• 검색 결과가 없습니다.

Chapter 8. Conservation Laws

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 8. Conservation Laws"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Intermission on Page 343

All of our cards are now on the table, and in a sense my job is done.

In the first seven chapters we assembled electrodynamics piece by piece,

and now, with Maxwell's equations in their final form, the theory is complete.

There are no more laws to be learned, no further generalizations to be considered, and (with perhaps one exception) no lurking inconsistencies to be resolved.

If yours is a one-semester course, this would be a reasonable place to stop.

But in another sense we have just arrived at the starting point.

We are at last in possession of a full deck, and we know the rules of the game -- it's time to deal.

This is the fun part, in which one comes to appreciate the extraordinary power and richness of electrodynamics.

In a full-year course there should be plenty of time to cover the remaining chapters, and

perhaps to supplement them with a unit on plasma physics, say, or AC circuit theory, or even a little General Relativity.

But if you have room only for one topic, I'd recommend Chapter 9, on Electromagnetic Waves (you'll probably want to skim Chapter 8 as preparation).

This is the segue to Optics, and is historically the most important application of Maxwell's theory.

Together with the force law,

(2)

Chapter 8. Conservation Laws

8.3 Magnetic Forces Do No Work

(3)

8.1 Charge and Energy

8.1.1 Charge conservation (The Continuity Equation)

Let’s begin by reviewing the conservation of charge, because it is the paradigm for all conservation laws.

 What precisely does conservation of charge tell us?

 If the total charge in some volume changes, then exactly that amount of charge must have passed in or out through the surface.

This local conservation of charge says

divergence theorem

This is, of course, the continuity equation,

“the precise mathematical statement of local conservation of charge”.

(4)

8.1.2 Poynting's Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distribution (against the Coulomb repulsion of like charges) is (Eq. 2.45)

Energy of Continuous Charge Distribution

Likewise, the work required to get currents going (against the back emf) is (Eq. 7.34) Energy of steady

Current flowing

Therefore, the total energy stored in electromagnetic fields is

 Let’s derive this total energy stored in EM fields more generally in the context of the energy conservation law for electrodynamics.

 “Energy conservation law for electrodynamics”: Poynting Theorem

(5)

Energy Conservation and Poynting's Theorem

Suppose we have some charge and current configuration which, at time t, produces fields E and B.

In the next instant, dt, the charges move around a bit.

How much work, dW, is done by the electromagnetic forces acting on these charges in the interval dt ? According to the Lorentz force law, the work done on a charge q is

the work done per unit time, per unit volume, or, the power delivered per unit volume.

Ampere-Maxwell law 

and Faraday's law

Poynting's theorem

This is “Work-Energy Theorem" or “Energy Conservation Theorem” of Electrodynamics.

(6)

Poynting's Theorem and Poynting Vector

Poynting's theorem

Work-Energy Theorem or Energy Conservation Theorem of Electrodynamics.

The first integral on the right is the total energy stored in the fields 

The second term evidently represents the rate at which energy is  carried out of V, across its boundary surface, by the fields.

Poynting's theorem says

 “the work done on the charges by the electromagnetic force is equal to the decrease in energy stored in the field, less the energy that flowed out through the surface.”

The energy per unit time, per unit area, transported by the fields is called the Poynting vector:

S . da is the energy per unit time crossing the infinitesimal surface da

the energy flux, if you like (so S is the energy flux density).

Poynting vector

Poynting's theorem

(W/m

2

)

 

0

1

  

S E B

 

 

S E H

Poynting vector in linear media

(7)

Poynting's Theorem and Poynting Vector

The work W done on the charges by the fields will increase their mechanical energy (kinetic, potential, or whatever).

 If we let umech denote the mechanical energy density,

 Compare it with the continuity equation, expressing conservation of charge:

differential version of Poynting's theorem

 The charge density is replaced by the energy density (mechanical plus electromagnetic),

 the current density is replaced by the Poynting vector.

Therefore, Poynting’s theorem represents the flow of energy

in in exactly the same way that J in the continuity equation describes the flow of charge.

 

2 2

0

0

1 1 1

2 2

em em em

U Vu duE B E D H B

 

        

 

   

 If we let uemdenote the electromagnetic energy density,

(8)

Poynting’s Theorem is the “Work-energy theorem” or “Conservation of Energy”

“The work done on the charges by the electromagnetic force is equal to the decrease in energy stored in the field,

less the energy that flowed out through the surface” .

 

0 2 2

 

0 0

1 1 1

2 2

V V S

em

dW d

E J dv E B dv E B ds

dt dt

u S E J

t

  

 

         

 

    

  

Total energy stored in the EM field

Energy flowed out through the surface Work done by the EM field

 

1 : Poynting vetor S E B

   em

S

dW dU

dt   dt   S ds

differential version of Poynting's theorem

(9)

Poynting’s theorem

( )

( )

B B

E H E H

t t

D D

H J E H E J E

t t

 

        

 

 

         

 

 

     

 

        

( ) ( )

( )

D B

E H H E E J E H

t t

D B

E H E J E H

t t

 

          

 

 

        

 

 

         

 

      

D B

S E H E J

t t

 

        

 

 

     

S  E H

  

For  J  0 (in free space),

u

em

0

S E J t

       

   

u

em

t S

    

 

For a steady state u

em

0, t

 

           S E J

Let’s prove it directly from Maxwell’s equations

: Poynting's theorem

uem

t

     

S E J

S   E H

(10)

Poynting’s theorem:

uem

t

     

S E J

Example 8.1

When current flows down a wire, work is done, which shows up as Joule heating of the wire.

Find the Poynting vector (that is, the energy per unit time per unit time delivered to the wire).

For steady current case,

u

em

0 t

 

S

dW d

dt     Sa

P (in Joule heating)

2

S a

S

dW IV I R d

dt       

  S E H

L a I

S The electric field parallel to the wire 

The magnetic field is "circumferential"; at the surface (radius a)

Accordingly, the magnitude of the Poynting vector (it points radially inward) is

  S E H

The energy per unit time passing in through the surface of the wire is therefore

S

or , E J      S

(11)

Poynting’s theorem: u

em

S E J t

     

   u

em

1 2      E D    H B, S      E H

 

2

/1

2

E J EEE JJ J

       

2

1

2

u

em

S E S J

t

        

 

From Ohm’s law,

Example. (a) Find the Poynting vector on the surface of a long, straight conducting wire (of radius b and conductivity σ) that carries a steady current I.

(b) Verify Poynting’s theorem.

 

2 2

2 2

2 3 2 3

,

on the surface of the wire.

2

2 2

which is directed everywhere into the wire surface.

z z

z r

I J I

J a E a

b b

H a I b

I I

S E H a a a

b b

  

 

   

: Poynting's theorem in Ohmic materials

2

2 2

2 3 2

To verify Poynting's theorem, 2 2

r

S S

I l

S d S ds bl I I R

bb

 

 

s 

 

a

S

2

S a

I R   

S

d

For steady current case

(12)

Poynting’s vector and Poynting theorem in matter

Problem 8.23

Describe the Poynting’s vector and Poynting theorem for the filed in matter.

The work done on free charges and currents in matter,

Poynting's theorem in vacuum

Poynting’s theorem for the fields in matter

Poynting vector in matter

Electromagnetic energy density in matter the rate of change of the electromagnetic energy density

참조

관련 문서

특히 화상 환자들의 경우 피부 기증을 통한 동종피부이식 수술을 통해 생존율이 높 아졌다고 하는데 아직까지는 피부조직의 대부분을 해외로부터의 수입에 의존하는 , 것이 현실

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

Table 1. 입원환자의 경우 가장.. 그러나, 현재까지도 우리나라 종합병원 및 대학병원의 통증클리닉은 타과의 협의진료에 의존하 거나 암성통증 환자에 국한되어 있는 현실이다.

Unusual reactions following insect stings: clinical feature and immunologic analysis.. Postscript to bee stings: delayed

DNA vaccine에 사용되는 구성 요소는 immunostimulat ory (ISS) signal과 해당 항원의 cDNA 가 결합된 결합체를 피내 또는 근육 주사하게 되면 2 3 ) , 항 원을 인지한 수상돌기 세포는

신경병증의 초기에는 소섬유 의 장애증상이 이학적 소견 및 검사 소견보다 선행하여 나타나며 주로 하지의 과민통증( hy pera lg es ia), 온도감 의 소실, 가벼운 촉각 및 통각의 감소

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Five days later, on 15 January 1975, the Portuguese government signed an agreement with the MPLA, FNLA and UNITA providing for Angola to receive its independence on 11