• 검색 결과가 없습니다.

2. 

N/A
N/A
Protected

Academic year: 2022

Share "2.  "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

   

   



(2001 10 10 , 2002 2 8 )

Combustion of Coal in a Bench Scale Circulating Fluidized Bed Unit

Dowon Shun, Dal-Hee Bae, Keun-Hee Han, Seong-Ho Cho and Seung-Young Lee

Korea Institute of Energy Research, Daejeon 305-343, Korea (Received 10 October 2001; accepted 8 February 2002)

 

  !"#$. % & '(%)* +,- 4,529 kcal/kg#.  & /0% Balir Athol )

* +,-(as received)& 6,455 kcal/kg #$.   & * 123 4567 89 :);, NOx

0.061 mm > %? @    @ 96 BC& LL 57, 70%M 8N>O$.

Abstract−Combustion of a Korean anthracite and an imported bituminous coal in a bench scale circulating fluidized bed, 0.20 m I.D.×1 m-high bed and 0.25 m I.D.×10 m-high freeboard, was performed and the characteristics of combustion were compared. Test coals were anthracite received from Samchuk, Korea with the heating value of 4,529 kcal/kg, an imported Aus- tralian bituminous coal with the heating value of 6,455 kcal/kg. Both coals showed different vertical combustor temperature profiles, i.e., burning characteristics. Their trends of NOx emission levels were also different. Combustibles loss of the tested anthracite and the bituminous coal by fly ash of particle diameter smaller than 0.061mm was significantly contributable to the combustion efficiency. Combustible loss of the fly ash smaller then 0.061 mm from the anthracite and the bituminous coal was, 57 and 70%, respectively.

Key words: Domestic Anthracite, Bituminous Coal, Circulating Fluidized Bed, Combustion

1.  

   10 mm     

       !" #. $% &

 '() *+, - ./ 0  1 23, 4 #5./

 0 NOx67 8 9$0 :; <= >#[1, 2]. 

 @ABL MNB OPQ RS E? @AB @HI TU

<`a  @AB b3 Zc1^#[3]. XY Z[

1985C>d beFG f 10g  @AB< @HI^Dh ij\ kT 200 MWeH E? @ABL 7l mno p

? 100-200 ton/h(10-50 MWe) OP? RS E @AB qr>#.

 @AB  _O s 1980C `tnu _1 v Qw s L `xD TUI^#[4-6]. y z vQ {|v"

}s, s   $~s 8 m 1990Cm }tnu €

#. >w m g `4P‡ 8 l_  license \/ 0 _1 @H TUD be l_ P‡ klˆ€\ ‰g 8

 ~)L Zc1 †#.

Š ‹Œ Žqr    _1   {/ 

   ‘’ $~ ! y “)L ƒ0 ”>#.

2. 

Fig. 1 •–:Ž s~\L Zc— ”>#[4, 6].  (1) 1˜

0.2 m™&> 1 m š›) 1˜ 0.25 m™&>10 m freeboard s

~I^#.  coal hopper(4)nu screw feederL œg  

n oO ž 1 m G;D 4HŸ#.   z   ’ 

  4w ¡¢£  ¤ Ÿ#. /¥< <  ew

 <¦   n §sL œg ¨>©ª(3)D a/I, o

=> #T oYI  <¦ «¬u(9) ­,< #T 0® o  e< 7=Ÿ › m §Ÿ#. ¨>©ª oYŸ  e loop

To whom correspondence should be addressed.

E-mail: dshun@kier.re.kr

(2)

 40 3 2002 6

seal(7) œg   #T ./Ÿ#[7].    e e./

 œk  '() 1¯ œ0 E° '( p<T± { †#[8].

Table 2 •– ¨?Ÿ  ~oo Zc1^#.  ²

. Blair AtholO>h  _1 ij\ ³´Gµ ¶OŸ ”D

 Gµ · s¸V#.  j /˜ −6 mm o¹g

 ¨?V#. º  rº _1 OP?  @AB

 ¨? >#.

3. 

Fig. 2 •– ¨?Ÿ {/(².O Blair Athol)) _1

(³´O) /˜oKL Zc1^#.  ¨?I  /˜

mƒ −10 mm »\ o¹I, ¨?Ÿ#. Š •–   $

~ o¹0 › −6 mm ‡oYg ¨?V#. _1 o¹ ` o> ¼> ¶g 1 mm > /¥< m"D @# ¼½#.

Fig. 3  ./D ¾bI 4H p¿ ‘’  

*Bituminous coal, **Petroleum coke

Fig. 1 Flow diagram of CFBC test facility.

1. Combustor 7. Loop seal

2. Heat exchanger tube 8. Air pre-heater

3. Cyclone 9. Bag filter

4. Coal hopper 10. F.D. fan

5. Limestone hopper 11. I.D. fan 6. Valve

Table 2. Analysis of coals

Analysis Bituminous coal

(Australia)

Anthracite (Samchuk) Proximate, wt% as received

Moisture Volatile Ash Fixed carbon Ultimate, wt% dry basis C

H N S Ash, wt% ash CaO MgO Al2O3 SiO2 Fe2O3 Mean diameter, mm

Calorific value, Kcal/kg(As received)

7.28 26.9 9.8 55.9

66.8 3.5 1.5 0.5

5.3 3.6

0.4591 6,455

3.53 4.73 38.00 53.74

54.03 0.19 0.48 0.68

1.01 1.66 33.56

4.24 0.3937

4,529

Fig. 2. Particle size distribution of the test coals.

Fig. 3. The effect of heat input on combustor temperature.

(3)

À\L Zc— ”>#.   ? @AB k   nÁ w ¾£" < ¸X Âh > ‘[ Õ> ¤ ¶0#. ‘[

   nw   na <¦ §sÄ  À\Å< !

" ¤ ZcÆ#. yBZ 4H p< ‘[   À\Å

;Å ¿ g 100oC D {ÇV#.

) Ä  $~ ÈÉÊ À\oK Å>< Æ#.

Fig. 4 )  ÈÉÊ  $~ !0 ”>#. 

m"D @# Ë~o> ¼ ‘[ ̤ ÍI,  Ÿ#.  < A,Z no .   na  ./s ÎÏ

< Ih > no   À\< m"D &#.  tÐ~>

Ñ » < .~o> m"D ÍTÄ> Òh ‘[ 

< GI, /¥<   nFG > z % ;Ÿ#.

$%   n Ó   §s “I ¨>©ª /s

 »‡< A,Æ#. >Ø   /¥< »‡I  z Q  ¤Ih   n À\< m"D &#.

Fig. 5  4 > O  e ÙÚ /˜ Ž ÛÊ

 Zc1^#. 4> p<Ü{Ý ¨>©ª KÞI /¥

ÙÚ/˜ p<¤ Ÿ#. yBZ ¨>©ª '(> •–` 4

ߞ ¤ G àáD ¨>©ª œ)g «¬u

KÞI O-(«¬u-) ÙÚ/˜ G à#. «¬u- Ù Ú /˜ â ãQä> å0 »k= ¨>©ª /s ߞ 1

    4  ã¤ A»0 æ Zc—#.

Š •– ¨>©ª /s ߞ 10-20 m/sL Zc1^#.

Fig. 6     ‘’ «¬u-   š\L Z c— ”>#.  Å>\ +s «¬u {ޟ  e

 š\ 25% ç < ZcZG à½#. å0  e ` 

)  Å> ‘’  š\ Å>\ ZcZG à½#. y BZ Table 2w W>  ˜X  ` -o 1 gè »

 5.7>h  ˜X 1.4>#. )  4% » 

 '( tÐ~,  À\, tÐTÄ(/¥   1 ‡éTÄ)D

 “»Ÿ#. ‘[ W -oê » E( > ëì

&#. Fig. 6 m -o`  š\<  4% -e ê 0.25

 <» W    W  /¥< ÙÚ ‡éTÄ>

W# @£  tÐ~ (5.7-0.25) : (1.4-0.25) Zcí { † Dî >  @# 4.7 &#.

Fig. 7

À\L ïT𣠏¤ L Zc1^#.  ñm  tÐ Á f 500oC ZcZh  ˜X 700oC ZcÆ#.

500-700oC À\ߞ »   À\L cZ1 ”> _1

 »\< &ò » ÍÀ\< !ma @

# 200oC»\ &¤ ZcÆ#.

Fig. 8 )   O-a «¬u- /˜ó 

oKL Zc1^#.   /˜ ã¤ ç A»0 

 Zc1^#. yBZ «¬u-  Ó «¬u- ô

o «¬u- /˜ ‘[ õ Å>L Zc1^#. yö /˜

0.1 mm > «¬u- > H÷¤ ¿ h /˜ 0.1 mm

> «¬u- > ç A»¤ GI ” @gê#.

Fig. 4. Axial temperature distribution of imported bituminous coal and domestic anthracite.

Fig. 5. The effect of gas velocity on average particle diameters in the cyclone and the bag filter collects.

Fig. 6. The effect of dense bed gas velocity on carbon content of bag fil- ter ash.

Fig. 7. Thermogram of samchuk and blair athol coal.

(4)

 40 3 2002 6

‘[ /˜ 0.1 mm > /¥  L I ø{< ùò ‡ éTÄ> ¬ú0 char  TÄ@# ¸X ùDh ‘[ »   < +ûE¤ >ü,ý Zc1^#.

Fig. 9   À\ ‘’ )   '( Zc 1^#.  '(   À\ p< ‘’  tÐ\ p< À

\ï ‘[ p<VDZ   ÙÚÀ\ 750oC > A»

0 æ Zc1^#.  @# »  tÐ~> Ñò

 (> Ñ ¶  e > ¼ò E‡   > ¼# >

‘[  '(> Ѥ Ÿ#.  '(  ` <o)  e ` ô <o  QOÜ { †#.  '( #á) W> QOI^#.

CE=

g, CE; combustion efficiency %

g, Ash(C, V);  e ` <o Ó þŠ) Ëo ÿ

g, Feed(C, V);  ` <o Ó þŠ) Ëo ÿ

 n §I n-(bottom ash) soŸ#. n- 

 ‡éTÄ> Ò, r <o>  I, ç o K

†G àDî  '( •7  ` <o ‚)  › O - Ÿ <o Å QOŸ#. Fig. 10) 11 ) 

«¬u- /˜ó 4Po Zc1^#. «¬u- ÙÚ/˜

0.061 mm > /¥   ‚> «¬u- Ùڎ@# &#.

0.061 mm > U /¥ ¨>©ª Þ='(> Ñ ‘[ »

   < YI E ̤ ¨>©ª  Z<î  o Õ .ú no ¤ Ÿ#. Table 3 ¨>©ª œk  Z<

 O- /˜ó ¤o(), o Zc1^#. g 0.061 mm

> /¥  ˜X 70%, o Õ 76%L Zc—#. 

  47%w 56%L Zc1î 0.061 mm > o/¥ 7 ,<  '( Ê Z `ú0<L @gê#.

ˆ  ` N  f 0.5-2%L Zc—#. N   #’

w  OIZ y )» ¸X g NO, N2O, NO2, NH3, HCN 8D Ih #T N2 jI\ 0#[9]. Fig. 13 ` N

~o NOx E( Zc1^#[10].     À

\< 850oC Ѥ PI > ag ¶~I NOx rº 

 ` N ~o O ­,= ”D Ä.Ü { †#. NOx 

¶   rº À\ p<L ‘[ p<V#. À\ p<

1 Ash C V( , ) Feed C V( , ) ---

– ×100

Fig. 8. The variation of heating value of particle by size(blair athol).

Fig. 9. Temperature effect on combustion efficiency.

Fig. 10. Proximate analysis of fly ash by particle size cut(blair athol).

Fig. 11. Proxiamte analysis of fly ash by particle size cut(samchuk).

Table 3. Weight fraction and combustible loss of fly ash by size cut

Dp,mm Blair Athol Samchuk

Fraction[-] Contribution combustible loss Fraction[-] Contribution combustible loss

0.249-0.104 0.03 0.01 0.11 0.04

0.104-0.061 0.26 0.23 0.42 0.40

0.061-0.061 0.70 0.76 0.47 0.56

(5)

‘’ NOx E(  ˜X<  ˜X@# Ѥ p<

V#. _1  At"a {/ @#  ` N ~o> "

#. å0  “SŸ N   Ëo) char “SI, †Dh

 N  Ëo> " Œ @# N < charw “S

Ÿ (> &#.  )» char  < * ”) <G char w “SŸ N ~o O\ *¤ ZcZ ”D >kŸ#[10].

Fig. 14   À\ ‘’ AO §$~ Zc—#.

•– )4< ÙÚ 20% ˆ {„V#. ) 

rº À\ p< ‘[  \< p<£ CO< ¿  ˜Ê

Zc—#. CO ¿  ˜Ê )  Å>L Zcí 

o0 ¥L @G VDî Š yö âó $  ZcZG à#. 0 _ CCTI  {„Ÿ NUCLA 110MWe

 @AB : E “)\ CO ¶ ã0 À\,  â, )4ÛÊ` À\ ÛÊ> ºBG¤ Zc#[11].

5. 

_1 ³´O ) {/ ². Blair AtholO  ! T

– 1˜ 0.25 m &> 11 m Žqr  T–  {

„ y “)L #á) W> úfV#.

(1)   /s .  ’ Ëo  < A,D h, . » a  !"   n  < &¤ Zc

#.

(2)  1 4> p<£ O/¥ /˜> ,G, ¨

>©ª KÞI /¥  , #. yBZ ¨>©ª '(

ym GI^Dh /˜ Â> ä^#.

(3) T–  {/ ) _1  » E((

() -eL êD >  @# 4.7 &¤ Zc#.

(4)  Å> ‘’  '( Å>< ¤ ZcZG à½#.  '( .  À\w ¨>©ª KÞ'( k “»I ”D

Zc#.

(5)  '( . «¬u- KŸ o ‚D “»I^#.

$% 0.061 mm > /¥  ˜X 70%, o Õ 76%L Zc1^#.   47%w 56%L Zc1^#. ‘[ 0.061 mm

> o  < E‡  '( `ú0 ÛÊ ! Zc1^#.

(6) À\ ‘’  ` N  E( > @#

W À\ U¤ Zc#. > _1 N ~o> " å 0 mno tÐ~> Ñ » w “SI, † ŒD >kŸ#.

(7) CO ¶   À\p<L ‘[ ¿ VDh ) 

 Å>< ZcZG à½#.

 

¥$D {„I^%&#. > ¿¨'&#.



1. Basu, P.: Chem. Eng. Sci. 54, 5547(1999).

2. Mann, M. D., Hajicek, D. R., Henderson, A. K. and Moe, T. A.: “EERC Pilot-Scale CFBC Evaluation Facility,” Energy & Environmental Research Center, University of North Dakota(1992).

3. Choi, J. H., Son, J. E., Han, K. H., Bae, D. H. and Jo, S. H.: “Devel- opment of Circulating Fluidized Bed Coal Boiler Technology(I),” Korea Institute of Energy Research KE-91009G(1991).

4. Shun, D., Son, J. E., Park, Y. S., Ku, C. O., Han, K. H., Bae, D. H., Im, J. H. and Choi, J. H.: “Development of Circulating Fluidized Bed Coal Boiler Technology(II),” Korea Institute of Energy Research KE-920509G (1992).

5. Shun, D., Son, J. E., Han, K. H., Bae, D. H., Jo, S. H. and Choi, J. H.:

“Development of Circulating Fluidized Bed Coal Boiler Technol- ogy(III),” Korea Institute of Energy Research KE-93040G(1993).

6. Shun, D., Bae, D. H., Han, K. H., Son, J. E., Kang, Y., Wee, Y. H., Lee, J. S. and Ji, P. S.: HWAHAK KONGHAK, 34, 321(1996).

7. Shun, D., Bae, D. H., Han, K. H., Son, J. E. and Cen, K.: HWAHAK KONGHAK, 37, 925(1999).

8. Park, Y. S. and Son, J. E.: HWAHAK KONGHAK, 31, 287(1993).

9. Wartha, C., Winter, F. and Hofbauer, H: “Carbon and Fuel Nitrogen Conver- sion under Fluidized Bed Conditions,” Presented to 36th Int. Energy Agency Fluidized Bed Conversion Meeting(1998).

Fig. 12. Particle size distribution of fly ash.

Fig. 13. The effect of temperature on fuel-N conversion.

Fig. 14. Temperature effect on combustion CO emission.

(6)

 40 3 2002 6

참조

관련 문서

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Conclusions: In children, treatment with either 1μg/kg of remifentanil or 1 mg/kg of lidocaine decreased the incidence of rocuronium-induced withdrawal

bilirubin levels were signi fi- cantly increased compared with those in the control group, and were reduced by the treatment with 250 mg/kg and 500 mg/kg UGBE and 150

Both tensile strength and modulus increased with holding at onset temperatures of the exothermic peaks for extended duration, and with a higher heating rate up to

Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind