• 검색 결과가 없습니다.

Combustion Characteristics for Producing Titanium Carbonitride Ceramics by Combustion Synthesis

N/A
N/A
Protected

Academic year: 2022

Share "Combustion Characteristics for Producing Titanium Carbonitride Ceramics by Combustion Synthesis"

Copied!
9
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

²Wj šÏ‚ êzîz æª ^¢ B–öB~ ²ßW

fç~†Á;WÁf&/Á;ö*

š“&v z"

*†ãFæ 7’²

(2001j 3ú 7¢ 7>, 2001j 7ú 24¢ j)

Combustion Characteristics for Producing Titanium Carbonitride Ceramics by Combustion Synthesis

Sang Hwan Kim, Tae-Sung Kang, June-Bong Kim and Kong Won Kang*

Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea

*Central Research Laboratory, Aekyung Industrial Co., Daejeon 300-200, Korea (Received 7 March 2001; accepted 24 July 2001)

º £

NöB Ö>‚ ãêf Özö &‚ n;Wj &æ ®º êzîz æª~ ²Wö &~ V~&. {OB >

wbf ²*šš Û"‚ êöê Ë* ÿn Nj Fæ~šB >wš ¢Ú¾ ®î. îzæª(TiN)" êzîz  æª(TiCxN1−x)j Ö~º ";öB *f ?f ê²(after-burn)& £ 20-100.ÿn ¢Ú¾º ©š &G>î. ê² 

*f >wb~ æªö &‚ ê²~ Öj& Ã&Žö V¢B Ã&~, š~ Öj& £ 0.7öB ‚&~ ê² *j ¾æ

~ Öj& Ã&Žö V¢B Ã&~& &GB ²2~ ³êº 0.4 cm/sec¢ ¾æÚî. >wWš ¸f š:¿j ê²ö b‚ ÒÏ~ ²Wö ~~ B–B êzæª(TiCx)f >w7ö æª~ Ï[š ¢Ú¾ š©š ê²Òš~ *j Û~ Î^& ¢ö(capillary spreading)š ¢Ú¾º ©š &G>î. ²Wö ~~ B–‚ êzîz æª~ ‚š 

^–çb‚¦V š:¿š ^¢j W~º– >wWš ¸ >wb7~ æªö &‚ ê²~ Öj& 6²†>ƒ æ

Abstract−The combustion synthesis of titanium carbonitride ceramics with excellent hardness and chemical stability to oxi- dation at high temperatures was investigated. The compacted reactants remained at a relatively high temperature for the greater length of time after the passage of combustion front transversing the compact. After-burn time of about 20 to 100 seconds was detected for producing titanium nitride and titanium carbonitride ceramics. After-burn time increased with the increasing ratio of carbon to titanium in the reactants, reached the maximum value at its ratio of 0.7, and thereafter decreased with the further increasing ratio of carbon to titanium. The combustion temperatures as well as the velocity of combustion waves increased with the increasing ratio of carbon to titanium in the reactants. The velocity of combustion waves reached the constant value of 0.4 cm/sec at higher ratio of carbon to titanium than 0.70 in the reactants. The microstructure of combustion-synthesized titanium carbide using the carbon black as carbon source showed the existence of titanium melting during the combustion reaction and the capillary spreading of melted titanium between the interstices of solid carbon. The surface of combustion-synthesized tita- nium carbonitride revealed that the carbon black was active for producing the carbonitride ceramics and the decreasing ratio of carbon to titanium in the reactants enhanced the melting of the titanium during the reaction.

Key words: Titanium Carbonitride, Combustion Synthesis, After-burn Time, Combustion Waves, Ceramics

1. B †

^¢j W~º ãÖö >wš j" ’š ž¦öB j /~

æ pjê ¶B'b‚ >wš æ³> ‚ã ƒöB ;WB ²2&

j ²W(combustion synthesis) _f SHS(self-propagating high- temperature synthesis) ;š¢ ¦š– 1967j j~ Merzhanov f Borovinskaya[1]ö ~~ ¾rb‚ BBB êö ‚B‚ ’& ê

¯>Ú *Òræ 300«~šç~ ^¢j W~&b– š7öB N Bڞ MoSi25 îBž TiC š çëz>î. ²Wö ~~

To whom correspondence should be addressed.

E-mail: sanghkim@konkuk.ac.kr

(2)

z B39² B5^ 2001j 10ú

 B–B MoSi2f TiCº Vš~ O»ö ~~ B–B © MoSi2

º BÚ~ >«š 2Všç ^ TiCº îB‚ ÒÏ~º ãÖö  îö ²º>º žšj& 80%šç .6>– î¢ î‚ ‚š~ ßW f Ö>~[2].

V¢B, j¢ 7b‚ “, ¢ öB šö &‚ ôf ’&

ê¯> ®º– ²Wf Vš~ ²Ö»ö j~ 'f ö.æ& ² Î>, Ë~j& '² –, Bê~ >wWš ’ Vê' Wîš Ö

>‚ ^¢j áj > ®V r^š. NöB Özb?f ®Bbš

>Bªb‚ OÂ>V r^ö Bê~ ^¢š òÚæ >wbš

ï'Nb‚¦V B>º ôf ’–ç~ ֎b‚ >wW" Vê' W îš Ö>‚ ^¢j á² B. ²Wö ~~ Ú-Ú, Ú-

‡Ú 5 Ú-VÚ*~ >wš ¢Ú¾ êzb, »zb, îzb ?f ^

¢" .³* zb(intermetallic compounds)j W'b‚ B–~&

[3-12].

²Wö ~~ ªöç~ æª" ê²~ Ú-Ú >wö ~~

 TiC¢ Ö~š Vš~ ²Ö»ö j~ ö.æ& .£>, ;ê 5 Bê~ ^¢š WB. ¢>'b‚ 0.1-200µm~ ’V¢ &ê ªöç~ æª" ê²¢ b‚ êö {Kj &~ &ê& 0.4-0.8 g/cm3& >º Öz ;~ {Ob(compact)¢ ò êö š~ ‚ã

ƒö kÊvb‚ ò *F b‚ 0.05-4.0.~ f *ÿn 6z

B "š ¸f >w‚ ž~ 1,500-4,000oC~ ²Nê¢ &æ

vþ& 0.01-0.5 cmž ²2& æ³'b‚ ž ƒb‚ 0.1-15.0 cm/sec~

³ê¢ &æ *2Nb‚ ²*šš Û"‚ Êöº >wbš Wb

‚ *~>² B. š-² WB ^¢f NöB ®Bbš >B>

º ¶Ú;B(self purification)ö ~~ Bê& 99.2-99.9%‚ Ö ¸² B.

jöB ²Wö ~~ B–B êzæª(TiC)~ Wîš ß WzB rö š©š .ÓVêöB ÒÏ> ®º kÊvš "Wªž

&~ ^¢j &چ > ®j ©b‚ .G>î. šº ²W V Fš j" ãB'ž ;š „b‚ kÊvf >æ.³b‚ š>Ú

¢ ~V r^š. š‚ .Gf j “ö ~~ ²W VF

š j" ò“‚ VF‚ ž;>Ú ’Úz >îb– 1977j¦V 3j* š ö &‚ ’¢ >¯‚ Ö" KT¢ ®ÒÖº î‚Ú îÏ ¾šÊÞ

& j‚² 1980j çëz>î[2]. KTº ²Wö ~~ B–B ê zæª, ֏B 5 J‚B‚ ’W>Ú ®b– 7Ïb‚ ÒÏ~º ãÖö žšj& 80%šçš .6>, î‚ ‚š~ î6(finish)š B F>– ¾šÊÞ& ¦®j sjÚº ;ê¢ 6²Ò > ®.

²Wö ~‚ TiC~ B–ö &‚ ’º j¢ 7b‚ >¯

>î. Shkiro [13]f ê²~ «~, ’– 5 ’V& TiC~ ‚Wö 

~º 'Ëj V‚ Ö", ê²~ ‚š'f š~ >wWö jZ 'Ë j ~æ á~ ê²~ «~ö Vž >wW~ Nšº ê²~ ’–, ‚

š~ ö.æ 5 zçf ç&&ê& ®b– £² wz& F > ®

²Wö ~~ B–B TiC& Vš~ ê²~ö»ö ~~ B–B TiC

 îËKš R ’– š‚ îËKf «¶~ ’V& Ã&†

Kirdyashkin [15]f æª" ê²Òš~ ²Wö ~~ TiC¢

W~º >wV’‚ v &æ ³'ž ê¢ Bn~&. b& Ú

~ Wb TiC¢ ۂ ê²~ {Öö ~~ š:šf Ï[B æ ª~ ãêöB  &æ –Wj &ê š:š& ;W(carbidization)>

 rö š:š¢ Û"‚ ê²& ‡Ú æªö Ϛ(dissolution) B. >wb~ –W" ²Nêö V¢ v &æ ê 7öB ‚ &æ

& N³ê& B. Nekrasov [16]f æª «¶~ ’V& j" ·

f ãÖöº Î^& ¢öf Z† > ®bæ‚ ê²~ š:šf Ï [ æªj ۂ {Öj J~º Ξj Bn~ ²Wö ~~

 B–‚ TiC~ þ~f jv~  Ö" ·¶& ç® ¢~~º

©j BÒ~&.

Holtf Munir[17]º ²Nêö ~º >wb~ ·†j, TiC~ ’C

†, >wb~ .VNê~ 'Ëj V~&b– ·†'ž >wbö &‚

n;B ²*š~ ³ê¢ G;~ š¢ ²š†" jv~ TiC 

²W~ ‚Wzö.æ¢ êւ Ö" Eß28 Kcal/mol~ 8j áî.

š¢ Sarian[18-19]š êւ TiC WöB TiC¢ ۂ ê²~ {Öö

&‚ ‚Wzö.æ £ 97 Kcal/mol _f TiC [j ۂ æª~ {Ö ª" ê²Òš~ >wf ê²~ š:š¢ ۂ {֚ ¢Ú r

TiCº V†š 50%;ê& >îb¾ ²7ö &{j ~š V†š

5%

TiCº ;ê, ãê 5 z'ž n;Wš Ö>~ îB, .Ó’

b‚ ÒÏ> ®b¾ 800oCšç~ NêöBº Özö "6‚ 6 j &æ ®. ¾ TiNº NöB Özö ;‚ &“j &æ ® bæ‚ TiCf TiN~ Ë6j &ê ÏÚ¢ W~š NöB Ö>‚

ãêf Özö &‚ &“j &æ ®Ú îB, .ãê~ .Ó’, z +B, ‚9~ ž¶, &ÊVn úê, ^2 b‚ ÒÏF > ®j ©b‚

.çB. š‚ TiCxN1−x^¢ö &‚ ²ßWö &‚ ’º *

¢B,  ¢^öBº TiCxN1−xj ²Wö ~~ B–~º ãÖö

>wb~ «ê, {»b~ ç&&ê, ê²~ «~, ²Nê, ²³ê,

>wb~ Öj 5 ê² š TiCxN1−x~ ßWö ~º 'Ëj V

~¶ ‚.

2. ²W~ š†

²Wö ~~ æª, ê² 5 ¦V êzîz æª (TiCxN1−x)j B–~º ";f Fig. 1" ?š ¾æâ > ®. êzæ ª(TiCx)j ²W~¶ ~º ãÖöº î² &ö ®‚WVڞ

êö ~~š &NöB n;‚ αç~ æª(hcp)f 882oCöB βç~

æª(bcc)b‚ *š~ 1,670oCšçš >š [š>Ú ‡Úç~  檚 B. j·†'ž TiCxöB ·†j x& 0.47<x<0.967 º*ö ®

(x<0.47)

æª" ê²Òš~ >wf B>w(Ti+C=TiC+44.1 Kcal/mol)b‚ 

Fig. 1. Schematic representation of combustion synthesis between tita- nium and carbon under the nitrogen or argon atmosphere.

(3)

>wNê& 3,017oC oC, TiC~ [6 f 3,017oC Ò >wNêº 3,017oCšæ‚ B‚ ²Wö

~~ TiC¢ B–~º ãÖöº "*‚~ ôf ¶š šÒŽb‚ 

²Nê& >wNêö R á Žb‚ š¢ J~¢ ‚.

Ti-Nêö &‚ Fig. 3~ çï;êö ~~š Úç~ 檚 9f º*~ VÚç~ î²ö ϚŽj r > ®. αç" βç~ 檚

ÏÚ¢ ;W~ *¶º î²~ ö¶ %& 23% Ò 궺 î²

~ ö¶ %& 6.2%ræ ÏÚ¢ ;W‚. 6‚ TiNf î²~ ö¶ %

& 28%¦V 50%ræ 9f î² ³êö &~ ¢çb‚ šÒŽj r > ®. æª" î²Òš~ ǂ çï;ꂦV ²Wö

&‚ >wV’f Wb~ –Wö &~ ôf &j &^¢ ‚. ¢

>'b‚ Ú-VÚ >wf ²*šö “‚~ >wbš Wb‚ *

æª" î²Òš~ >wf B>w(Ti+1/2N2=TiN+80.75 Kcal/ mol)b

‚ >wNêº 4,630oC‚ j" ¸b– TiN~ [6f 2,950oCš.

TiNj W~º ãÖö î²~ {Kf WB TiNš æª" 

šÒ>æ pêƒ >wNêöB~ TiN~ šÒö ~‚ î²~ {K

ê& >wNêö R á ~² B. V¢B, >wNêöB êÖB î²~ šÒ{K R Ôf î² {K~öBê TiN~ W

š &Ë~² B[22-27].

TiC~ ²WöB >wf æª~ Ï[ö ~š ·>– š:š

º Ï[B çb‚¦V Ö;zö ~~ WB. 檚 Ï[>š

ê² «¶ Қ~ Vj jÖV *š Î^& ¢öö ~~ Ï[B

檚 všV ·~ š‚Ž >wb Қ~ 7/š'š Ã&~

– æ³'ž ²>wš ·B. V¢B æª~ Ï[š 7º‚ 

†j ~– šº {Ö 5 Ϛö ~‚ ê²~ 2Ê¢ Ã&B >w³ ê¢ ËçÎ. Î^& ¢öf æª~ «¶~ ’V& – ãÖö N

³ê& >– .³ «¶~ ’V& ·f ãÖöº Î^& ¢öf Z

† > ® {֚ N³ê& B. TiNj W~º ãÖö î²~ Ž RöB {Ob~ Vêº Ï[B 檚 {Ob~ Vj j*® j Þ ãÖ~ 8" ¢~~º ãÖö ‚ç~ Ö"¢ áj > ­. V¢B, {Ob~ ‚'&êº V ¦bªNš Ï[B æª~ ¦bªN" ¢

~~º ã֚. æª~ ¦bªNš ·j ãÖöº {Ob~ Vj

¦ª'b‚ jÖæ‚ >wbҚ~ 7/š'š 6²~–, >&‚ æ ª~ ¦bªNš – ãÖöº ®jº‚ ª~ [ÏB 檚 ;W

>Ú š©š ‡«(heat sink)b‚ ·Ï~ ²Nê¢ ÎÚNÖ.  æª~ Ï[š æ¾~š Ï[B æªf ³'ž zÞÓÊ¢ ;W~

 î²~ ŽR¢ Oš~ ç‚ ·~ 檚 >wb‚ β B . V¢B, >wbš j*® *z~V *~º {Ob VÚöB~

î²~ FÏW" >w³ê¢ J~¢ ‚. æª" î²~ ãêš

öB {Ob ž¦‚¦V ãêšræ {Ö~ Jº î²~ ŽRNš ã êšöB î²~ ²ÎN" ?jæº çš šÒ‚. v &æ ³ê~

ç&'ž ’Vö V¢ ‚š²f [~²& ¢ÚÂ. ‚š²º Ž RNš Ôf ãÖö {»b~ ž¦~ ‚šöBò ²>wš ¢Ú¾ * zNš j" Ôjæ– [~²º ŽRNš ¸j ²>wš {»b * ÚöB ¢Ú¾ *zNš ¸² B[5].

3. þ

²Wö Òς >wbf Table 1ö ¾æ :f ?š æª ªö f Cerac Co.öB ’«‚ ï«ê& 31µmš Bê& 99.5%, ê² ªöf Cerac Co.öB ’«‚ ï«ê& 10µmš Bê& 99.9%ž

w(C1), Aldrich Co.öB ’«‚ ï«ê& 33µmš Bê& 95.0%

ž ‚Wê(C2) 5 Ê.³öB ’‚ ï«ê& 0.2µmš Bê&

99.9%ž š:¿(C3)j ÒÏ~&. ‚Wêf ‚š'š ’ V~

’V& 9² ª>Ú ®Ú êzîz æª(TiCxN1−x)j ²W~º ãÖö "‚ ÒÏ~&.  W;&Ê(")öB ’«‚ Bê&

99.99%ž VÚ¢ ÒÏ~&.

æª" ê²~ ªöf "&j ÒÏ~ b‚ êö {OV¢ ÒÏ

~ 1-6 Kgf/cm2~ {Kj &~ ç㚠2 cm, ^š& 0.6-3.0 cmž

Fig. 2. Phase diagram of the binary Ti-C system[20].

Fig. 3. Phase diagram of the binary Ti-N system[21].

Table 1. Description of titanium and carbon reactants in the powder

Designation Composition Manufacture Purity(%) Mean particle size(µm)

Ti Titanium Cerac co. 99.5 31

C1 Graphite Cerac co. 99.9 10

C2 Activated carbon Aldrich co. 95.0 33

C3 Carbon black Lucky metals corp. 99.9 0.2

(4)

z B39² B5^ 2001j 10ú

Þ6*ö RJ ¹ ¾Fç~ kÊv j¢~Þf 0.3-0.5 cm~ *Ïj Fæ~êƒ ~&. ê²*¢ ÒÏ~ >wV~ {Kš 600 mmHg&

îz 檚¾ êzîz æªf 1V{~ î²~öB >wj V

 êzæªj W~º ãÖöº 3V{~ jš~öB >wj >

¯~&. ²Nêº Minolta Co.~ j7/ž Nê(Model TR- 630A)f R(PtRh-Pt) *&¢ ÒÏ~ G;~&. ²ç¢ G;~

V *~ ³êž Nikon šz¢(Model F3)¢ šÏ~&. TiCxN1−x

~ –W" Ö;çj ªC~V *~ Rigaku Co.~ X-ray diiffractometer (Model RAD-C), ‚š~ ßWj ªC~V *~ Jeol Co.~ scanning electron microscopy(Model JSM-840A), ‚š', V’V 5 Vª

¢ G;~V *~ Micrometrics Co.~ BET surface analyzer(Model ASAP 2000) 5 >wb" Wb~ –Wj ªC~V *~ Kyoto Optical Laboratory~ ICP-AES(Model Mark II) j ÒÏ~&.

4. Ö" 5 V

êzîz æª(TiCxN1−x)j ²W~º ";j ÚÚ š Fig. 5 ö ¾æ :f ?š n;²& ¢Ú¾ ¢‚ ^¢š W> 

²2& {Obj j*® Û"‚ röê âîÿn Nj Fæ~šB

²Nê 5 ²³êö ôf 'Ëj † öò jî¢ ²WöB {Ö" Î^& ¢ö~ N³ê¢ Ö;~º 7º‚ ž¶š. æª~

²Wš†öB ÚÚ :f ?š æª~ «ê& j" ·bš Î

^& ¢öš ¢Ú¾æ p {֚ N³êž >šö «ê& j" ’ Fig. 6b‚¦V æª~ ’V& Ã&†>ƒ ²Nê 5 ²2~ *

~ Ï[B æª" ê²f~ 7/š'~ 6²‚ >w³ê& ¶Jæ w 檚 ôš β >Ú TiC~ bWj ÎÚNÒ² B. æª~

«ê& 45µm¢ r ²Nêº 1,840oC, ²³êº 0.54 cm/sec‚ 

²Nêº "*‚~ ¶‚ >wNê 3,017oC R Ô² &

G>î. š‚ ²NêöBº Fig. 2‚¦V ‡Úf TiC~ v &æ çš šŽj r > ®. TiCº NaCl" ?f š«O(fcc) Ö;’–

¢ &æ ®b– æª~ Ö;϶³~ :šÚ*ö ê²& *~‚

;‚ F֏j ~ ®b– ϶ç> ao=4.327çš.

²Wö ~~ WB TiC¢ >wb~ ’CB‚ Î&~º ãÖ ö ²Nêf ²³ê~ æz¢ Fig. 7öB  " ®. ’CB~

·š Ã&†>ƒ ²Nêf ²³êº –~ F;'b‚ 6²‚. ’ CB~ ·š 45%šçš >š ²>wš ·>V& ÚJò >wš ²

ž>î. TiC¢ ²W~º ãÖö Fig. 8öB r > ®º :f ?š

æªb‚ ò {Ob~ &ê& Ã&Žö V¢B ²Nêf ²³ êº Ã&~&. æª ªöf Table 1öB r > ®º :f ?š ï

«ê& 31µmš– ·f «¶º –~ ì &¦ª~ «¶& ï«ê

¦"~ «ê¢ &æ ®. šrö {Ob~ &ê¢ TiC {Ob~ š

†&êž 4.25 g/cm3b‚ ¾. ç&&ê¢ ÒÏ~&. {Ob~ ç&

&ê¢ Fig. 8~ º*<ž 50%šçb‚ Ã&ʚ ²Nêf ²³

‚ .çB. šº {Ob~ &ê& .Z Ôbš >w~ ³'ž 

*ê& Ú[ Ï[B æª~ ¦bªNš V~ ¦bªN ·f

>šö &ê& .Z ¸f ãÖöº *ê& Ã&~ ž¦‚~ ¶

檚 ‡«b‚ ·ÏŽb‚ 7*~ ç&&êöB ‚'–šš B . Munirf Anselmi-Tamburini[5]& æª" †(B)b‚¦V ²

Wö ~~ TiB2¢ W~º ãÖö æª «ê& 300µm‚ ò {

æª" ¦V Ú-VÚ*~ >wö ~~ TiN" TiCxN1−x

¢ W~º ãÖö ê²& &G>î TiN~ ãÖö Fig. 9öB r

> ®º :f ?š Wbž TiN~ ’C†j Ã&ʚ ê²*š

BB® Ã&~V ·~º ©j r > ®. î²~ {Kf Munir [22]

š >¯‚ :f ?f 1V{j Fæ~& ’C†š Ã&~š ê²

*š j" BB® Ã&~V ·~& ’C†š 20%¢ ."~š ê

²*š †š² Ã&‚. šº TiN~ ’Cb‚ ²Nê& Ôjö Fig. 4. Schematic diagram of the experimental apparatus for combustion synthesis.

