• 검색 결과가 없습니다.

Simulation on the Orthophosphates Adsorption on Titanium Dioxide Surface by Monte Carlo Method

N/A
N/A
Protected

Academic year: 2022

Share "Simulation on the Orthophosphates Adsorption on Titanium Dioxide Surface by Monte Carlo Method"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Òrš¢‚ V»j šÏ‚ šÖzêª ‚šö &‚ R²žÖ ‡Oö &‚ ÎÒ’

f^FÁ;Ò& W&&v z"

(1999j 6ú 30¢ 7>, 1999j 9ú 9¢ j)

Simulation on the Orthophosphates Adsorption on Titanium Dioxide Surface by Monte Carlo Method

Moon-Sun Kim and Jaygwan G. Chung

Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea (Received 30 June 1999; accepted 9 September 1999)

º £

šÖzêª ‚šö &‚ R²žÖ~ ‡OËj Òrš¢‚ ÎÒV»j šÏ~ ’~&. VÎÒöB JB æ>º ‡OBž šÖzêª ‡Oš ßW, ö¶ªf ‡Oîž R²žÖ~ *~ï, ö¶*~ –Ò, 'Ꚗ  Ö"  æ¢; šÖzꪚ j¾æB; šÖzêª ‡OËKš Ö>~– ß® æ¢; šÖzêªöBê &æ>

(110)

êªj ‡OB‚ F~º ©š :²ç~. šÖzêª ‚šö &‚ R²žÖ ‡OËKö 'Ëj ~º "º‚ ¾ f ;*VKš– š ¾j ¸šV *š >χ~ pH, v>³ê, Nê, ³ê ~ ‡O–šj –.~º ©š jº~º © j Bn‚.

Abstract−Computer simulations of the orthophosphates adsorption on titanium dioxide surface were carried out by Monte Carlo method. On computer simulations, considered variables were adsorbed plane properties, atoms distribution of titanium dioxide(adsorbent) and charges, lengths between atoms, and angles of orthophosphates(adsorbate). The result showed that in terms of adsorbability, rutile type of titanium dioxide was superior to anatase type and the adsorbability of Miller index (110)plane was especially better than any other plane in rutile type of titanium dioxide. Therefore, it is reasonable to select the titanium dioxide of which surface range of Miller index (110)plane is large in order to improve the adsorbability of titanium dioxide. Electrostatic interaction energy is the main force which affects the adsorbability of orthophosphates on titanium diox- ide. It is necessary for the enhancement of electrostatic interaction energy to control the adsorption conditions, that is, pH, agi- tating speed, temperature, concentration, and so on in aqueous solutions.

Key words: Simulation, Adsorption, Orthophosphates, Titanium Dioxide, Monte Carlo Method

1. B †

ª¶>æö ZVªÚ(inorganic powder)¢ DÚB ÒÏ~V *‚

’º ZVªÚ~ ÎÏWš «Ã>šB B® Ï*B~ BvöB

½Ú¾ ·‚ ªÚf wÏVF ª¢‚ {&>î ‚"öº ~ã^

B~ NööB ZVªÚ& ï ŽFB 2¢Ê B®j ²'~º ã

Ã>šB ;VF~ BF 5  ªÚ~ BB" VËW ¦V Fö &‚ ’& z× ‚B® šÚæ ®[17]. Öë'b‚ 6 Ò ÒÏ> ®º ZVªÚ‚º êÖ¢¾, Қ, _Æ, ‚C, š Özêª(TiO2) š ®b¾ ·‚ VËj º’~º jª, ’Þ, W;®" ?f 2¢Ê B®~ ãÖöº šÖzꪚ &Ë ôš

ÒÏ> ®. šÖzêªf Wï ªö;çb‚ &7Fj ÎN 'b‚ Ö¦B ¸f Wïê 5 föKj <º ßW r^ö 7º‚

Wï nò7~ ~¾‚[11] 6Ò ÒÏ> ®b– ‚"öº Ϛ, F®š, *¶š, *zš " ?š föW, ÚW 5 ÂW

~ ßWj º’~º š²Ò~ Î&B‚ ÒϺ*& 9Úæ ® Ú ·‚ VËj ¦~V *‚ ªÚ‚š Bî’& ‚B® š

Úæ ®[15].

šÖzêªf Ö;’–ö V¢ j¾æB(anatase), æ¢(rutile), 2‚ššÞ(brookite)~ 3&æ ;‚ ’ª~¾ 2‚ššÞ;f çN öB bWš ®n;~ j¾æBf æ¢ v «~òš Öë'b‚

ÒÏ> ®b– j¾æB; šÖzêª~ ‚šÖ;f (001)šš

*ښ'~ 85% šçš– æ¢;~ ‚šf (110)š: (101)š: (100)

š=60% : 20% : 20%~ jN‚ ’W>Ú ®[15]. š‚ ‚š’–~

Nš‚ j¾æB;~ šÖzêªf ÚWš Ö>~ >Úÿš

E-mail: jgchung@yurim.skku.ac.kr

(2)

º’>º š ~ VÒ Î&B‚ ÒÏ>– æ¢;~ šÖzê ªf ÚêWš Ö>~ ËV* Kžö J~š¢ ~º Kž 76 VÒ~ Î&B‚ ÒÏ> ®[5].

šÖzêª ‚šö &‚ ‡O’& š B‚B : ®º– Bod- denbergf Eltzner[1], Wuf Moller[16]º šÖzêª~ Ö;’–ö Vž ‡O>w zšî¾~ Nš6j ’® Gamble [8]f rÞ

¢÷²¦(tetra-ethoxysilane)j šÏšB šÖzæª~ &æ>

(110)š~ ‡O>wj ’® Suda [15]f æ¢;~ šÖz

êª ‚šßWö &š ’®. 6 Fahmif Minot[6]º æ¢;~

’–7 (110)š~ ‡OWš &Ë Ö>~– Filippov [7]ê (110)š

 ’öBº š‚ Vãb‚ ÚW" ³ê bN(compound- ing) ªÖWj BF~V *~ šÖzêª ‚šö &‚ R²ž

Ö(PO4−3)‡Oö &‚ ’¢ ê¯~V *‚ >b‚ Òrš¢‚ O

»(Monte Carlo method)ö ~‚ V ÎÒ¢ Û~ æ¢;~

(110)š, (101)š Ò (100)š" j¾æB;~ (001)šö &‚ R

²žÖ~ ‡Oj jvŽb‚Ž 'ž ‡O*çj .G~¶ ‚.

2. š †

Ûê' V ÎÒO»7 &‚'ž O»š Òrš¢‚ O»š–

š O»f Ûê' ªCj &çb‚ ~º Î÷~ ‚j ’Úz

Î Â>‚(random sequence of numbers)¢ šÏšB &J Î÷~

ª~~ Ž>¢ f(x)(aßxßb)¢ ~ š j 'ª~š

(1)

& >– f(x)¢ ï8 <f(x)>;‚ ‚~š[9]

(2)

& B. š 8f ¢‚ *Ïb‚ ¾*Úê [a, b]~ ’*b‚¦V Z

·*‚ ª~~ 8 xi¢ nB F~ 'ª‚ ©b‚ f(x)~ ï ¸

šf ?f Bvš.

(3)

f(x)& B† > ®º {†j P(x)¢ ~š

(4)

š >–[9] (3)f (5)" ?š ¾æâ > ®.

(5)

(5)~ P(x)~ 8f "Úê xi~ 8ö V¢ Ö;>– êÖ~º– ® ÚB &7~f ?f †j ~– f(x)~ ïf (6)" ?š ‚†

> ®[9].

(6)

ß®  ç: Òrš¢‚ O»(grand ensemble Monte Carlo

method)j ÒÏ~º ãÖ (6)j šÏ~ χ¢ ª~‚ FB *

(phase space)ç~ ‚ 6š¢ ;~~ "Úê ‚öB~ &V~

¶ ~º 8, A¢ (7)" ?š ç: ï8, <A>‚ ¾æÞ[9].

(7)

VB, χ= randomly selected one point in phase space

VB, P(χ) = probability density function (7)öB P(χ)

(8)

VB, Z = partition function

Úÿ ö.據 Bž>Ú ®º ÚÿO;ž HamiltonŽ>, H(x)¢

šÏšB Z¢ ‚*~š

(9) f ?[9].

(8)" (9)j šÏšB (7)j  ‚*~š

(10) f ?.

ªÚ‚šö &‚ R²žÖ~ ‡OÎÒö ®Ú C ö.æº Úÿö.

æf *~ö.æ~ š–[11] *~ö.æ(E)º universal force field (UFF)öB bond stretch energy(ER), angle bending energy(Eθ), torsion energy(Eϕ), inversion energy(Eω), van der Waals energy (EvdW), elec- trostatic interacion energy(Eel)~ b‚ ;~>–[2] r" ?š ‚

† > ®.

(11)

(12)

VB, KIJ, rIJ= harmonic oscillator parametersš–

(13)

VB, KIJK= parameter

VB, Cn= coefficient chosen to satisfy appropriate boundary condi- tions including that the function has a minimum of the natural bond angle θ0

(14)

VB, KIJKL= parameter decided by rotational barrier, the periodi- city of the potential, and the equilibrium angle.

VB, θIJKL= angle of two bonds IJ and KL connected via a com- mon bond JK.

(15) (16)

VB, DIJ= energy parameter

VB, xIJ= length parameter I f x( )dx

a

b

=

f x( )

〈 〉=I b a⁄( – )

I f x( )dx

a

b [(b a )n] f x( )i i

= ó

P x( ) f x( ) f x( )dx

a

b

ó ⁄

I f x( )dx

a

b

=

I [f x( )⁄P x( )]P x( )dx

a

b

=

f x( )

〈 〉 1 n( ⁄ ) f x( )i ⁄P x( )i

i

ó

〈 〉A A( )χ P( )dxχ

=

P( )χ =exp[–A( )χ ⁄kT]⁄Z

Z f H{ ( )χ }dx

=

〈 〉A (1 z⁄ ) A( )χ

exp[A( )χ kT]dx

=

E=ER+Eθ+Eϕ+Eω+EvdW+Eel

ER=1 2⁄ KIJ(r r– IJ)2

Eθ=KIJK

Cn(cosnθIJK)

Eϕ=KIJKL

Cn(cosnθIJKL)

Eω=KIJKL(C0+C1cosωIJKL+C2 cos 2ωIJKL) EvdW=DIJ{–2 x( IJ⁄x)6+(xIJ⁄x)12}

(3)

z B38² B1^ 2000j 2ú

VB (16)f Lennard-Jones š†b‚¦V Fê>î[13].

(17)

VB, QI, QJ= partial charge in electron units

VB, RIJ= distance in ç

VB, ε= 1(dielectric constant)

C ö.æ7 Úÿö.æº "‚ Nêöò jf~ “ç ¢;‚ 8 j &æ ®bæ‚ Bž~ (11)" ?š *~ö.æ8j ER, Eθ, Eϕ, Eω, EvdW, Eel‚ ’ª~ (10)ö ~š ‡O*çö ö.æ8j

ç: ï8b‚ êÖ®. Òrš¢‚ O»j šÏ‚ V ÎÒ º “ TMSIÒöB B~º *‚Î[3]j ÒÏ®b– ö.æ ‚

²zf ª¶ ÿ(molecular dynamics)ö &‚ êÖf Ewald sum O»j ÒÏ®.

3. ÎÒO» 5 Ö"

šÖzêªf Ö;’–ö V¢ Fig. 1" ?š j¾æB;" æ

¢;b‚ ’ª~– Û'b‚ ;O;ê~ ’–¢ &æ ®b¾ Table 1" ?š æ¢;f C»~ ^š& A, B»(A=B) f >

š j¾æB;f C»~ ^š& A, B»(A=B) ^– æ¢;š

f 400-500oC~ Nêº*öB &~š ’–& j¾æB;b‚ æ‚

[5].

j¾æB;~ (001)š, æ¢;~ (110)š, (101)š, (100)šf Fig.

1" ?f Ö;’–‚¦V òÚæ– ‡OF ïšf ÿ¢‚ ‡O–š

j B~V *~ 1,026B~ ö¶& ‚šö šÒ~êƒ ® šr

êª ö¶f Ö² ö¶>~ jº 1 : 2(342B: 684B)š.

‡Oî‚ ÒÏ>º R²žÖ~ ’–º Fig. 2f ?.

R²žÖ~ ‡OËKf R²žÖ~ ‚šßW, ¯ *~ï, ö¶*~

" F҂ Ö"¢ áV *‚ –šf Table 2, Table 3" ?.

Table 2ö ¾æ :f ?š >²ö¶º +0.25 —, žö¶º +0.5

—, ¢Žö¶º +0.8 —~ *~ïj &æ ®b– žö¶f š 7֏j ~ ®º Ö²ö¶º −0.5 —, žö¶ Ò >²ö¶

f ÿö ¢Ö~ ®º Ö²ö¶º −0.4 —~ *~ïj &æ

 ®. 6 Ö²ö¶f >²ö¶*~ –Òº 0.987 ç, Ö²ö¶f

¢Öj ~ ®º žö¶f~ –Òº '' 1.721 ç(H-O-P), 1.614ç(O-P=O)š– Ö²ö¶f š7֏~ ®º žö¶f~ – Òº 1.613 çb‚ –;®. ö¶*~ 'êº >²ö¶, žö¶f ' ' ¢Ö~º >²ö¶f~ 'êº 102.8o, Ö²ö¶f Ö²ö¶

Қö šÒ~šB '' ¢Ö~º žö¶f~ 'êº 113.6o,  Ò ‚ OË~ Ö²ö¶fº ¢Öj ~ >& OË~ Ö²ö

¶fº š7֏j ~ ®º žö¶f~ 'êº 110o& >êƒ –

šj ;®.

š-² ’WB R²žÖj Fig. 3" ?f O»b‚ šÖzêª ‚

šö ‡OV.

Nêº 300 K‚ ¢;~² Fæ~ G;>Å>(dynamic number of step)¢ ‚& 500²ræ > ‡Oʚ Å>ö V¢ Fig. 3~ R

²žÖš 6N šÖzêª ‚šOËb‚ šÿ~šB ö.æ~ æz

& B~º– š Ö"¢ šÏ~ šÖzêª~ ‡O‚š ßWj jv† > ®. Fig. 4~ ¾*º j¾æB;~ (001)š" æ¢;

~ (110)š, (101)š Ò (100)šö &‚ ‡Oö Vž ö.æ~

æz¢ ¾æÞ ©š.

‚šö &‚ ‡O*çj Î҂ Ö" (13)ö ¾æ ö.æ7 angle Eel=332.0637 Q( I⋅QJ⁄εRIJ)

Fig. 1. Crystal structure of anatase type(a) and rutile type(b) of tita- nium dioxide.

Table 1. Comparison of structure of two kinds of titanium dioxide Structure Length(Å) Angle(deg.) Volume

3)

Density (g/cm3)

a b c α β γ

Rutile type 4.492 4.492 2.283 90 90 90 058.382 4.54840 Anatase type 3.776 3.776 9.486 90 90 90 135.253 3.92381

Fig. 2. Structure of potassium phosphate.

Table 2. Charges and lengths of potassium phosphate structure (a) Charges

Atom Unit Value Remarks

H

coulomb

+0.25 O-H

O −0.4 H-O-P

−0.5 O=P

P +0.5 -

K +0.8 -

(b) Lengths

Structure Unit Value Remarks

H-O

Å

0.987 O-H

O-P 1.721 H-O-P

1.614 O-P=O

O=P 1.613 -

Table 3. Angles for main chain of potassium phosphate structure

Item Unit Value Remarks

O-P-O

deg.

113.6 H-O-P-O-H

O-P=O 110.0 -

H-O-P 102.8 -

(4)

bending energy, torsion energy, inversion energyº Table 4ö ¾æ :f ?š *& æz& ìb– bond stretch energyf van der Waals ö.æº ²‚ æzò ¾æÚ² >Ú Ö"'b‚ šÖzꪂš

" R²žÖ*~ ‡Of "‚ ;*VK(electrostatic interaction energy) ö ~š šÚæ ®rj r > ®. šÖzêª ‚šf ’–' b‚ Ö n;‚ Ö;ښV r^ö angle bending energy, torsion energy, inversion energyº *& ¢Ú¾æ p~[10].

‡Oš šÚöö V¢ .Vç~ ö.æ8ö jš ö.æ8š

6²~æ‚[13] Òrš¢‚ O»j šÏ~ V ÎÒ¢ š  Ö

" Table 5f Fig. 5ö ¾æ :f ?š æ¢;š j¾æB;ö j

š G; >Å>& Ã&Žö V¢ .Vçö jš ö.æ8š 6

²‚ ©b‚ j ‡Oš ôš šÚæ ®º ©j r > ®î b– æ¢;ö ®ÚBê (110)š~ ‡OWš &Ë Ö>~ (100)

šš &Ë ‡OWš ÎÚæº ©b‚ ¾æÒ. V¢B šÖzêª j šÏ~ ‡O~º ãÖöº j¾æB;º æ¢;j F~

º ©š :²ç~– æ¢;7öBê (110)š~ ª& ôf šÖz

4. Ö †

(1)šÖzêªö ®ÚB æ¢;š j¾æB; ‡O˚ Ö

>~.

(2)æ¢;ö ®ÚB (110)š~ ‡O˚ &Ë Ö>~ (100)š

š &Ë ‡O˚ Ôbæ‚ (110)š~ ‚šª& 9f šÖzêª j ‡OB‚ F~º ©š Î"'š.

(3)šÖzꪂš" R²žÖ*~ ‡OËj Ö;~º "º‚ ¾ f ;*VKš.

ÒÏV^

A : any quality to calculate in system Table 4. Difference of total energy as adsorption of orthophosphates on titanium dioxide crystal planes

Item(kcal/mol) Anatase (001)plane Rutile (110)plane Rutile (101)plane Rutile (100)plane

Initial time Final time Initial time Final time Initial time Final time Initial time Final time

Bond stretch energy 6,105 5,984 2,980 3,037 2,795 2,805 2,256 2,245

Angle bending energy 0 0 0 0 0 0 0 0

Torsion energy 0 0 0 0 0 0 0 0

Inversion energy 0 0 0 0 0 0 0 0

Van der Waals energy 1,652 1,538 2,464 2,492 2,250 2,259 2,375 2,310

Electrostatic interaction energy −179,140 −178,684 −104,977 −105,237 −41,280 −41,314 −65,229 −69,660

Difference of total energy(∆E) 221 −175 −15 5

Fig. 3. Model of adsorption of orthophosphates on titanium dioxide in simulation.

Fig. 4. Change of potential energy by adsorption of orthophosphates on various crystal plane; (a): anatase(001), (b): rutile(110), (c):

rutile(101), and (d): rutile(100).

Fig. 5. Comparison of change curve of potential energy as adsorption process for crystal plane titanium dioxide[þþ: anatase(001), ùù: rutile(110), : rutile(101), and üü: rutile(100)].

