• 검색 결과가 없습니다.

IEA-CFBC Ξj šÏ‚ ÿšzK B~Fÿ[ ²‚~ WËÎÒ

N/A
N/A
Protected

Academic year: 2022

Share "IEA-CFBC Ξj šÏ‚ ÿšzK B~Fÿ[ ²‚~ WËÎÒ"

Copied!
9
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

IEA-CFBC Ξj šÏ‚ ÿšzK B~Fÿ[ ²‚~ WËÎÒ

− Қš† WËæzö Vž B~Fÿ[ ²‚~ WËÎÒ −

š«"ÁfÒW

‚* *K’ö B*’ ²B*

(1999j 4ú 10¢ 7>, 1999j 10ú 1¢ j)

Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model

Determination of the CFB Combustor Performance with Cyclone Modification

Jong-Min Lee and Jae-Sung Kim

Advanced Power Generation & Combustion Group, PGL, KEPRI, KEPCO (Received 10 April 1999; accepted 1 October 1999)

º £

ÿšzK B~Fÿ[ ¢º 200 MWe ΂Ž “Ú Zêj ÒÏ~º ‚& Î~ B*Jjš–, *Ò 1^V&

çëÚ*7ö ®b–, 2^V& '99j 10úö &j ς‚ šJ7ö ®. *Ò çëÚ*7ö ®º ÿšzK B~Fÿ[

¢º Қš† B–ö Vž Ú* n;z 5 Ú* ‚'z¢ >¯7ö ®b¾, ‚& Î~ ZêÏ B~Fÿ[ö &

‚ Ú*¶òº –~ rJê :& ìÚ, šö &‚ .Gš jº~. šö  ’öBº IEA-CFBC Ξj šÏ~ ÿš

zK B~Fÿ[~ WËj Î҆ > ®º Ò.š~ æj BB~&b–, š¢ šÏ~ Қš† ÎN æzö Vž B

~Fÿ[ WË æz¢ .G~&. 6‚ Қš† B– Қš†~ WË æz 5 ÒB~ï, Ò ÷ «¶ï j .G~ B–ö Vž WË Ëçj Ö;~&.  ’Ö" ÿšzK Қš†~ WËf £ 98.7% ;ê‚ ¾æÒb–, Қš† ÎNš Ã&Žö V¢ ‚Ú ç¦N{š Ã&~º ãËj, Ò freeboard~ Nê& 6N Ôj^ n;z>º © b‚ ¾æÒ. š‚ Қš† ÎN~ çßj *š Қš† vortex finder 5 «’ š' B–¢ >¯† ãÖ, B~F ÿ[ WË Ëçš V&>º ©b‚ .G>î.

Abstract−The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite coal for generation of electric power. The #1-unit CFB boiler has been operated commercially since October 1998, and the #2-unit CFB boiler, of which commercial operation will be achieved at October 1999, is under construction. The optimization and stabili- zation of the CFB operation have been carried out through the modification of the cyclones for the units of #1 and #2. How- ever the operation data for the large CFB combustor firing the anthracite coal are few, so it is necessary to predict the performance of the CFBC with variation of the operation conditions. Therefore, in this study, the development of the simula- tion scheme has been achieved by using IEA(International Energy Agency)-CFBC model, and the performance of the CFB combustor with variation of the cyclone efficiency has been determined. The improved performance of the modified cyclone, which have been carried out by increase of the vortex finder length and by decrease of the cross sectional area of the cyclone inlet, also has been determined. The cyclone efficiency has been evaluated 98.7%. As the cyclone efficiency increases, the upper differential pressure increases and the freeboard temperature becomes to be low and stable. The modifications of vortex finder and inlet duct of the cyclone have been predicted to improve the performance of the CFB combustor.

Key words: CFBC, IEA Model, Tonghae Boiler, Anthracite Coal, Cyclone

1. B †

‚“*KöBº “Ú Zêj šÏ‚ *KÖj *š 1993j .ö B~Fÿ[ ²‚~ Jê 5 šJ *‚CÞ¢ ·~&. B~Fÿ [f 200 MWe 2V‚Ž ÿšö šJ>–, Jêº ABB-CEöB, 

Ò "ê£ 5 /f ‚“7ëöB ~ šÚæ ®.

B~Fÿ[ ²‚ 1^Vº 1995jöö Ê& generator¢ J~~&, .V 6z 5 Ê& Bf 1997j öö šÚrb–, 1998j 3ú¦

V Vÿ Ú*j ۚ 1998j 10úöº çëÚ*š šÚr. 2^V 6‚ *Ò šJ7ö ®b–, 1999j 10ú.ö &š šÚî .;

š.

ÿšzK B~Fÿ[ ²‚º Zê«j &çb‚ ‚ ΚöB

E-mail: jmlee@kepri.re.kr

(2)

z B38² B1^ 2000j 2ú

~Æ. š‚ B~Fÿ[ ²‚~ WË 5 ² ßW, V&Ê ßW

f *Ò VÿÚ* data šžöº ’² rJê ©š ìb– 6‚ „ b‚~ ;çÚ* 7öê  Ú* –š æzö Vž çV ßWš

rJê :& –~ ìV r^ö šö &‚ .G 5 ï&& jº~.

B~Fÿ[ ²‚ö &‚ Ξçf Všö 6Ò rJê VFÿ [ Ξj "*b‚ 1990j .¦V ‚B® ê¯>Ú z. B~Fÿ [ ²‚~ Ξç OËf ²‚ »OËòj J~º 1Nö Ξ

ç¦V[1-7] ²‚¢ »OË 5 ÇOË ¢¦(coref annulus)‚ ¾*

º 1.5Nö~ Ξç[9, 10], Ò »OË 5 ÇOËj Îv J~

º 3Nö Ξçb‚ ’ª>Ú B*> ®[11, 12]. 3Nö Ξç

~ ãÖöº ‚"ö ôf ’& ê¯7ö ®b¾ B wÏö ®Ú Bº 'Ï~V ÚJÚ ¦ªš Îj ®Ú jçf BBê¢ ö†

> ®. šö >š 1Nö 5 1.5Nöf ôf ’& ê¯>Ú zb

– š~ wÏ 5 'Ïê 禪 šÚ^ ®º ©b‚ > ®

5 V&Ê ßW, *" Ò ÒB~ ~ “Ï‚ ’W>Ú ® b–, š~ Ξç 'Ï.¢ Table 1ö ¾æÚî. ß® “B ö.æ V’(IEA, International Energy Agency) Ö~ Fÿ[¦^*ö²~ Ξ

ç öBê 1990j& .¦V “B* *‚Cނ Vš~ V F ÿ[ Ξ~ Ëçj ۚ B~Fÿ[ Ξ z¢ BB~&b– š

~ B ÖëÏ B~Fÿ[ ²‚~ 'Ïj ۚ  šÏ &ËWj {ž~&[13].

šö  ’öBº IEA-CFBC Ξj šÏ~ ÿšzK B~F ÿ[ ²‚~ Ú* –šj Î҆ > ®º Ò.š~ æj BB~

 š~ 'Ïj ۂ Ú* WË .Gj >¯~¶ ‚. š‚ Ú

* WË .G~ ‚ .‚ Қš† B–¢ ۂ B~ï~ Ã& 5 ‚ Ú~ Nê n;W Ò î ÎN Ã&¢ êÎ~¶ ~º ÿšz K B~Fÿ[~ ãÖö &‚ WË .G šCj >¯~  'Ëj

V~¶ ‚.

2. IEA-CFBC Ξ ’W

“Bö.æV’(IEA) Ö~ Fÿ[ öB *‚CÞz>Ú BB>

, Hannes[10, 13]ö ~š ;Ò, *‚ÎzB IEA-CFBC Ξf

2-1. Fluidization Pattern of Solid Flow

B~Fÿ[öB~ VÚ 5 Ú~ ç^·Ï 5 vªf riserÚ~ ®

¢‚ vªj ;W~–, š©f ’² riser ~¦öBº dense '

j, ç freeboard ’öBº transport 'j, Ò ç~¦ ã

ê'öBº *š'~ Vj &Ë~² š&.  ΞçöBº ' 'j Îv J~&b–, *š' 5 freeboard ’öB~ » OË Ú ³ê暺 Wen" Chen[14]š B‚ ç&j 'Ï~&

b–, denseç~ [¸š 5 Ú ³ê ªNf {K B¦Ê~ ãꖚ

j ¢ê, r~ Rhodes[15]& B‚ b‚¦V ' «¶–ö &š

êÖ~ Ö;~&.

(1)

VB a(exponential decay constant)º Kuniif Levenspiel[16]š B n‚ ²‚Ú~ ÷³êf >jf &êö ®º r~ ç&j ' Ï~&b–, ç>º ΞÚö –.æ>‚ «K>êƒ ’W>Ú ®.

(2)

¢>'b‚ ç>º ·f «¶ž ãÖ 2-5 s1, Ò – «¶ž ãÖ º 4-12 s1‚ &V >¾, &Ë~š «¶~ ßWö V¢ þb‚

’~º ©š Ò'ž ©b‚ B>î.  ’öBº parameter sensitivity Vj ۚ 5.5~ 8j 'Ï~&.

Two phase theory(Davidson" Harrison[17])~ Væj 'ς dense 'f emulsion" bubble 'b‚ ¾*Ú V~&b–, denseçö B~ VªNf Johnsson[18]š B‚ ç&j, Ò V’Vº Darton [19]š B‚ ç&j '' 'Ï~&. Freeboard ç~ Ç OË Ú ªN 5 core-annulus~ ãê Ö;&êº ­ &æ~ &;"

Žþ Seiter 5 Rhodes& B‚ ç&&êö ~š Ö;~&[13, 15].

