, Paper No. MSD8, Beijing, China(1996).

참조

관련 문서

The transition velocity from bub- bling to fast fluidization was determined by means of emptying time method in the high temperature circulating fluidized bed (0.02 m i.d..

BGL : British Gas Lurgi, CFB : Circulating Fluidized Bed, LR : Lurgi Residue MSW : Municipal Solid

Coil Reactor Constant ∆, P Function of reactor length Solid wall assumption.. Coil wall -

The inhibition effect on CMA was greater than 90% against M-1 treated with a 100 ppm concentration of AgNPs and A-2 treated with 25 and 50 ppm concentrations of of

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

Effects of the biofilm thickness on the volumetric nitrate(close symbols) and nitrite removal rate(open symbols) in the FBBRs with the height of 200 cm, (a) sand as support media

In the optimized condition, the binding constant for TNT of a simple dipyrene derivative 4 was increased up to 1.0 × 10 6 M −1 in cetyl trimethylammonium bromide

Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind