• 검색 결과가 없습니다.

Nodal Methods for Core Neutron Diffusion Calculations

N/A
N/A
Protected

Academic year: 2022

Share "Nodal Methods for Core Neutron Diffusion Calculations"

Copied!
23
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nodal Methods for Core Neutron Diffusion Calculations

May 8, 2008

Prof. Joo Han-gyu

Department of Nuclear Engineering

Reactor Numerical Analysis and Design

1st Semester of 2008

Lecture Note 10

(2)

Contents

Transverse Integration and Resulting One-Dimensional Neutron Diffusion Equation

Treatment of Transverse leakage

Nodal Expansion Method with One-Node Formulation

Polynomial Intra-nodal Flux Expansion

Response Matrix Formulation

Iterative Solution Sequence

Analytic Nodal Method with Two-Node Formulation

Two-Node Problem

Analytic Solution of Two-Group, One-D Neutron Diffusion Eqn.

Implementation with the CMFD Framework

Semi-Analytic Nodal Method

Polynomial Intra-nodal Source Expansion

Analytic Solution for One Node

(3)

Introduction

3-D Steady-State Multigroup Neutron Diffusion Equation

Fick's Law of Diffusion for Current out of Flux

Computational Node in 3-D Space

 Property assumed constant within each homogenized node

 FDM accurate only if the node size is sufficiently small (~1cm)

 Nodal methods to achieve high accuracy with large nodes (20 cm)

G

g

G

g

g g sg g

fg g

g rg

g r E r E r E r E

J

1

' ' 1

' ' '

' ( , ) ( , )

) , ( )

,

(



) , ( ) , ( )

,

(r E D r E r E

Jg g g

x

y z

0

) , , (hx hy hz

(4)

Volume Averaging of Diffusion Equation for a Node

Integrate over the node volume then divide by volume

Volume Average Flux

Integration of the Divergence Term using Gauss Theorem

Surface Average Current

Nodal Balance Equation for Average Quantities of Interest (Nodal Power)

Nodal Balance Equation (NBE)

 

 

 

 

  

x y

x z

y z

x y z

h h

z z z

h h

y y

y

h h

x x

x

h h h

g

dxdy y

x J h y x J

dxdz z

x J z h x J dydz

z y J z y h J dxdydz

J

0 0

0 0

0 0

0 0 0

) 0 , , ( ) , , (

) , 0 , ( ) , , ( )

, , 0 ( ) , , (

 

 

y z hy hz x x

z y gxr

h h

x z

y

gxl J h y z dydz

h h J

dydz z y J

h h J

0 0

0 0

) , , 1 (

, )

, , 0 1 (

  

hx hy hz

z y x

dxdydz z

y x h

h

h 1 0 0 0 ( , , )

G

g

g g sg G

g

g fg g

g rg z

y x

u u

gul gur

h J J

1 '

' ' 1

'

' ' ,

,



(5)

NBE Solution Consideration

Information on 6 surface average currents only required for obtaining the node average flux which will determine the nodal power

Surface Average Currents

- Average of Flux Derivative on a Surface

- Equals to Derivative of Average Flux at the Surface

Better to work with the neutron diffusion equation for average flux rather than one for the point wise flux (3-D)

Transverse Integration

Set a direction of interest (e.g. x)

Perform integration within node over 2-D plane normal to the direction, then divide by plane area

Need for Transverse Integration

 

 

hz hy g rg g

z y

dydz E

r E

r J h

h LHS

0 0

) , ( )

,

1 (

x

y

z

0

(6)

Normalized Independent Variables

Transformation of Integration and Derivative Operator

Simplified Averaging

Normalized 3-D Diffusion Equation

Normalization of Variables

z z y

y u

x h

z h

y h

x

, ,

z y x u d

h d du

d d h du

u u u

u

, ,

,

,

  

 

 

1 0

1 0

1 0

1 0

1 0 1

0 1 0

) , , (

, )

, , 1 ( ,

) , , 0 (

z y x z y x

z y z y x gxr

z y z y x gxl

d d d

d d J

J d

d J

J

) , , ( )

, , (

1

' ' 1

' '

, ,

2 2

2 g x y z

G

g

G

g

g sg fg

g z

y x g rg z

y x

u u u

g

h

D

(7)

Transverse Integration of Leakage Term

Plane Average One-Dimensional Flux

Line Average Surface Current at Arbitrary Position x Transverse Integrated Quantities

 

 

 

 

1

0 1

0 1

0 1

2 0 2

1

0 1

0 2

2

2 1

0 1

0 1

0 1

0

)) 0 , , ( ) 1 , , ( 1 (

)) , 0 , ( ) , 1 , ( 1 (

) , , (

1 ) ( 1

1 ) 1

( 1

y y

x z y

x z z z z x y z x y y

z y z y x x

x g

z y z z

z y y

y x x

g z

y z z

z y y

y x x

x z y

d J

J h d J

J h

d d h

D

d J d

h J h h

D d

J d h J h J h

d d J

z

x zl x

zr

y

x l y x

r y

x x x

x g

h J J

h J J

h

D ( ) ( ) ( ) ( ) ( )

2 2

 

1

0 1 0

) , , ( )

( x x y z y z

x d d

l y x z z yl x l y x z z

x

yr J d J J d

J

0 0

) , 0 , ( )

( ,

) , 1 , ( )

(

l z x y y zl x l z x y y

x

zr J d J J d

J

0 0

) ,0 , ( )

( ,

) 1 , , ( )

(

x y

z

0

) ( x Jyl

) ( x Jzl

) ( x Jyr )

( x Jzr

(8)

Transverse Integration of 3-D Neutron Diffusion Equation

Define Transverse Leakage to Move to RHS

Transverse Integrated One-Dimensional Neutron Diffusion Equation (Final Form)

Diffusion Equivalent Group Constant

Transverse Integrated One-Dimensional Neutron Diffusion Equation

G

g

x x g g sg G

g

x x g fg g

x gx rg x

gx z x

y

u u x

x gul x

gur

d d h

D h

J J

1 '

' ' 1

'

' 2 '

2

,

2 ( ) ( ) ( ) ( )

) ( )

( 

J Ju y z

h

L gur x gul x

u x

gu 1 ( ) ( ) , ,

)

(

) ( )

( )

( )

( )

( )

(

1 '

' ' 1

'

' 2 '

2

x gz x

gy G

g

x x g g sg G

g

x x g fg g

x gx rg x

gx x x

Dg L L

d

d 

2 x x

Dg h

D

(9)

Set of 3 Directional 1-D Neutron Diffusion Equations

3-D Partial Differential Equation

→ Three 1-D Ordinary Differential Equations

Coupled through average transverse leakage term

- Exact if the proper transverse leakages are used

Approximation on Transverse Leakage

Quadratic Shape (2nd order polynomial)

based on observation that change of flux distribution is not sensitive to change of transverse leakage

Iteratively update transverse leakage

Transverse Integrated One-dimensional Neutron Diffusion Equations

) ( )

( )

( )

( )

( )

(

1 '

' ' 1

'

' 2 '

2

y gx y

gz G

g

y y g g sg G

g

y y g fg g

y gy rg y

gy y y

Dg L L

d

d 

) ( )

( )

( )

( )

( )

(

1 '

' ' 1

'

' 2 '

2

x gz x

gy G

g

x x g g sg G

g

x x g fg g

x gx rg x

gx x x

Dg L L

d

d 

) ( )

( )

( )

( )

( )

(

1 '

' ' 1

'

' 2 '

2

z gy z

gx G

g

z z g g sg G

g

z z g fg g

z gz rg z

gz z z

Dg L L

d

d 

(10)

Transverse Leakage Approximation

Quadratic Approximation in Each Node

Average TL Conservation Scheme to Determine l

1

and l

2

Use three node average transverse leakages

- Values of own node and two adjacent nodes

Impose constraint of conserving the averages of two adjacent nodes

) ( x Lz

Lleft center

L

right

L

) ( )

( )

( L l1P1 l2P2

L

(11)

Intranodal Flux Expansion of 1-D Flux

Approximate 1-D Flux by 4th Order Polynomial

Basis Functions

- Not Orthogonal Function

- Integration in Range [0,1] results 0.

2

nd

Order Transverse Leakage

Nodal Expansion Method

4

0

( ) i i( )

i

  a P

1 )

0( P

1 2 )

1(

P

1 ) 1 ( 6 )

2(

P

) 1 2 )(

1 ( 6 )

3(

P

) 1 5 5

)(

1 ( 6 )

( 2

4

P

0.2 0.4 0.6 0.8 1

-1 -0.5

0.5 1

)

2( P )

4(

P P3()

)

1( P

2

0

) ( )

(

i i iP l

L

(12)

Given Conditions

Incoming Partial Currents at Both Boundaries

Quartic Intranodal Variation of Source

Aim

Solve for flux expansion

Then update the outgoing partial current and source polynomial

One Node Formulation

m

g m1

g

1 m

g

right

Jg,

left

Jg,

left

Jg, Jg,right

0 1

) 0

, (

m g

x (1)

, m

g

x

)

, (

xmg

) (

) ( )

( )

( )

( )

( ) ( )

(

4

0

' 1

'

' '

1 '

i

i i

g g

G

g

g g g

G

g

f g

P q

L L

s Q





(13)

Three Physical Constraints

2 Incoming Current Boundary Conditions

1 Nodal Balance

Two-Additional Conditions Required to Determine 5 Coeff.

Weighted Residual Method for 1-D Neutron Diff. Eqn.

1

st

Moment of Neutron Diffusion Equation

- contains a1 which is unknown in principle

2

nd

Moment of Neutron Diffusion Equation

- contains a2 which is unknown in principle

Weighted Residual Method



d w s L d

d

w( ) D d ( ) r ( ) ( ) ( ) ( ) ( )

1 0 1

0 2

 





01 1( ) 2 () () ( ) 0

Q d

d

P D d r

) 60

( 3

5 3

5 1 3 1

3

r D

a r

q a q





01 2( ) 2 () ( ) () 0

Q d

d

P D d r

) 3 (

420

7 3

7 2 4 2

4

r D

a r

q a q

(14)

One-Node NEM Iterative Solution Sequence

For a given group

Determine sequentially

- Source expansion coeff.

- a1 and a2 from previous surface fluxes

- a3 and a4 using source moments and a1 and a2 - node average flux

- outgoing current

Move to next group

Move to next node once all groups are done

Group sweep and node sweep can be reversed (node sweep then group sweep) Update eigenvalue

Source

) , , , ,

1(Jr Jl Jr Jr a

) , , , ,

2(Jr Jl Jr Jl a

) , , ( 1 1 3

3 a q q

a

) , , ( 2 2 4

4a q q a

) , , , ,

(J J a3 a4 Jr r l

) , , , ,

(J J a3 a4 Jl r l

4 3 2 1

; i , , , qi

Converge?

End Condition Initial

No

Yes

. .

( , C B

1,2,3,4) i

a Update

i

(15)

Analytic Nodal Method for 2-G Problem

1D, Two-Group Diffusion Equation

All source terms except transverse leakage now on LHS

Analytic Solution: Homogeneous + Particular Sol.

Trial Homogeneous Solution

( ) H ( ) P( )

g x g x g x

( ) ˆ

H H iBx

g x g e

 

2 1

1 2 1 1 1 1 2 2 1

2 2

2 2 2 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

r f f

r

d x

D x x x L x

dx

d x

D x L x

dx

 

     

   

2

2 2

2

( ) ˆ ( )

H

g H iB x H

g g

d x

B e B x

dx

   

(16)

Determination of Buckling Eigenvalues

Characteristic Equation

For Nontrivial Solution

Eigen-Buckling (Roots of Characteristic Equation)

Fundamental Mode

Second Harmonics Mode

2

1 1 1 2 1

2

1 2 2 2 2

ˆ 0

ˆ 0

H

r f f

H r

D B

D B

 

    

      

 

0 )

)(

( 0

)

(A D1B2 r1 f1 D2B2 r2 f212

Det  

 

1 0

 

2 2 2 2 0

2 2

1 2 1

1 1

2 2

1 2 1

2





B b B c

D D k

B k D

D D

B r r

eff r f

r 

eff eff

k k

k k

b b c

B 0 ,

, 0 1

1 2

2 1

0 1

1 2

2

2

b b c

B

1 1

2

E ig V ec ˆ

ˆ 1

H

H

r

 

 

 

1 2

ˆ

ˆ 1

H

H

r

 

 

 

2

2 2 2

1 2 m 2 m r2 0 m D Bm r

r D B r  

    

(17)

Homogeneous Solutions

Each Group Homogenous Solution

Fundamental Mode

Second-Harmonics Mode

Combined Homogenous Solution

Linearly Dependent Group 1 and Group 2 Equations

Fast-to-Thermal Flux Ratio

1 1 2 1

1

1 1 2 1

sin ( ) co s( ) ,

( )

sin h ( ) co sh ( ) ,

g g eff

H g

g g eff

a B x a B x k k

x

a B x a B x k k

 



2( ) 3sinh( 2 ) 4 cosh( 2 )

H

g x ag B x ag B x

1 1 2 21 1 22 1

23 2 24 2

2

( ) sin( ) cos( )

sinh( ) cosh( )

1 1

( )

H g

H g

x r r a B x a B x

a B x a B x

x

 

 

2

11 12 2 1 2

1

21 22 12

a a D B r

r

a a

 

2

13 14 2 2 2

2

23 24 12

a a D B r

r

a a

 

참조

관련 문서

• Many physical behavior can be expressed as differential equation (containing derivatives of unknown function)..

→ Bernoulli equation can be applied to any streamline.. The concepts of the stream function and the velocity potential can be used for developing of differential

“Electron that moves in a periodically varying potential field can only occupy certain allowed energy zone”.. Solution

~ a model in which the entire resistance to diffusion from the liquid surface to the main gas stream is assumed to occur in a stagnant or laminar film of constant thickness

- Derive Bernoulli equation for irrotational motion and frictionless flow - Study solutions for vortex motions... ∙ Derivation

• Diffusion Equation for fluid flow in porous media... Fluid flow

- self-organization of CdSe nanocrystallites into 3-D semiconductor quantum dot superlattice

The temperature derivative of the solubility, as calculated from the Gibbs-Helmholtz equation, is directly related to either the partial molar enthalpy or the partial