šç" ?š IEA-CFBC ΞöB Úvª~ ãËf ’² »OË 5 ÇOËb‚ ¾*Ú V~&b–, ÇOËö ®ÚBº coref an- nulus’b‚ ¾*Ú ï ßWj 'Ï~&Vö ¢>'b‚ 1.5Nö

~ Ξç ;¢ ~ ®.

2-2. Development of Particle Size Distribution

B~Fÿ[ڂ "«>º «¶–f ’² Cê, C²C 5 [bî(Î

¾)‚ ’ªî > ®b–, ' «¶ö &š r" ?f mass balance

& šî > ®.

(3)

VB mfeedº š fragmentationj J‚ feeding flowš–, oº

¾æÞ ©š.

p ρs–ρg

( )g

---= εs d, Hd 0 H h d

[εs,+(εs d, εs,)exp(ah)]dh

 + 

 

a u⋅ o=constant

0 m·

feedwi feed, (1–ηi exit, )(1–ηi cyc, )m·

bagwi

– ηseg

dischargewi

= 1 nio

--- kio,attr io nio

(uoumf)mtotwioki attr, (uoumf)mtotwi

+

kio,shrk mtotwio

( )wio,i–kio,shrkmtotwi +

Table 1. Overall models for circulating fluidized bed combustors

Ref. Fluid dynamics Size distrib. Coal comb. SO2 NOx Heat trans. Steam proc. Recirc. State

Siegen[1] 1-dim + + + + + + + std

Zhang[2] 1-dim - + + + + - + dyn

Mori[8] block - + - - - - + std

Basu[9] 1.5-dim - + + + + - - std

Xu[3] 1-dim + + + + + + + std

Lin[4] 1-dim - + + - - - - std

Halder[5] 1-dim + - - - std

IST[6] 1-dim - + + + + - - std

Alstrom[7] 1-dim - + - + + - - dyn

Haider[10] 1.5-dim - + - + + - - std

Hiller[11] 1.5-dim - + + - - - - std

IEA[12] 1.5-dim + + + + + - + std

std : steady-state, dyn : dynamical, + : consideration, - : no consideration

(3)

 ΞçöBº «¶~ "« ÏÏö ~š Žæº fragmenta- tion 5 Vê' îÎ(attrition), z>wö ~‚ «¶ »²(shrinking)

j J~&. JB ’Vê «¶º *Ú [{K"~ ãꖚj V&b‚ ‚~¦‚~ V 5 filter‚~ V 5 ÷, Ò ÒB~

b‚ ’ª>Ú mass balance& šÚê.

2-3. Gas Flow

ªÖ6j ۚ "«B Vº core, annulus 5 bubble Ò

emulsion çb‚ ¾~Ú vªj ’W~– ' vªöB ÇOË~ VÚ

bf ' çöB~ VÚ v~ ³êö ~š Ö;B. Bubble" emulsion ç~ VÚbf Johnsson [18]š B‚ ç&j, Ò coref annulus*~ VÚbf Kruse [20]š B‚ ç&j 'Ï~

J~&.

6‚  ΞçöBº šNV~ "« 5 V&Ê~ ÒB~ j

J† > ®êƒ ’W>Ú r.

2-4. Coal Conversion

Cê «¶ö &‚ ²>w~ ¢>zB š ìV r^ö Cê

«¶~ ²‚Ú~ R«š šÚæš, «¶~ & 5 š–, Ò

î>B 5 J~ W Ò WJ~ ² >wb‚ šÚê. š

‚ ¢N~ >wöB VÚ {Ö 5 >w ï; Ò >w W

f J~ ²³ê 5 «¶ Nê¢ Ö;~–, «¶Nêö V¢ çV

>wf BN'b‚ ¢Ú¾–, J ³êº Vç~ Ö² ³êf ï;

j šêƒ Ξç çö iteration loopj ;W~êƒ ’W>Ú ®.

«¶~ & 5 š–º «¶‚~ Ò(radiation) 5 &~(convection)

Ò ÃBvª(evaporation heat flows)j J‚ ç&j 'Ï

~&b–[13], Cê «¶~ î>Bf ö²ªCö "–¢ v þ', Ûê' Vj ۚ áf Merrick[21]~ ç&j 'Ï~ J~&

. î>Bê ºJ~ ²º >wÖ²~ {Ö 5 «¶‚šöB~

² Ò «¶~ Nêæz j J‚ Field[22] š B‚ ç

&j 'Ï~&b–, š7 ÒÏB Cê~ ‚Wz ö.æ 5 frequency factorº adjustable variable‚ –.>êƒ J;>Ú ®. ÿšzKö ÒÏ>º “Ú Zê~ ãÖ Îž~ sensitivity study¢ ۚ ‚Wzö .æº 158 kJ/mol(=19000/R[K]), Ò frequency factorº 0.79[kg/

(m2sPa)]¢ 'Ï~&b–, >wN>º 1N>wb‚ &;~ 'Ï~&

¾æÒ[26].

2-5. Homogeneous and Heterogeneous Gas Reactions

Vç>wf CO, CO2, H2O, NO, N2O, SO2, O2 ö &š  >

w 'Ëj J~&b–, ÇOË Vçbš ' çöB j*~ &

;~ êÖ~&. SO2 W 5 C²C î>wö &šBº Schouten

" van den Bleek[23]& BB‚ VFÿ[öB~ Ξ SURE Î

žj Wolff[24] š Bï B*Î SURE2 Ξj 'Ï~&. Ni- trogen~ >wb‚ W>º NOxzbö &šBº Johnsson [25]

š ‚ homogeneous 5 heterogeneous >w kinetics Ξj 'Ï

~&b–,  <~ VçWb~ Ò² >wf Howard  5 Hautman

š B‚ Ξj ÒÏ~&[13, 26]. ‚Þ, N2O 5 NO~ Wj º *Ò ôf ’& šÚææ pj IEA-CFBC ΞÚöBº – .ç> 8b‚ «K~êƒ ’W>î.

2-6. Heat Transfer

B~Fÿ[öB~ * ßWf «¶~ convection 5 radiationö ~

š wall membraneb‚ *>º š " v~š >–, š <öê

ž¦ v~V 5 ash cooler öB *>º š šÒ† > ®.

 ΞçöBº çV ' partê *j Wirth 5 VDI-Warmeatlasö B B‚ Ξb‚ 'Ï, J~&b–, 6‚ * tube& ‚Úö immersedB ãÖê J† > ®êƒ ’W>Ú ®[13, 27].

Fig. 1f IEA-CFBC Ξj ۂ Ò.š~ procedure¢ ¾æÞ

©š. šç" ?š IEA-CFBC Ξf B~Fÿ[öB jv' J

>Ú¢ † ¦ªj &¦ª <¾ Ξ z‚Ž  Fώš Ö ’

3. ÿšzK Jê 5 Ú* ¶ò

 ’öBº çV IEA-CFBC Ξz¢ ÒÏ~ Қš†~

ÎN æzö Vž ÿšzK B~Fÿ[ ²‚~ WË 5 ² ßW Fig. 1. IEA-CFBC model procedure.

(4)

z B38² B1^ 2000j 2ú

j V~¶ ‚. ÿšzK B~Fÿ[ ²‚º Fig. 2ö ¾æÞ :f ?š ’² Cê 5 C²C R«Ë~ 5 silo, V"«¦, "

²‚¦(²‚, Қš†, loopseal, FBHE 5 FBAC) Ò back- pass‚ ’W>Ú ®. ²‚º rectangular(32×19×7 m) ’–‚ ªÖ 6*‚¦V 7 m æ6öB ~¦‚ 15o~ taperedB ;¢ ‚.

ªÖ6f '  62B~ T-type four jet ž¶š 12ö '' vN

>Ú ®º ;¢ š. B~ «¶¢ ÷~ ÒB~ʺ Қ

š†(7.6 m I.D.×15.7 m Height)f 3B& J~>Ú ®b–, ' Қ

š† ''~ loopseal" FBHE¢ ’W~² B. Loopsealöº ash control valve& J~>Ú ®Ú FBHE‚ split >º ·j –.~² B . ²‚ ~¦öº [bîj FBAC‚ VÂʺ ^2& J~>

Ú  ·j –.~² >Ú ®b–, š¢ šÏš *Ú ‚Ú~ {Kj

–.~² B. ²‚‚ "«>º Cê"«’º C 6B‚ šÚ^

® šNVº C 16B~ ž¶j ۚ "«B. ªÖ6b‚¦V 4.3 m æ6ö J¢ ª. 2V&, Ò dense[ö Lance ª. 5V&

J~>Ú ®b–, š¢ ۚ [bî~ & 5 &¦~öB~ Nê¢

B~B.

ÿšzK B~Fÿ[ ¢ö ÒÏ>º Cêf “Ú Zêb‚

ash& 39%, ;ê²& 53.7%, >ªš 3.3% Ò >Bªš 4%

ŽF>Ú ®b–, š–ê V&b‚ S 5 N~ ŽFïš '' 0.6 5

0.2% ŽF>Ú ®º jv' ² >wWš ¾‚ Cꚢ rJ^ ®

[28]. 6‚ Cê~ «ê ªº Jê~ V&b‚ 0.1-3.0 mm Қ

~ «¶& 95% šç>Ú¢ ~¾, ÿšzK~ ãÖ Jê~ ·–

¾ _f – «ê& çï šÒ~º ©b‚ ¾æÒb–, š‚ Cê

ò~ >wW 5 «êö &‚ 'Ëf .V B~Fÿ[ Vÿ ê

¦(sealpot 5 cyclone)~ Nê¢ ¸šº Ö"¢ &^f Ú*ö ç

® ®n;‚ ºžb‚ ·Ï~º ©b‚ C&r[29]. Table 2ö Cê ªC~ 5 V& «ê ª¢ ¾æÚî.

²‚Ú~ î>wj *š "«>º C²Cf “Ú B–B ©b‚

CaCO3ŽFïš 90%, Ò MgCO3& 4.2% ;ê ŽF>Ú ®b–, 1 mm š~ «ê& 100%, 0.7 mm š~& 95%, Ò 0.5 mm š~

& 90% >º jv' ·f «ê ª¢ <º C²Cš ÒÏB.

Ò.š~ö ÒÏB ÿšzK B~Fÿ[ ²‚ö />º ¢N

Vï 5 šNVï, Ò loopseal 5 FBHE, FBACöB ÒB

~>º Vï 5 feeder‚ />º Vï j ' ¦~ê‚ Table Fig. 2. Schematic diagram of the Tonghae CFB boiler.

Table 2. Analysis of design coal in the Tonghae CFBC

Proximate analysis wt% Ultimate analysis wt%(dry basis) Size distribution(mm) wt%

Moisture Volatile matter Fixed carbon Ash Heating value

(dry basis)

03.3 04.0 53.7 39.0 4600 (kcal/kg)

C H O N S Ash

54.7 00.3 03.8 00.2 00.6 40.4

>9.5 5.6-9.5 4.75-5.6 2.8-4.75 2-2.8 1.0-2.0 0.6-1.0 0.25-0.6 0.1-0.25 0.075-0.1

<0.075

00.0 00.0 01.0 02.0 16.0 31.0 16.0 17.0 10..0 02.0 05.0

Table 3. Operation data for the Tonghae CFBC

# Height [m]

Width [m]

Length [m]

Addition air[m3/s] Tap.

1=y, 0=n Wall ratio

BMCR MGR 100%NR 75%NR 50%NR 30%NR

1 00.00 19.05 3.35 87.22 87.22 87.22 76.30 65.58 68.34 1 1

2 00.43 19.05 3.58 14.60 14.01 10.26 04.40 04.40 04.40 1 1

3 01.37 19.05 4.09 00.93 00.93 00.93 00.93 00.93 00.93 1 1

4 01.70 19.05 4.26 09.14 09.14 09.14 09.14 09.14 07.34 1 1

5 02.44 19.05 4.66 22.19 21.75 18.94 14.54 14.54 14.54 1 1

6 04.48 19.05 5.75 32.86 31.52 23.09 09.90 09.90 09.90 1 1

7 31.90 19.05 7.09 0 0 0 00.00 000.0 000.0 0 1

8 Coal[kg/s] 30.10 29.70 27.30 20.70 14.50 07.90

9 Lime[kg/s] 00.92 00.91 00.83 00.63 00.44 00.38

#1: Primary Air, #2: Secondary Air(4), #3: Feeder(Coal and Lime) Transport Air, #4: Loopseal+FBHE Returned Air, #5: Secondary Air(3), #6: Secondary Air(9), #7 Top of Combustor, #8, #9, Coal, Lime Feed Rate, # Wall Ratio: [Membrane wall area]/[wall area], # Tap.: Tapered type, yes=1, no=0

(5)

3ö ¾æÚî.  Ò.š~öBº 100% NR(Nominal Rate) V&

b‚ Қš†~ WËæzö Vž B~Fÿ[ WËÎÒ¢ ~&.

4. Ö" 5 V

Fig. 3(a)f (b)º Қš†~ WËæzö Vž ÿšzK B~Fÿ[

Ú~ »OË solid hold-up 5 {Kª¢ ¾æÞ ©š. Қš†~

öB «¶ßW"º Z&~² æ V~ z ÚÇK(saturation car- rying capacity)j >º ·š ªÒ>º *çö ~‚ ÎN‚Ž Û «

’ ÎN(entrance efficiency or vortex efficiency)š¢ ;~>º ©", ªÒ>æ p Îj®º «¶ö &‚ centrifugal force 5 drag force balanceö ~š ;~>º ¢ «¶ ÎN(single particle efficiency)š

(4)

VB saturation carrying capacityž µs,satº r~ (5) b‚ ‚*

† > ®b–, 6‚  IEA-CFBC ΞöB single particle efficiency

(5)

(6)

(7)

IEA-CFBC ΞöBº çV Қš†~ Ξj B B~Fÿ[ö

'ώö ®Ú kcye¢ –. æ>‚ ÒÏƃ >Ú ®.  Ξç~

ãÖ Òšš† B–¢ ۂ WËæz ’–' æz >~öò jî

¢, ÎNæzö – 'Ëj "º kcyc,e~ 8j æz(0.01-0.34)B B Қš†~ ÎN æz *Ú B~Fÿ[ ²‚~ WËö ~º 'Ëj ÚÚ~. Fig. 3(a)öB º :f ?š kcyc,e~ 8~ –.j ۂ Қš† ÎN~ Ã&(99.99-98.67)ö V¢ dense [~ solid hold upš 6N 6²(0.187-0.059)~– >šö freeboard(lean phase)öBº 6N Ã&(0.005-0.014)~º ãËj š ®. 6‚ dense [~ [

¸š& Қš† ÎNš Ã&Žö V¢ 6N ¸jæ ®rj r >

®. š¢ ۚ Қš† ÎNš Ã&Žö V¢ B~Fÿ[ ²‚

Ú~ Ú³ê ª 5 B~ïš – 'Ëj Arj r > ®b–, ß

® Fig. 3(b)öB º :f ?š B plantöB Ú* ¶ò‚ áº

ẠÚ* {K ¶òº ’² ªÖ6 {K;~¢ Ž‚ *Ú {KN f Ò ªÖ6b‚¦V 0.9 m *¦V ç¦ 28.5 m Қ~ {KN,

Ò ªÖ6 5.2 m *¦V ç¦ 28.5 m Қ~ {KN¢ G; ª C~ ®. š7 ç¦N{š¢ ¢º ªÖ6 5.2 m *¦V ç¦

28.5 m Қ~ {KNšº Ú B~~ ¦¢ 6ê~º V&b‚ â

 ®b– ;çÚ* 7ö £ 140-170 mmH2O~ {KN¢ š ® . 6‚ 7*N{ž ªÖ6 *‚ 0.9-28.5 m Қ~ {KNšº £ 340-490 mmH2O~ 8j ¾æÚ ®. Fig. 3(b)öB º :f ?

š çV {K º*ö º Қš† ÎN~ 8j º;š š *Ò ÿšzK~ Қš† ÎNf 98.7%;êž ©b‚ ¾æÂ. ÿšz K B~Fÿ[ ¢~ V J궞 ABB-CEöBº *Ò~ Қ

š† ÎNj 96.4%‚ êÖ~ ®b¾ šº 'ÏB Қš†~ Ξ

5 B~ï~ êÖ 'Ïö~ Nš& ®Ú B jvº ÚJÚ ©b

‚ ¾æÒ. 6‚ Қš† ÎNçß dense[öB~ {KNº 6 N 6²~– >šö lean phaseöB~ {KNº 6N Ã&~º ãË j ¾æÚ ®Ú B~ï~ Ã&¢ .ç† > ®b–, Қš† ÎN ö Vž ' {KG;~öB~ {KN¢ .ç† > ®.

Fig. 4º ‚~ ¸šö Vž annulus 5 coreöB~ Nꪢ ¾æ Ú ®. Dense[öB~ Nꪺ annulus 5 core~ Nêª&

£ 900oCöB jv' ¢Žj " > ®b– B Nê G;~(sym- bol)fê jv' ¾ rj " > ®. ¾ lean phaseöB~

annulus 5 core~ Nꪺ Қš† ÎNö V¢ ’² ªj "

> ®b–, Қš† ÎNš Ã&Žö V¢ 6N Nê& Ôjöj "

> ®. šº Қš† B– ‚Ú~ ê¦ Nê n;ö – Î"

¢ * > ®rj ~‚. Annulus Nê ª~ ãÖ, dense[j

š ®b–, šº annulus~ ~Ëvª Úö ~‚ membrane wall tube‚~ *š ¢Ú¾V r^b‚ '† > ®. ¯, ‚ ç¦ö B~ N~ ~Ëvª Ú& *‚ žš 6N Nê& Ôjæ

& dense[~ Ú[" &ròæšB  Ã&~º ;¢ ¾æêj ηcyc i, 1 µs sat,

µs --- µs sat,

µs ---ηpart i, +

=

µs sat, kcyc e,λ

Rcyc Rcyc vort, --- πAcyc e, kcyc acc1.5, --- ucyc e,

ut ---

=

ηpart i, 1

1 ds i, –ds crit, ds crit, ---

– 

 

exp +

---

=

ds crit, 18 uin2 --- µguradrin

ρ2–ρg

( )

---

=

Fig. 3. Effect of cyclone efficiency on (a) solid fraction, and (b) pressure along the combustor height.

(6)

z B38² B1^ 2000j 2ú

" > ®. Annulus 5 core~ Nꪺ dense[j æ¾B free- board ’öB Қš† ÎNš Ã&Žö V¢ 6N Ôjæº ãË j š–, šº ÒB~>º Úïš Ã&~šB ‚Ú~ Nê¢ Ô ºº †j ~V r^š. *Ò ÿšzK B~Fÿ[~ ãÖ(ηcyc

=98.7%), core~ Nꪺ ‚~ ¸š& Ã&Žö V¢ 6N Nê&

Ã&~º *çj š–, Қš† inlet~ Nê(symbol)& £ 950- 1,000oCҚö ®Ú Î҂ Ö"~ ËFöB ÚÚ" ãÖ Ö j

Ö Ôf ²>wWöB j•>º ©b‚ ššF > ®b–, Қš

† inlet~ ãÖ, ª~ ^«¶ _f V&Ê7~ COf >wB

æÚ ®rj r > ®. šº jv' VÚvªš B‚ ‚ÚöB

>wB Ö² 5 CO Ò ªš Қš† inlet ¦"öB ÏR

® b> ÷£>º ©b‚Ž ššF > ®. Fig. 4öB º :f

?š Қš† ÎN~ Ã&º ‚ç¦~ Nê¢ Ôºº †j ~º © b‚ ¾æ¾, Қš† B–¢ ۚ ÷ ÎNj ¸¢ ãÖ, jv' ¸ f Nê~ Ú*–šj n;~² Ôºº Î"¢ V&† > ®.

Fig. 5º Қš† ÎNö Vž B~Fÿ[ ' ¦*öB~ «êª

¢ ¾æÞ ©š. Feedº B~Fÿ[ڂ "«>º Cê 5 C²C

~ b «êš–, filter‚ ‚VB ¦ªf Қš†öB ÷>Ú VÂ>º «êª¢, Ò overflowº [öB VÂ>º «êª

¢ ¾æږ, recirculation 5 bed-contentº '' ÒB~>º «ê 5 [Úö ®º «êª¢ ¾æÚ ®. âöB " > ®š

Қš† ÎNš Ã&Žö V¢ ÷, ÒB~>º «ê& *>'b‚

·j^ Î ¦ªöB «êª& 6N ·jöj r > ®. âö B symbolf ÿšzK B~Fÿ[öB þ2çj š ªC‚ «êš

–, «êªº ÎÒ Ö"(ηcyc= 98.7%)f ¾ ¢~~º ©b‚ ¾æ Ò. æ, ÒB~ «ê~ ãÖº FBHE ç¦öB þ2ç‚ «ê¢

‚‚ ©b‚ ÎÒB ÒB~ «êº jv' ·f «êª¢ ¾ æÚ ®. šº FBHEÚ~ VF³š jv' Ô² Ú*>êƒ J ê>Ú ®Ú(−∼0.3 m/s), j* bš šÚææ p Ú¶;ê~ ÞC (segregation)š Vº ©b‚ šš† > ®.

Fig. 6f Қš† ÎNæzö Vž Ú «¶~ ÒB~ï 5

bottom ash‚ VÂ>–¾ _f Қš†öB ÷>Ú ÷êV‚ V Â>º ·j ¾æÞ âš. âöB " > ®š * ÿšzK~

Ú ÒB~f Қš† ÎNj 98.7% £ 500 kg/s‚ .G>–, VÂ

>º ash~ ;º bottom ash& £ 410-420 ton/day, Ò fly ash

& £ 560-590 ton/day‚ .ç>Ú fly ash~ VÂïš –. z ¸f

©b‚ .G>î. Қš† ÎNš Ã&Žö V¢ ÒB~ïf 6N Ã&~º ©j " > ®b–, 6‚ bottom ash~ ·" fly ash~ V Âï ;& B‚ Ê:2º ©j V† > ®. šº *Ú ²‚

~ Ú*j ¢;‚ *Ú {KN‚ Ú*~V r^ö B~ïš Ã&†

>ƒ bottom ash;‚ VÂ>º ashïš Ã&~V r^š. * ÿ

šzK~ ash VÂïf fly ashf bottom ash~ j& £ 6-5 : 4-5‚  V> ®b–,  ·ê fly ash& £ 550-600 ton/day‚ G;> ®Ú

Ò.š~ .G~& jv' ¾ rj r > ®.

Fig. 7f Қš† ÎNæzö Vž ²‚ ’öB~ V&Ê ßW

5 ² ÎNj ¾æÞ ©š. Қš† ÎNš Ã&Žö V¢ CO 5 O2Ò NOx& Ã&~º ãËj, Ò CO25 SO2 Ò

² ÎNš 6²Žj " > ®. CO~ Ã&º Қš† ÷ÎN Fig. 4. Temperature vs. combustor height with variation of cyclone

efficiency.

Fig. 5. Effect of cyclone efficiency on particle separation.

Fig. 6. Effect of cyclone efficiency on the recirculation and ash discharge rate.

(7)

~ Ã&‚ ªê~ ÒB~ï~ Ã&&  ºžš–, šº Ahlstorm Ò~ “ Pensylvaniaö ®º B~Fÿ[ ¢~ ªê 'Ë þö ®ÚBê  Ö"& > ®[30]. SO2~ 6²º jv'

«ê& ·f >w C²Cš Қš† ÷ ÎN~ Ã&‚ ÒB~

>º ·š Ã&~šB îÎNš Ã&~º ©b‚ ššF > ®b

–, >šö NOx~ VÂïš ^~¾î Ã&~º ãËj " ® . šº ²‚ n~ C²C~ Ã&& ¢;ï~ NOx~ Ã&¢ &^

Jº Ö"‚ ššF > ®b–, š‚ Òf Jones [31]~ “

~ Scrbrass B~Fÿ[ –ëãþ öBê ÚÚ" > ®. 6‚

Қš† ÷ ÎN~ Ã&‚ ž‚ ª²Ò~ ÒB~ Ã&º jv ' ¸f ²‚~ ç¦Nê¢ Ôºº Ö"¢ &^Z" ÿö *

~ê~ bottomb‚~ VÂj Ã&Úb‚Ž ² ÎN 5 CO2~ V Âj Ôºº Î"¢ &^Jº ©b‚ .G>î.

Fig. 8f Қš† ÎN Ã& 5 Ca/S Öjö Vž SO2 V 5 î ÎNj ¾æÞ ©š. SO2 V 6² 5 î ÎNf Қš

† ÎN 5 Ca/S Öj& Ã&Žö V¢ 6N Ã&~º ©b‚ ¾æ Ò. 6‚ Қš† ÎNš ¸f ãÖ& Ôf ãÖö jš Ca/S Ö jö V¢ z ’² î ÎNš Ã&Žj " > ®b–, šº î

ÎN~ Ã&¢ *šB –ëç~ Ca/S Öj¢ Ã&ʺ– ‚ê& ® Fig. 7. Cyclone efficiency vs. exit gas concentration and combustion

efficiency.

Fig. 8. Effect of Ca/S mole ratio on SO2 concentration and sulfur cap- ture efficiency with cyclone efficiency.

Fig. 9. Effect of cyclone modification on the performance of the cyclone.

(8)

z B38² B1^ 2000j 2ú

º ãÖ, '.‚ Қš† B–¢ ۚ î ÎNj ¸¢ > ®j © b‚ V&B. 6‚ âöB ‚*‚ Nêº dense[~ Nꪚ

–, „~ Fig. 4öBê " > ®š Қš† ÎN~ Ã&º ‚ ç¦

~ ¸f Nê¢ Ôºº †j ~V r^ö îB~ N sintering ö ~‚ î ÎN 6²¢ Oæ~º ©b‚ ¾æÒ. ÿšzK B~

Fÿ[~ ãÖ š Ca/S Öj(1.0-3.6) 5 C²C «ê æzö &‚

'Ëj V~&b–, .V Ú*¶ò¢ š &Û Öjö V¢ 140- 350 ppm ;ê& VÂ>º ©b‚ ¾æ¾ Ò.š~ Ö"(ηcyc= 98.7%)f –~ ¢~~º ©b‚ ¾æÒ.

‚Þ, ÿšzK B~Fÿ[~ ãÖ, Қš†Ú~ vortex finder~

^š Ã& 5 «’ š' 6²~ B–¢ ۚ fly ash Ú~ ª j 6²Ê –ë Nê¢ n;zʖ V&ÊÚ~ SO2&6 ~

‚' Ú*j êÂ~º ·ëj >¯7ö ®. Fig. 9º Қš† B–

ö Vž Қš† cut-diameter æz 5 ÷ «¶~ VÂïj,  Ò ÒB~ïjö &‚ .G~¢ ¾æÞ ©b‚ B–>º vortex

finder~ ^šæz 5 Қš† «’~ ¸š 5 .j æzº .ç>º

B–~ º* ÚöB ¾æÞ ©š. âöB " > ®š vortex finder~ ^šÃ&ö &š *Ò ÿšzK~ V&^šž 1.28 m ^ Úæº ãÖ, cut-diameter 5 ÷ «¶~ VÂïjº 6²~º ã Ëj ¾æÚîb–, >šö ÒB~ïjº Ã&~º ãËj ¾æÚî . šº vortex finder~ ^šÃ&& Қš†ÚöB~ öOË~ ³ ê¢ Ã&ʖ, ç7 Қš† ’‚ ¾&º VÚvªj Ú¶;ê ïj"V r^b‚ ššF > ®. >šö Қš† «’öB~ V ÚF³j Ã&B Қš† ÎN~ çßj <¶ ~º Ï'b‚ Ò

šš† «’~ š'(¸š _~ .j¢ *šº ãÖ)j *šº ãÖ öº âöB º :f ?š £*~ Î"º šæò vortex finder~

^šÃ&ö jš Ôf Î"¢ ¾æÚº ©b‚ ