• 검색 결과가 없습니다.

Solid Waste Fuel Combustion in a Fluidized Bed-Characteristics of a Lab-scale Combustor and Experimental Parameters

N/A
N/A
Protected

Academic year: 2022

Share "Solid Waste Fuel Combustion in a Fluidized Bed-Characteristics of a Lab-scale Combustor and Experimental Parameters"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Solid Waste Fuel Combustion in a Fluidized Bed-Characteristics of a Lab-scale Combustor and Experimental Parameters

Jinhwan Choi, Youngho Park and Sangmin Choi

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea (Received 4 June 2001; accepted 7 August 2001)

º £

b‚ VÂ>º CO, CO2³ê¢ ² ’öB ³'b‚ G;~ ê² *~ ³ê, C ê² ²>N, ï ê² *~ 

* j Ö;~&. 600-800oC~ Nêº*öB Nb‚ Fæ>º Fÿ[ ²–šö 檚 > cmž ò «¶¢ R«~

& «¶~ >w ";j š–, î>B, J ²‚ ’ª~ >w ßWj {ž~&. *Ú ² ";" * ";ö 'Ëj

"º "º ž¶¢ ò ßW" ²–šb‚ ¾*Ú Ö;~&.

Abstract−A laboratory scale fluidized bed reactor was developed to investigate the combustion characteristics of selected solid fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experimental determination of the solid fuel particle characteristics through the pyrolysis and combustion processes. A nearly single particle combustion con- dition was reproduced in a fluidized bed and the progress of reaction was observed by determining the rate of carbon conver- sion, the overall recovery of carbon in gas phase, and the mean conversion time, which were determined by measuring the gas phase carbon containing species, namely CO and CO2 at the exit of the combustor. For a fuel particle whose characteristic length was a few centimeter in a fluidizing environment of 600-800oC sand in a thermally maintained reactor, the sub-processes of fuel drying, pyrolysis as well as the combustion of residual carbon were clearly identified. Major parameters which affect the overall and indi- vidual combustion processes were evaluated in terms of the fuel properties and the combustion environment.

Key words: Fluidized Bed, Combustion Characteristics, Mean Conversion Time, Rate of Carbon Conversion

1. B †

Fÿ[ ²‚öBº FÿzB ξf òҚ~ b" 7/ WË

š Ú¾  5 bî *öB çú‚ WËj š–, š¢ šÏ~

9f º*~ Ú ò¢ ²Ò > ®º ©b‚ rJ^ ®. Vš

~ ²VVöB ¾Ò~V ÚJÚ &/ òê Fÿ[ ²‚öBº ± f b" Z Ú~* {ªö jv' ±f ² ßWj ž[1]. „ b‚ z× ·‚ Ú ò& Fÿ[ ²‚¢ šÏ~ ö.æöb

öB Ú ò~ ªš/² ßWf Fÿ[ ²‚ Jê 5 Ú*ö ® ÚB 7ºšæ ®.

æ.ræ Fÿ[ Ú Ú ò~ ² *çö &‚ ’& 7º*~

² šÚ^zb– ß® Cêö &‚ ’ ¶ò& ôš {>Ú ®.

š*~ ’‚¦V Ú ò~ ² ßWö &‚ šš& ç>& ; ã>Ú ®b¾ ò~ «~f ²–š~ ·Wj >'~º –º ‚ ê¢  z. 6‚ Fÿ[ ²‚~ ãÖ J ²ö &‚ ššº ô f ê*j &b¾ >Bª~ ²ö &‚ ©f ’² ê*>æ á®.

·‚ òö &‚ >Bª~ B ³êf ·, ² ";ö &NB ;

& ¦—~V r^ö Fÿ[ ²‚~ Jê";j êz ʺ– B

£š > ®[3]. î>B ";" >Bª~ ²ö &‚ ;º >Bª

 ’~ Ï'f Fÿ[ ² –šöB Ú öVb~ ªš/² ßWj þ'b‚ &V~ Ú öVb ò~ ² ßWš Fÿ[

²‚ ʂö ~º 'Ëj ï&~º ©š. Fÿ[ ² –šj Î҆ > ®º þ Ë~öB öVb Ú òf šf –Wš j݂

öVb ò~ Fÿ[ ² ßWö &‚ ’Ú'ž þÖ"¢ B‚~

To whom correspondence should be addressed.

E-mail: smchoi@kaist.ac.kr

(2)

Vö „B Ú öVb ò~ ªš/² ";j 2k~V *‚ þ O»" þÖ"~ šC O»j B~ þ ²‚ ßW" Ú ö Vb «¶ ²f &NB þž¶ J;ö &‚ J ғj B~

¶ ‚.

2. «¶ ²

Fÿ[ ²‚öB Ú ò& Æ bî~ 1-2% ;ê¢ Næ‚

š R«B «¶~ ’Vö j~ Fÿ[ Æ~ š' 6º Ú'š

Ö ’V r^ö R«B ò «¶~ ²º Fÿ[ ÆöB ¢‚ "

V Fÿ[ ƺ V(bubble) ', Vö ~š rJ R¢&º

š’(wake) '" &¦ª~ Fÿ[ Ï*bš šÒ~º ³ê(emulsion) 'b‚ ’ª† > ®. Fÿ[ ²‚öB VÚ~ vªf Vf 

š’ çöB – F³b‚ vš ³êçöBº ·f F³j <º[4].

Fig. 1f Fÿ[öB  «¶ ² ";ö &‚ Bvêš. R«B  Ú «¶º ³êçöB šÒ~ VB ²B. «¶~ ² ";f

&→>ªÃB/î>B→ªê/J ² ";b‚ ¾† > ®. >B ªš †^ ¾* ê Vê' ;ê& ÎÚ^B £² ¦Bæº «¶~ ãÖ ö >Bªš †^¾* «¶ :‹ óîf ^ «¶‚ ªÒ> š «

"; êöê ;& Fæ>º ãÖöº «¶ "æöB~ >Bª ² ö ~‚ Ö² Ösb‚ J ² ";š æB. î>B ";öB  Z .¢ê îj V¢B J «¶º >B~ «¶‚ ¾~ÚæVê ‚.

«¶‚¦V OÂ>º >Bªf ³ê'j –~–¾ Vö F«>

Ú *Ò 'b‚ TÎ*. š ";öB Ϫ‚ Ö² ³êf Nê

–šš {>š >Bª~ ²& ¢Ú¾–, Fÿ[ 'öB~ Ú~

*" Ö²& Ϫ~æ á~š *Ò‚ &W VÚ Wªš *š>

Ú >Bª~ *Ò ²& ¢ÚÂ.

3. þË~ 5 O»

3-1. þË~

3-1-1. V. ªC

Bï G;f ‚&ò‚ ;B Leco 350A Bï G;V¢ ۚ

âWª ªCf >ª G;~ ãÖ 105oC, &ª Žï G;~ ãÖ 820oC‚ Fæ>º &‚öB ò& j* š– 6º ²B ê~ î

ï æzNj êÖ~ >¯>î. >Bª G; O»f &ª G;"

ÿ¢~– î²&Ê¢ "«š &‚ö F«>º Ö²¢ N~º ©š

ö² ªCf EA1110-Fisonsion ö² ªCV(0.3% š~ JN)¢ šÏ

~ šÚr.

3-1-2. Fÿ[ ²‚

100 mm, Æ ¸š 200 mm, *Ò ¸š 900 mm Ï~ ’Vš.

Fÿz Vº îï Fÿ –.V(mass flow controller)ö ~š ¶ÿb

~ &F" Æö />º Fÿz V~ Nê¢ ¸šV *‚ .

