• 검색 결과가 없습니다.

Series Solutions of ODEs. Special Functions 상미분 방정식의 급수해법 특수함수

N/A
N/A
Protected

Academic year: 2022

Share "Series Solutions of ODEs. Special Functions 상미분 방정식의 급수해법 특수함수 "

Copied!
65
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Engineering Mathematics I

Chapter 5 Series Solutions of ODEs Special Functions - Chapter 5. Series Solutions of ODEs. Special Functions - 5장. 상미분 방정식의 급수해법. 특수함수

민기복 민기복

Ki-Bok Min PhD Ki Bok Min, PhD

서울대학교 에너지자원공학과 조교수

Assistant Professor, Energy Resources Engineering, gy g g

(2)

Ch.4 Systems of ODEs. Phase Plane.

Q lit ti M th d Qualitative Methods

• Basics of Matrices and Vectors

• Systems of ODEs as Models

• Systems of ODEs as Models

• Basic Theory of Systems of ODEs

• Constant-Coefficient Systems. Phase Plane Method C it i f C iti l P i t St bilit

• Criteria for Critical Points. Stability

• Qualitative Methods for Nonlinear SystemsQ y

• Nonhomogeneous Linear Systems of ODEs

(3)

Series Solutions of ODEs. Special Functions 상미분 방정식의 급수해법 특수함수

상미분 방정식의 급수해법 . 특수함수

• 5.1 Power Series Method (거듭제곱 급수 해법)

• 5.2 Theory of the Power Series Method (거듭제곱 급수 해법의 이론)

• 5.3 Legendre’s Equation. Legendre Polynomials Pn(x) Legendre 방정식. Legendre 다항식 Pn(x)

5 4 Frobenius Method (Frebenius 해법)

• 5.4 Frobenius Method (Frebenius 해법)

• 5.5 Bessel’s Equation. Bessel functions Jv(x). Bessel의 방정식. Bessel 함수 Jv(x) 5 6 B l’ F ti f th S d Ki d Y ( ) 제2종 B l 함수 Y ( )

• 5.6 Bessel’s Functions of the Second Kind Yv(x). 제2종 Bessel 함수 Yv(x)

• 5.7 Sturm-Liouville Problems. Orthogonal Functions. Sturm-Liouville 문제. 직교함수

O f 직교 고유함수의 전개

• 5.8 Orthogonal Eigenfunction Expansions. 직교 고유함수의 전개

(4)

Series Solutions of ODEs. Special F ti

Functions.

• 변수계수를 갖는 선형미분 방정식을 풀이하는 표준적인 방법인 power series method

(거듭제곱급수, 혹은 멱급수 해법)을 소개한다

• 거듭제곱급수 해법으로 얻을 수 있는 유명한거듭제곱급수 해법으로 얻을 수 있는 유명한 특수함수:

Bessel function (베셀 함수) – Bessel function (베셀 함수),

– Legendre function (르장드르 함수),

– Gauss의 hypergeometric function (초기하함수)

(5)

Power Series Method

– Linear ODEs with variable coefficient  power series method – Power series is an infinite series of the form*;

Coefficients (계수) :

2 0 2

0 1

0 0

0

x x a x

x a a x

x

a m

m m

a

a

Coefficients (계수) : a

Center (중심) :

If x = 0;

, , , 1 2

0 a a

a x0

a xm a a x a x2

If x0 = 0;

– Maclaurin series (맥클로린 급수)

0 1 2

0

x a x a a x

a

m m

) 1 ( 1 1

1 2

0

x x

x x m x

m

 

1 1 cos

! 3

! 1 2

!

4 2 2

3 2

0

x x x x

x x x

m e x

m m m

m x

( ) 0

0 0

( ) : ( )

!

n n

n

f x

Taylor Series f x x x n

 

 

! 5

! 3

! 1 2 sin 1

! 4

! 1 2

! cos 2

5 3

0

1 2 0

x x x

m x x

x m

m

m m m

*통상 음의 거듭제곱이나 분수거듭제곱을

가지는 급수는 포함하지 않음.

(6)

Power Series Method

• Idea of power series

– For a given ODEFor a given ODE y ''p x y'q x y 0

– Represent and by power series in power of x A l ti i th f f i

 y q y

p y

 x

p q x

– Assume a solution in the form of power series

3 3 2 2 1

0 0

x a x a x a a x

a y

m

m m

– Differentiation of this series, and put into ODE

m0

1 2 3 2

' ma x a a x a x

y m

1 2 3

1

3 2a x a x a

x ma y

m m

a a x

x a m

m y

m

m

m 2 3

2

1 2 3 2

1 ''

– Determine the unknown coefficients am

(7)

Power Series Method

• Ex 1. Solve the following ODE by power series

xy y 2' y y

3 3 2 2 1

0 0

x a x a x a a x

a y

m

m m

1 2! 3!

!

3 2

0

x x x

m e x

m

m x

2

3 2

1 1

1 2 3

' ma x a a x a x

y

m

m m

2

2

m 0

 

2 2

2 3

2

2 3

2

3 2 2

1 0

2 3 2

1

2 2 1

0 2

3 2

1

x a x

a x a x

a x a a

x a x a a x x

a x a a

! , 3 3

!, 2 2

,

, 2 6

, 2 5

, 2 4

, 2 3

, 2 2

, 0

0 4

6 0 2

4 0 2

4 6

3 5

2 4

1 3

0 2

1

a a a

a a a

a a

a a

a a

a a

a a

a a

a

! 3 3

! 2 2

2

0 8

6 4

2

0 1 2! 3! 4!

x x x a ex

x a

y 



(8)

Power Series Method

• Ex. 2 Solve the following ODE by power series.

0 '' y

y  

1 mx2m x2 x4

m 0

m mx a

y

2

1 2

''

m

m mx a m m y

m a x a x

m m m m m

1 2 0

  

 

! 5

! 3

! 1 2 sin 1

! 4

! 1 2

! 2 cos 1

5 3

0

1 2 0

x x x

m x x

x x m

x x

m m m

s s a x a x m s m s

s

s s s

s s

m m m

m

, 2

1

2

0 0

2 0

2 m0 2m1! 3! 5!

첫 번째 항은 두 번째 항은

 s , ,

s s

as as 0 1

1

2 2

! 3 2

3

!, 2 1

2

1 1

3 0

0 2

a a a

a

a a

Recursion Formula (순환공식):

x x x

x a

a a

a 2 3 4 5 2 4 3 5

! 5 4 5

!, 4 3 4

! 3 2

3

! 2 1

2

1 3

5 0

2 4

a a a a

a a

x a

x a

x x x

x a a x

a x a x

a x a x

x a a y

sin cos

! 5

! 3

! 4

! 1 2

! 5

! 4

! 3

! 2

1 0

1 0

1 5 0 4

1 3 0 2

1 0









(9)

Theory of the Power Series Method

B i C t

Basic Concepts

• Basic Concepts

0 0 1 0 2 02 0 1 0 1 2 0 2

m n n n

m n n n

a x x a a x x a x x a x x a x x a x x

 

0 0 1 0 2 0 0 1 0 2 0

0

m n n n

m

n 

s x : n-th partial sum (부분합) R xn  : remainder (나머지)

– Series is convergent at x=x1  – s x( )1 a xm( 1 x0)m

 1 1

lim n ( )

n s x s x



Value (수렴값) or sum (합)

– For every n,

1 1 0

0

( ) m( )

m

1 1 1

( ) n( ) n( ) s x s x R x

– If this sequence diverges at x=x1, series (1) is called divergent at x=x1

– In case of convergence, for any positive ε, there is an N such that

1 1 1

( ) ( ) ( )

n n

R x s x s x for all n N

(10)

Theory of the Power Series Method

C I t l (수렴구간)

Convergence Interval (수렴구간),

Radius of Convergence (수렴반지름)

– 수렴구간: 급수가 수렴하는 값들의 구간 ( 의 형태로 나타남)

R x

x 0

– 수렴반지름 (R ):

급수는 인 모든 x 에 대하여 수렴하고,

인 모든 xx 에 대하여 발산할 때x0 R R

인 모든 x 에 대하여 발산할 때 x x R

0

R 1

R 1

m m

m

lim

a

lim

am 1am

m



(11)

Theory of Power Series Method

• Case 1: (useless) The series always converges at the center.

• Case 2. (usual) If there are further values of x for which the series converges, these values form an interval, called the series converges, these values form an interval, called the convergence interval.

• Case 3. (best) The convergence interval may sometimes be infinite that is the series converges for all x

infinite, that is, the series converges for all x.

(12)

Theory of Power Series Method

• Example 1.

2 3

! m 1 2 6

m x x x x

  

m0

1 ?

m m

a a

R = 0, converges only at the center x

• Example 2. 2 3

0

1 1

1

m m

x x x x

x

  

R = 1, converges when |x| < 1

• Example 3. 2

0

! 1 2!

m x

m

x x

e x

m

  

0 ! !

m

R = ∞, converges for all x

(13)

Theory of Power Series Method

• Example 4.

 

 

1 m 3 x3 x6 x9

1 8 64 512 8

1 3

0

x x

x m x

m m

8

8 1 8

8

1

1

R

a a

m m m

3  8

 x

8 t

am 8

converges when |x| < 2 converges when |x| < 2

(14)

Theory of Power Series Method

O ti P S i

Operations on Power Series

– Termwise Differentiation:

0m ( 0 )

y a x x x x R y  ma x xm 0m1 ( x x 0 R) – Termwise Addition:

0 0

0

( )

m m

y a x x x x R

0 0

1

( )

m m

y

0 0  0

m m m

m m m m

a x x b x x a b x x

– Termwise Multiplication:

0 0 0

m m m

a b a b a b x x m

 

If i h i i di f d



   

0 1 1 0 0

0

2

0 0 0 1 1 0 0 0 2 1 1 2 0 0

...

...

m m m

m

a b a b a b x x

a b a b a b x x a b a b a b x x

 

– If a power series has a positive radius of convergence and a sum that is identically zero throughout its interval of convergence, then each coefficient of the series must be zero.(Vanishing of All

Coefficients)

(15)

Theory of Power Series Method

E istence of Po er Series Sol tions of Existence of Power Series Solutions of ODEs. Real Analytic Functions.