(5)

b‚Ž æª~ Ï[š '² ¢Ú¾V r^š Ï[B æª~ Î

^& ¢öš JÑÿn æ³>Ú ê²*š Ã&‚ ©b‚ 'B.

 &æ –šöB TiNj ²W~º ãÖö áj > ®º ê²

*j Table 2ö º£~ ¹~. šö ~~š TiNj W~º ãÖ ö ²Nêº 1,480oC, ²³êº 0.38 cm/sec Ò ê²*f 33-102.& &G>îb– TiCxN1−x¢ W~º ãÖöº ²Nê 1,630oC, ²³ê 0.42 cm/sec Ò ê²* 21-51.¢ áîb–

š‚¦V TiCxN1−x TiNj W~º ãÖö ê²*š z ^²

&G>îrj r > ®.

Fig. 10f ²Wö ~~ TiCxN1−x¢ W~º ãÖö æªö

&‚ ê²~ Öjö Vž ²Nêf ²³ê~ æz¢ ¾æÚ ® º– ê²~ ·š Ã&†>ƒ ²Nêº F;'b‚ Ã&~ ²³ êº jò~² Ã&Žj r > ®. šº Ï[B æª~ Î^& ¢ ö~ ßûb‚ ²Nê& ¸z¢ê ²³êöº ê 'Ëj ~æ á

‚. ²Nêf ²³ê~ Ã&º ê²~ ·š Ã&~š Ï[B  æª"~ 7/š'š Ã&Žb‚Ž ê²~ bî*š Ã&~V r^

š. 겂 ‚Wêj ÒÏ~š æªö &‚ ê²(C2)~ ·†j x&

0.7ž ãÖö TiCxN1−x¢ W~º ²Nêº £ 1,800oC, ²³êº 0.40 cm/sec& >î.

¾, 겂 wj ÒÏ~ TiCxN1−x¢ ²W~š æªö

&‚ ê²(C1)~ ·†j x& 0.7ž ãÖö {Ob~ ç&&êö &‚

²Nêf ê²*~ æz¢ Fig. 11ö  " ®. šö ~~

š ç&&ê& Ã&Žö V¢B ²Nêf ê²*š Ã&~&

Fig. 5. Sequential photographs of combustion waves showing (a) the stable combustion and (b) the after-burn reaction for produc- ing titanium carbonitride(TiCxN1x).

Fig. 6. Effect of particle sizes of titanium on the combustion velocity(,,) and combustion temperature(55) for producing the stoichiomet- ric titanium carbide(TiC). Carbon is graphite(C1).

Fig. 7. Effect of product dilution on the combustion velocity(,,) and combustion temperature(55) for producing the stoichiometric titanium carbide(TiC). Carbon is graphite(C1).

(6)

z B39² B5^ 2001j 10ú

ç&&ê& 50%;êöB ‚&& B êö ç&&ê& z× Ã&~š 

²Nêf ê²*f 6²~&. šº {Ob~ &ê& Ã&~š V

†š 6²~ *êº Ã&~& &ê& z× Ã&~š V†š

z× 6²~ Ï[B æª~ Î^& ¢öb‚ î²~ ŽR& &š

>V r^š¢ ÒJB. Fig. 12ö æªö &‚ ê²(C1)~ ·†j x

~ æzö V¢ TiCxN1−x¢ ²W~º ãÖö &G>º ê²*

~ æz¢ ¾æÚ ®. ·†j x& Ã&Žö V¢B ê²*f Ã&~& x& 0.7öB ê²*š ‚&& B êö x& z× Ã&~

š ê²*f 6²~&. šº ê²~ Žïš Ã&~š ²Nê&

çß~ Ï[B 檚 Î^& ¢öö ~~ ê²f 7/~º >

w*š Ã&~V r^ö ê²*š Ã&‚ ©b‚ 'B. 

¾, ê²~ Žïš z× Ã&~š Ï[B æªö ~~ î²~ ŽR

®.

Fig. 8. Effect of relative density of compacts on the combustion veloc- ity(,,) and combustion temperature(55) for producing the sto- ichiometric titanium carbide(TiC). Carbon is graphite(C1).

Fig. 9. Effect of product dilution on the after-burn time(éé) and weight gain(,,) for producing the stoichiometric titanium nitride(TiN).

Table 2. Comparison of combustion velocity and after-burn time for producing combustion-synthesized titanium products

Product1) Ignition temperature Combustion temperature Combustion wave velocity After-burn time(sec)

TiC 560 1,855 0.57 -

TiCxN1−x2) 550 1,630 0.42 21-51

TiN 980 1,480 0.38 33-102

1)Carbon is graphite(C1).

2)Stoichiometry x is 0.7.

Fig. 10. Effect of the ratio of carbon to titanium on the combustion veloc- ity(,,) and combustion temperature(55) for producing the sub- stoichiometric titanium carbonitride(TiCxN1−x). Carbon is acti- vated carbon(C2).

Fig. 11. Effect of relative density of compacts on the after-burn time(,,) and combustion temperature(55) for producing the substoichio- metric titanium carbonitride(TiCxN1−x, x=0.7). Carbon is graphite (C1).

(7)

Fig. 13ö ¾æ :f ?š 겂 w(C1)j ÒÏ~ ²Wö

~~ B–‚ TiC, TiN 5 TiCxN1−x(x=0.7)~ ‚šj ÚÚš TiCº

¢‚ ²ï(grey), TiNf .ž¦ï(golden yellow) Ò TiCxN1−xº jv' ¢‚ '.ï(reddish brown)j † ®Ú šš ;{~² 

²WB ©j ö·† > ®. 겂 š:¿(C3)" w(C1)j Ò Ï~ ²W‚ TiC~ ‚šj ÚÚ š Fig. 14ö ®º :f ?š

š:¿j ÒÏ~ TiC¢ W‚ ãÖöº æª «¶š Ï[>Ú

&ê Ö;ž >šö ‚Wê" š:¿f Â[’–¢ &ê Ö;b‚

¢~‚[17]. ²Wö ~~ B–‚ TiN~ ž¦f Ú¦~ ^–

çj jv‚ Fig. 15‚¦V Ú¦öBº ž¦ö j~ îz>wš &š

>îrj ö·† > ®.

겂 š:¿(C3)j ÒÏ~ ²W‚ TiCxN1−x~ ^–çj

 " ®º Fig. 16b‚¦V ê²~ ·š 6²†>ƒ æª~ Ï ê(C2)j ÒÏ~ ²W‚ TiCxN1−x~ XF².ªCj ¾æÚº Fig. 17‚¦V 2θ=37o 5 2θ=43oöB ¾æ bš’‚¦V TiCxN1−x&

šÒŽj {ž~&, 2θ=62o5 2θ=77oöB j" ·f TiCx~ bš’f 2θ= 74oöB TiN~ j" ·f bš’& ¾æ¾º ©b‚ Ú TiCxf TiNš ®Bb‚ ï šÒŽj {ž† > ®î. Fig. 18~ X-ray dot mapb‚¦V TiCxN1−x

ž† > ®î TiCxN1−xöB æªf ¢~² ª>Ú ®b¾  æª~ Ï[š ¢Ú “²æöBº ê²f î²~ ·š ç&'b‚

6²~&. ê²& ·š 'f ¢¦ªöBº î²& ŽR~ TiNj

xN1−xWöB TiCxf TiNš ¢;‚

jN‚ W>V º î²~ ŽR& Ϛ‚ ¦ªöB TiNš ;W>

– 檚 Ï[B ¦ªöBº ·†jö &rÚ TiC& ;WB  'B.

Fig. 12. Effect of the ratio of carbon to titanium on the after-burn time (,,) for producing the substoichiometric titanium carbonitride (TiCxN1−x). Carbon is graphite(C1).

Fig. 13. Photographs of (a) TiC, (b) TiCxN1−x and(c) TiNceramics pro- duced by combustion synthesis. Carbon is graphite(C1).

Fig. 14. Scanning electron micrograph of combustion-synthesized stoi- chiometric titanium carbide(TiC) using the (a) carbon black (C3) and (b) graphite(C1).

(8)

z B39² B5^ 2001j 10ú

5. Ö †

²Wö ~~ NöB ãê 5 Özö &‚ n;Wš Ö>‚

TiCxN1−x¢ W~ š~ ²ßWj ÚÚ~. TiCxN1−x¢ W~

º– æª~ Ï[š 7º‚ ";b‚ Ï[B æª~ Î^& ¢ö

" ê² 5 î² {֚ š~ Wö Ö;'ž †j Žj {ž† >

®î. Úf Ú*~ &¦ª ²>wöBº &G>æ pf ê²

& 33-102.ÿn &G>î šº æª~ *zNö 7º‚ †j †

²‚º š:¿j ÒÏ~º ©š >wWš B¢ ¸j Ö>‚ TiCxN1−x

¢ W~º ©b‚ 'B. ê²~ ·š Ã&~š æª~ Ï[f Ã&ʾ >w ê²& ôš šÒ~² B. „b‚ ê²*š

TiCxN1−x~ ßW" >Nö ~º ç^‚ '˚ V>Ú¢ † ©š.

Fig. 15. Scanning electron micrograph of combustion-synthesized tita- nium nitride(TiN) in the (a) exterior and (b) interior surface of the products.

Fig. 16. Scanning electron micrograph of combustion-synthesized sub- stoichiometric titanium carbonitride(TiCxN1−x) with the ratios of (a) C/Ti=0.7 and (b) C/Ti=0.65. Carbon is carbon black(C3).

Fig. 17. X-ray diffraction patterns of combustion-synthesized substoi- chiometric titanium carbonitride(TiCxN1−x, x=0.65) using the (a) carbon black(C3) and (b) activated carbon(C2).

Fig. 18. X-ray dot maps of combustion-synthesized substoichiometric titanium carbonitride(TiCxN1−x, x=0.6) for the elements of (b) titanium, (c) carbon and (d) nitrogen.

(9)

6 Ò

 ’º 1998jê š“&v Fê‹’j~ æöb‚ >¯>

îb– šö 6Òãî.

^^ò

1. Merzhanov, A. G. and Borovinskaya, I. P.: Combust. Sci. & Tech., 10, 195(1975).

2. Crider, J. F.: Ceram. Eng. Sci. Proc., 3, 519(1982).

3. McCauley, J. W.: Ceram. Eng. Sci. Proc., 11, 1137(1990).

4. Hlavecek, V.: Am. Ceram. Soc. Bull., 69, 537(1990).

5. Munir, Z. A. and Anselmi-Tamburini, V.: Mater. Sci. Report, 3, 277(1989).

6. Munir, Z. A.: Ceram. Bull., 67, 342(1988).

7. McCauley, J. W.: Ceram. Eng. Sci. Proc., 9, 503(1988).

8. Frankhouser, W. L.: “Advanced Processing of Ceramic Compounds,”

Noyes Data Corp., Park Ridge, New Jersey(1987).

9. Toth, L. E.: “Transition Metal Carbides and Nitrides,” Academic Press, New York(1971).

10. Storms, E. K.: “The Rafractory Carbides,” Academic Press, New York(1967).

11. Stasyuk, L. F. and Neshpor, V. S.: Sov. Powder Metall. Ceram., 18, 851(1988).

12. Kim, S. H.: Chemical Industry and Technology, 8, 506(1990).

13. Shkiro, V. M., Borovinskaya, I. P. and Merzhanov, A. G.: Sov. Pow- der Metall. Ceram., 18, 684(1979).

14. Arbuzov, M. P., Moshkovskii, E. I. and Lyashchenko, A. B.: Sov.

Powder Metall. Ceram., 20, 426(1981).

15. Kirdyashkin, A. I., Maksimov, Yu. M. and Nekrasov, E. A.: Com- bust. Explos. & Shock Waves, 17, 377(1981).

16. Nekrasov, E. A., Smolyakov, V. K. and Maksimov, Yu. M.: Comb.

Explos. & Shock Waves, 17, 513(1982).

17. Holt, J. B. and Munir, Z. A.: J. Mat. Sci., 21, 251(1986).

18. Sarian, S.: J. of Appl. Phys., 39, 3305(1968).

19. Sarian, S.: J. of Appl. Phys., 40, 3515(1969).

20. Baldoni, J. G. and Buljan, S. T.: Ceram. Bull., 67, 381(1988).

21. Pierson, H. O.: “Handbook of Chemical Vapor Deposition,” pp. 213 (1992).

22. Munir, Z. A., Deevi, S. D. and Eslamloo-Grami, M.: High Tempera- ture-High Pressure, 20, 19(1988).

23. Deevi, S. and Munir, Z. A.: J. Mater. Res., 5, 2177(1990).

24. Munir, Z. A. and Holt, J. B.: J. Mater. Sci., 22, 710(1987).

25. Eslamloo-Grami, M. and Munir, Z. A.: J. Am. Ceram. Soc., 73, 2222 (1990).

26. Eslamloo-Grami, M. and Munir, Z. A.: J. Am. Ceram. Soc., 73, 1235 (1990).

27. Agrafiotis, C. C., Puzynski, J. A. and Hlavacek, V.: Combust. Sci. &

Tech., 76, 187(1991).

참조

관련 문서

• 예제 3.1) 메탄 가스의 연소반응에 대한 알짜 연소열(net heat of combustion)과 총연소열(gross heat of combustion)을 계산하여라... 이 자발적인 과정 은

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Key Words : Staged Combustion Cycle(다단연소 사이클), Liquid Rocket Engine(액체로켓 엔진), System Design(시스템 설계), Combustion Chamber(연소기),

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Waste fuels were selected to examine their characteristics of pyrolysis and combustion in a laboratory scale combustor in which a nearly single particle combustion