V& J~>Ú ®. Æ Nêº 600-800oC º*öB –.>î. F ÿ҂º ï «ã 550µm, &ê 2,300 kg/m3, V† 0.35~ ξ¢

ÒÏ~&. ‚² Fÿz ³êº çN(15oC)öB 0.15 m/secš.

Æ~ Nê, *Ò~ Nê 5 «¶~ Nê¢ K type *&‚ G

;~&. Ö²º ç¶W ªCV(Rosemount, Model 755R), šÖzê² f ¢Öz겺 jªÖ 'žF» ªCV(Rosemount, Model 880A)¢

šÏ~ G;>îb– ªCVº ‚&&Ê(O2 21%, CO 7,114 ppm, CO2 8.4%)ö ~š ;>î. ªCV JNº G; º*öB 0.2% š

~š. ªCV~ G; Ö"º ¶ò ³ Ë~f Vö ~š 0.5.

*Ïb‚ Vƒ>î. NOx³êê G;>æò  ’ "Bf &NW

3-2. þO»

Ú «¶~ ßN ªš(î>B ";)f ²(J ²) ßWj šš

ÿ[ ² þË~ö R«~ V&Ê ªCj ۚ ² ßWj &V

~º O»š B>î[5-8].

Fig. 1. Solid fuel particle pyrolysis and combustion process in a fluid- ized bed combustor.

Fig. 2. Lab-scale fluidized bed combustor.

(3)

‚¦V ê² *~ ³ê, ê² ²>N" ï ê² *~ * j êÖ

~&.

3-3. šCO»

² &ÊöB G;B COf CO2~ ³ê(CCO, CCO2)f ² &Ê F ï(Q)j šÏ~ r" ?f b‚ ß; *ræ ê²~ ²ï(n, mol)j êֆ > ®.

(1)

C ² *j tB

(2)

ê² ²ï~ êÖ (1)j *b‚ ª~ C ê²ïb‚ ¾*º

 (3)" ?š ê²~ *~ ³ê(rate of carbon conversion, 1/sec)¢ ;

~† > ®.

(3)

ê² *~ï(fraction of carbon conversion, %)f WªN‚ ‚>–

(4)

ï ê² *~ *(mean carbon conversion time, sec)f Fÿ[ 

²‚öB ê² º~ï .Gö ç7'b‚ 'Ï &˂ ž¶‚B j¾

" ?š êÖB[6].

(5)

R«B ê²ï" V&Ê G;j ۚ êÖB ê²ï"~ j¢ ê²

²>N(carbon recovery, %)‚ ;~~  (6)j šÏ~ êւ.

×100 (6)

carbon in fuel = fuel

fcº ö² ªC Ö"‚¦V "Úæ² B.

4-2.  «¶ ² þÖ"

4-2-1. G; ‚ê 5 JN

Æö R«B «¶º ‚šb‚¦V †š² &>Ú >ª ÃB 5

ªš Nêö ê‚. «¶ ‚š 6º "*öB ²& ·>æò ªCVöB ² &Ê ³ê‚ G;~Vræ æ>º *f ªCV~

ç>(time constant)f ò j ʂöB~ Ú~*ö ~š Ö;

B. ² &Ê¢ ¦Â~Vræ žÒº *j F³, Nê, ò j

Fï, ªCV ç> j J~ êւ Ö"º Fig. 3ö ¾æÞ : f ?š 8-10.š.

* æf *»~ ï¯ šÿj ~~– š 8f *Ú >w *

(£ 500.)ö j~š ·f 8šæ‚ VÂ&öB G;B &Ê ³êº 

„ .öB B‚ ê² V&b‚ ò~ ² ßWj &V~º þ O»ç~ JNº ö² ªC, &Ê G; Ò Fï G;öB j•B.

ö² ªCj ۚ R«B ò~ ê²ïj êÖ~º– ªCV ¶Ú~

JNº 0.1% š~‚ ·æò jB ò~ &‚Wš "º JN öžš

B. &Ê ªCöB~ JNº ‚& &Ê¢ šÏ~ G; º*öB 

;~&bæ‚ JNº 1% š~š. ¾ ªCV~ ç>& 5.‚

æB 8f 5. ÿn~ ï8j ~‚. Fï BÚVº ²‚ Â

’öB G;B Fïj šÏ~ ;>î. Fïf F³G;j ۚ

n Q CCO CCO + 2

( )dt

0

t

=

N Q CCO CCO + 2

( )dt

0 tB

=

d dt---- n

N----

   Q

N---- C( CO+CCO2)

=

f n

N---- 100 %× ( )

=

tc 1 n

N----

 – 

 dt

0 tB

=

C−Rec = N --- carbon in fuel

fc×m ---12

Table 1. Results of ultimate analysis, proximate analysis and calorimetric analysis of the fuels

Water (%)

HHV (cal/g)

Dry base

Combustible(%) Ash

C H O N S Volatile Char Sum (%)

Wood 6 4200 49.8 5.2 44.5 >.01 >.01 85 15 100 >.1

Paper sludge 57 2400 27.9 4.2 27.9 0.4 >.01 50.5 8.8 59 41

RDF 4 5600 51.2 7.6 23 1.4 >.01 72 11 83 17

Fig. 3. Time lag of the system in measuring gas concentration from the time of fuel inlet.

(4)

êÖ>îb– F³ G;f bÆ Â2f JN 1% š~~ {Kê(Furness controls, FCO12)¢ šÏ~ šÚr.

¾Z~ îï" Fïj Ò~ ²Î ê ê² ²>Nj êÖ~

ê² bî >æ¢ ‚ JN 5% šÚ‚ {ž† > ®î. ®j* 

²ö ~‚ êz>²~ VÂ" Žþ „öB B‚ :f ?f þ' ®

4-2-2. ' &V

Ú «¶& N~ Fÿ[ *‚ R«>š :‚ >Bª ² z"b

;š ƒ¾š &'ž z"š ìÚæ ¯² jJž J «¶& &V B. ¾Z~ ãÖ J ²º > B~ «¶‚ ¾~Ú^ ê¯>– J 

² ";öB FÿÒf~ 7/ö ~š îÎB ^«¶& *Ò‚ j Ö>Ú Cf j ږ æ&º ©š &VB.

RDF~ ãÖº «¶ "*ö ;W>º >Bª ²ö ~‚ z"~ ’ V& ¾Z ’–, Oz ê šÚ ·f «¶‚ ¦B^ æº ©j &

V† >& ®. š–B Bæ Òæº ¾Z¾" «¶ ;¢ Fæ~š

B ²B.

4-2-3. &Ê ³ê G;" «¶ Ú¦ Nê æz

Fig. 4 2, CO, CO2³ê G

; Ö"& «¶ Ú¦ Nê G; Ö"f Žþ ‚>Ú ®. «¶&  N ~ãö R«>šB :‚ ï~ CO, CO2& B‚. Fig. 4öB 

*š £ 200 sec¢ æÆ rræ /Ï~² OÂ>~ CO2º šê 500- 600 sec

«¶~ 7¦ö ã«B *&ö ~š G;B «¶ Ú¦ Nê¢ 

š Fig. 4ö ‚B ©" ?š 100oC"¾ 6º  š~~ Nê¢ ¾æ Úº š– ";, 7¦ Nê& /Ï® çß~º(Fig. 4~ ãÖ £ 400oC öB 600oC ¦"ræ) J ² ";"  Қ~ î>B ";b‚ ’ ª> ®rj &.

>ª Žïš 16%ž š ãÖº «¶ R« ê £ 110.ræ¢ >ªš

ÃB~º š– ";b‚ " > ®. š ";öB >Bª O 5 Öz

";š ÷¯~ ¢Ú¾º ©j ² Wbž CO, CO2~ ³ê G;

Ö"‚¦V r > ®. š©f «¶~ Ú¦‚ š–& ê¯> ®º 7 ö š–& ƒÂ «¶~ ‚šöBº î>B ";š ê¯> ®º © j ~~– šº Ogadaf Werther[8]& Fÿ[ ²‚öB ~> Ò

«¶~ ªš/² ";f «¶~ Nê ª¢ Ö;~º & ";

ö ~š æV Aº. «¶~ Ú¦ö Nê ª& šÒ~– š– 5 

ªšf ?š «¶ Nêö V¢ Ö;>º ";f Fig. 5f ?š >»›

(shrinking core) ² Î;b‚ ÎÒF > ® ‚š ²ö ~‚ J 

²º >»«¶(shrinking particle)² Î;š 'ÏF > ®. «¶~

š ê¯>º ©j r > ®. Winter [9]f Ú ò «¶ ² Î

žöB Óê" ¾Zö &š šf ?f Ξj 'Ï~ «¶~ ²

";j >~'b‚ Î҂ Òf& ®.

4-2-4. ò~ «~ö Vž ² ßW

Fig. 6-8

;‚ V&Ê ³ê¢ ¾æÚî. R« .Vö î>B ";öB >Bª

²ö ~š CO2~ ³ê& /Ï® Ã&‚ r 6N 6²~º ©j &

V† > ®.

Fig. 4. Time-resolved gas concentration and particle center tempera- ture, 16% water, wood(lateral length 2 cm, cube), Tbed 600oC, flow rate 120 l/min(0.77 m/sec).

Fig. 5. Schematic representation of solid fuel particle combustion model.

Fig. 6. Time-resolved flue gas concentration, dry wood(lateral length 2 cm, cube), Tbed 700oC, flow rate 120 l/min(0.86 m/sec)PP

Fig. 7. Time-resolved flue gas concentration, paper sludge(ϕ 2 cm, sphere), Tbed 700oC, flow rate 120 l/min(0.86 m/sec)PP

(5)

Fig. 6-7~ ¾Zf Bæ Òæ~ ãÖöB CO~ ³ê& n;B 8j

¾æÚ ®b¾ Fig. 8~ RDF~ ² þÖ"öB CO ³ê¢ š

² "; *>ö žö ¸f 8j ¾æÚ æÿš ‚ ©š &VB.

šº RDF~ ãÖö «¶ ;ê& £~ ¦Bê ^ «¶ ² *ç

š væ,  Ö"‚ ªš Wb~ ·š ¾Ú¾ ²öB~

² ¦Nš ¸jæ– B‚B Ú~*" Ö²/ 5 b –šö Bº ®j* ²& ¢Ú¾º ©b‚ šCF > ®.

Fig. 9º Fig. 6-8ö ¾æÞ CO, CO2³ê¢ šÏ~ „ .öB ;~

‚ ê² *~ ³êf, ê² *~ïj êւ Ö"š– ê² ²>N" ï

 ê² *~ *š Table 2ö ;Ò>î. ï ê² *~ *f  (5)ö ¾æÞ :f ?š Fig. 9öB ê² *~ï(Fraction of C_conversion)

¢º ©f š ² þöB R«B ê²& Îv VÚ ç ê² z

''~ òê *~ ³êö V¢ j* *~ö ê~º *f š æò *>'ž ê² *~~ ÎÛf jÝ~² ¾æ¾ ®. š *~ ³ ê¢ B~² ê'b‚ š Fig. 10" ?š v ’*b‚ ¾2 > ® b– š¢ '' î>B ";" ‚š ²(J ²) ";b‚, 6‚ *~

³ê F~ æ6ræ~ *j ¯V î>B «ò*(apparent devolatilization time)b‚ ¦šV‚ ‚. Fig. 9ö ¾æÞ ¾Z, Bæ Ò

æ Ò RDF ò~ þÖ"¢ š ¾Zf Bæ Òæº FÒ

‚ ãËj š¾, RDFº ‚š ²ö š~º ’*š .ö j² ¾ æ¾æ pº ©j " > ®. ' &Vj Û~ " r ¾Zf Bæ Ò

æº î>B "; ÿnö «¶‚B~ ž;j Fæ~ ®º– >~

 RDFº î>B ";š ê¯>šB «¶f FÿÒ Òš~ 7/ö ~

š «¶& ¦BæšB ·f «¶‚ £² ¾~Úæº ©š &V>î.

‚ &š FR †š² ê¯>šB ‚š ²ê î >B";" ’ªš

ÚJÞ ;ê‚ /Ï~² ê¯>º ©b‚ ï&† > ®.

Fig. 9~ ¾Z ² þÖ"ö ‚B ©" ?š î>B ";š ƒ¾ º 6f 180 secš š 6öB ê² *~f 80%š. š 8f >

B ";" J ² ";š ’ª>º ãÖê î>B "; ÿnö J 

²& ¢¦ ê¯>îrj ~‚.

ê² *~ ³êº Ú «¶ R« .V~ î>B ";öB – 8j

<, J;B þ –šöB î>B ";f 200. šÚö –~ jòB

¾ >Bªö jš 'f Žï r^ö J ² ";š ï ê² *~

*ö ~º 'Ëf '.

4-3. þ²‚ ßW" þ ž¶

4-3-1. ²‚ ßW

þ ²‚ Æ~ Nêº V .Vf N *Vö ~š ò

& R«>V *ö J; Nê‚ –.F > ®î. ò R« êö ² ö ~‚ Bf ò «¶& Ú~~º Æ Nê¢ ¸šæò – Ïï

~ FÿÒ& jÏ·Ïj ~V r^ö þ~º ÿn~ Nê æz¢ J

;~~ 10oC šÚ‚ Fæ† > ®î.

îï Fÿ BÚVö ~‚ Fï~ n;' –." Fï BÚ~ ϚW f bî >æ êÖ ç~ JN¢ *&. «¶~ C >w *ö jš †

ž V&Ê G; ʂ" êÏ® BÚB Fïf ê² V&~ bî >æ

‚ ê² V&b‚ êÖB þž¶¢ ۚ Ú ò~ «¶ ² "

Fig. 8. Time-resolved flue gas concentration, RDF(ϕ 2 cm, L2 cm, cyl- inder), Tbed 700oC, flow rate 120 l/min(0.86 m/sec).

Fig. 9. Fraction and rate of carbon conversion: dry wood, RDF, paper sludge, Tbed 700oC, flow rate 120 l/min(0.86 m/sec).

Table 2. Carbon recovery(%), mean conversion time(sec) : Tbed 700oC, flow rate 120 l/min, dry fuel

T(oC) C_Rec.(%) tc(sec)

Wood 99 121

Paper sludge 97 136

RDF 1000 076

Fig. 10. Definition of devolatilization region and char combustion in the carbon conversion rate graph.

(6)

;ö &‚ ßW ªCj ;ï'b‚ &Ë~² ~&.

4-3-2. ² ßWö 'Ëj "º ºž" ßW

J Wªö jš ôf >Bªj Ž‚ Ú öVb~ ²öB >B ª~ ²º >Bªš "º öšV r^ö 7º‚ Jê ž¶& B [8]. î>B ";f «¶~ & ";ö æV Ab– «¶~ &";ö î>B "; ¶Ö J >wf ÆöB~ «¶ Ú~*ö 'Ëj

"º ž¶‚ J >w" &NB ž¶º Æ Nê, Ö² ³ê, Fï š

šÒ‚. * v ";f Îv Ú ò~ F ßW" ªê ßWö ’

² 'Ëj Aº.

šf ?f Ú ò~ ² ßWö 'Ëj "º ºžf ’² ò ßW" ²–š ž¶‚ ¾2 > ®.  ’öB –. &˂ ò ß Wf R« ò «~, >ª Žï, «¶ ’Vš «¶~ ªê ßWf ’

² 'Ëj ~º ž¶šæò ò~ ßWb‚ –.š ®&Ë~. Æ

Nê, Fÿz &Ê Fï" Ö² ³ê& 7º‚ ²–š ž¶‚ ï&B.

ßWš ž ò¢ b ²~ ò ßWj j~Jº ê&

ۚ þ ²‚öB W† > ®j ©š.

Ú öVb «¶~ ² ßWö &‚ þ šžöê þ ²‚¢

šÏ~ î>B ";öB BB >Bª~ ² ";ö &‚ þš

*ÒöB~ Nê, ³êª¢ G;Žb‚Ž &ˆ ©š

5. Ö †

Æ Nê " ?f ²–šj J;~ Ú ò~ ²ßWj V

¶ ’V, >ª Žï, «~, ;ê ~ ò ßW" Ú* –šö ~‚ ' Ëj ê² *~ ³ê, ê² ²>N, ï ê² *~ *j ;~~ ï

&~&. þ ²‚~ Ú* –šj –;~ jB ò~ ² ß

«¶~ š–, ªš(î>B) ";f «¶ &";~ ºžö ~š ' Ëj Aº. Fÿ[ ²–šöB ’V& > cmž «¶¢ ²Ò ã Ö «¶ Ú¦ö šÒ~º Nê ªö V¢B êê ² ";š ê¯

>º ©j {ž† > ®îb– êê ² ";f ò~ «~ö V¢

Nš¢ &.

ÒÏV^

C* : concentration of CO and CO2 [mol/Nm3] f : fraction of carbon conversion [%]

fC : carbon mass fraction from element analysis F_rate : flow rate [l/min]

HHV : higher heating value [cal/g]

MFC : mass flow controller mfuel : mass of fuel input [g]

n : mole number [mol]

N : total mole number [mol]

C_Rec : carbon recovery [%]

Q : combustion gas flow rate [Nm3/sec]

t : time [sec]

tB : overall burnout time [sec]

tc : mean carbon conversion time [sec]

^^ò

1. Hodgkinson, N. and Thurlow, G. G.: “Combustion of Low-grade Mate- rial in Fluidized Bed,” AIChE Symposium Series, 73(161), 109(1977).

2. Jacobs, J. P.: Chemical Engineering Science, 54, 5559(1999).

3. Bautista-Margulis, R. G., Siddall, R. G. and Manzanares-Papayanop- oulos, L. Y.: Fuel, 75(15), 1737(1996).

4. Kunii, D. and Lavenspiel, O.: “Fluidization Engineering,” 2nd Ed., Butterworth-Heinemann(1991).

5. Ho, T. C., Ku, P. and Hopper, J. R.: AIChE Symposium Series, 84(263), 126(1980).

6. Lau, I. T. and Friedrich, F. D.: AIChE Symposium Series, 84(262), 89 (1980).

7. Lorenz, H. and Rau, H.: Fuel, 77(3), 127(1998).

8. Ogada, T. and Werther, J.: Fuel, 75(5), 617(1996).

9. Winter, F., Prah, M. E. and Hofbauer, H.: Combustion and Flame, 108, 302(1997).

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Abstract − The wall erosion characteristics of a circulating fluidized bed reactor(0.25 m-L×0.62 m-W×10 m-H) was observed with various operating conditions, such as

On the other hand, since fluidized bed operation has whole bed as adsorption zone and mass transfer of radial direction prevails in the bed, the breakthrough curve in fluidized

Test coals were anthracite received from Samchuk, Korea with the heating value of 4,529 kcal/kg, an imported Aus- tralian bituminous coal with the heating value of 6,455

Levi’s ® jeans were work pants.. Male workers wore them

Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind

Waste fuels were selected to examine their characteristics of pyrolysis and combustion in a laboratory scale combustor in which a nearly single particle combustion