• Definition: Real Analytic Function

– A real function f(x) is called analytic at a point x=xA real function f(x) is called analytic at a point x x00 if it can be if it can be represented by a power series in powers of x-x0 with radius of convergence R>0

• Theorem1. Existence of Power Series Solutions

     

''   '     (9)

'' ' (9)

y p x y q x y r x

  ''   '     (10)

h x y p x y q x y r x

(16)

Legendre’s Equation. Legendre P l i l P ( )

Polynomials P

n

(x)

• Legendre’s Equation.

1 x2

y ''2xy'nn 1y 0 n is a given real number

 

y y y

 

2

2 1

1 0

1 '

, m m m m

m

mx y ma x y'' m m- a x

a

y ,

n is a given real number

1 1 2 1 0

0 1

1 2

2

2

m

m m m

m m m

m

mx x ma x n n a x

a m- m x

0 m 1 m 2

m

 1  1 2 1 0

0 1

2 2

2

m

m m m

m m m

m m m

m

mx m m- a x ma x n n a x

a m- m

m 2 = s m = s

2 1  1 1 0

s s a xs s s a xs sa xs n n a xs

m-2 = s m = s

2 1  1 1 0

0 1

2 0

2

s

s s

s s

s s

s x s s- a x sa x n n a x

a s

s

(17)

Legendre’s Equation. Legendre P l i l P ( )

Polynomials P

n

(x)

2 1 0

2 3

0 1

1 2

1 3

1

0 2

0

a n

n a

x

a n n a x

:

:

n sn s a s

a 1 0 1

s2s 1as2 ss 12snn1as 0

 a s , ,

s

as s s 0 1

1

2 2



1 3

0

2 3!

2 1

! 2

1 n n a

a n a

a n

       

1 3

5 0 2

4 5!

4 2

1 3

4 5

4 3

! 4

3 1

2 3

4

3

2 n n n n a

n a a n

n a n

n a n

n

a n

     

    

2 4

1 4!

3 1

2

! 2

1 1 n n n n x

n x x n

y

 x a y  x a y  x

y 0 1 1 2

General solution:

     

3 5

2 5!

4 2

1 3

! 3

2 1

! 4

! 2

n x n

n x n

n x n

x y

(18)

Legendre’s Equation. Legendre P l i l P ( )

Polynomials P

n

(x)

• Legendre Polynomials

 2n ! 1 3 5  2n1 로 선택 P (1) 1 이 되도록 선택

 

 





2

2

2 ! !

2 1

2 1

n n

s s

a n n

s s

a a s n

n s n s

   

 

로 선택 Pn(1)  이 되도록 선택1



 

  

  

2 2

1

1 1 2 !

2 2 1 2 2 1 2 !

1 2 2 1 2 2 ! 2 2 !

n n n

n s n s

n n n n n

a a

n n n

 

   

  

  

 



4 2

1 2 2 1 2 2 ! 2 2 !

2 2 1 2 1 ! 1 2 ! 2 1 ! 2 !

2 3 2

n n

n n

n n n n n n

n n n n n n n n

n n

a a

   

 

n  4 !

4 2

4 2 3

n n

n  

 

 

2

2 2! 2 ! 4 !

2 2 !

1

2 ! ! 2 !

n

m

n m n

n n

n m

a m n m n m

 

   

  2

0

2 2 ! 1

1

2 ! ! 2 ! 2 2

M m n m

n n

m

n m n n

P x x M

m n m n m

또는

(19)

Legendre’s Equation. Legendre P l i l P ( )

Polynomials P

n

(x)

• Legendre Polynomials

 x P x x

P0 1, 1 ,

       

 xx xP  xx x x

P

x x

x P x

x P

15 70

1 63 3

30 1 35

,

3 2 5

1

,

1 2 3

1

3 5

5 2

4 4

3 3

2 2

 xx xP  xx x x

P 63 70 15

8

3 30

8 35 5

4

(20)

Legendre’s Equation. Legendre P l i l P ( )

Polynomials P

n

(x)

• Example. (problem set 5.3)

2

1 x y2

'' 2 xy' 0  n 0

참조

관련 문서

 Gastrointestinal Series : Introduction of barium into the upper GI tract via mouth (upper GI series) or the lower GI tract via the rectum for the purposes of x-ray

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

3D 모델 작성 도면 시공 계획 사업비 확인. 해석

15.3 Functions Given by Power Series 15.4 Taylor and Maclaurin Series.

15.3 Functions Given by Power Series 15.4 Taylor and Maclaurin Series..

The reduction of power series ( , m→ ∞) to polynomials (m is finite) is a great advantage.. because then we have solutions for all x,

 The series (or finite sum) of the negative powers of this Laurent series is called the principal part (주부) of the singularity of f(z) at z 0 , and is used to

Ø Fourier series: Infinite series designed to represent general periodic functions in terms of simple ones (e.g., sines and cosines).. Ø Fourier series is more general