Table 5. Comparison of change of total potential energy by adsorption of orthophosphates on titanium dioxide crystal planes

Item Anatase type Rutile type

(001)plane (110)plane (101)plane (100)plane

∆E(kcal/mol) 221 −175 −15 5

Designed plane Total number of atoms : 1026 Ti : O = 342 : 684(1 : 2)

(5)

z B38² B1^ 2000j 2ú

<A> : ensemble average of A

Cn : coefficient chosen to satisfy appropriate boundary conditions in- cluding that the function has a minimum of the natural bond angle θ0 [-]

DIJ : energy parameter [kcal/mol]

E : potential energy [kcal/mol]

Eel : electrostatic interacion energy [kcal/mol]

ER : bond stretch energy [kcal/mol]

EvdW : van der Waals energy [kcal/mol]

Eθ : angle bending energy [kcal/mol]

Eϕ : torsion energy [kcal/mol]

Eω : inversion energy [kcal/mol]

H(x) : Hamilton function

k : Boltzmann constant [erg/molÁK]

KIJ : harmonic oscillator parameter [J/molÁç]

KIJK : parameter [J/molÁdeg.]

KIJKL: parameter decided by rotational barrier, the periodicity of the potential, and the equilibrium angle [J/molÁdeg.]

N : simulation iteration [-]

P(‹) : probability density function [-]

QI, QJ:partial charge in electron units [coulomb]

RIJ : distance [ç]

rIJ : harmonic oscillator parameter [ç]

T : absolute temperature [K]

xIJ : length parameter [ç]

Z : partition function

ÒšÊ ^¶

ε : 1 (dielectric constant)

θIJKL : angle of two bonds IJ and KL connected via a common bond JK [deg.]

χ : randomly selected one point in phase space

Ω : canonical ensemble state

^^ò

1. Boddenberg, B. and Eltzner, K.: Langmuir, 7, 1498(1987).

2. Castonguary, L. A. and Rappe, A. K.: J. Am. Chem. Soc., 114, 5832 (1992).

3. Cerius2, MSI, San Diego(1997).

4. DiBenedetto, A. T.: “The Structure and Properties of Materials,”

McGraw-Hill Book Co., New York, NY(1967).

5. Dupont Inc.: “Technical Reports for Titanium Dioxide,” New York, NY(1992).

6. Fahmi, A. and Minot, C.: Surf. Sci., 304, 343(1994).

7. Filippov, L. K., Silebi, C. A. and El-Aasser, M. S.: Langmuir, 11, 872(1995).

8. Gamble, L., Hugenschmidt, M. B., Campbell, C. T., Jurgen, T. A.

and Rogers, Jr., J. W.: J. Am. Chem. Soc., 115(25), 12096(1993).

9. Heermann, D. W.: “Computer Simulation Methods in Theoretical Physics,” Berlin(1986).

10. Hong, S. D.: Ph. D. Dissertation, Korea Advanced Institute of Sci- ence and Technology, Seoul, Korea(1991).

11. Irick, G.: J. Appl. Polym. Sci., 16, 2337(1972).

12. Moore, W. J.: “Basic Physical Chemistry,” Prentice-Hall Inc., Engle- wood Cliffs, New Jersey(1983).

13. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A. and Skiff, W. M.: J. Am. Chem. Soc., 114, 10024(1992).

14. Rappe, A. K. and Goddard III, W. A.: J. Phys. Chem., 95, 3358 (1991).

15. Suda, Y., Morimoto, T. and Nagao, M.: Langmuir, 3, 99(1987).

16. Wu, M. C. and Moller, P. J.: Chem. Phys. Letters, 171(1), 136(1990).

17. Fuga, S.: “New Technology of Functional Filler,” Research Center of International Industrial Information, Tokyo(1993).

참조

관련 문서

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

Abstract The positive semidefinite constraint for the variable matrix in semidefinite pro- gramming (SDP) relaxation is further relaxed by a finite number of second

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

First, as the result of analysis on the comprehension average by opposites, normal children’s comprehension was better than multi-cultural families children,

Levi’s ® jeans were work pants.. Male workers wore them

The non- treated PDMS substrate showed hydrophobic properties with a contact angle of 110 o , and poor cell adhesion was observed on that surface.. Many adherent cells were

Gratzel Cells – Solar Cells Based on Titanium Dioxide (Gratzel cells are named after their inventor, the Swiss scientist Michael Gratzel... 이러한 종류의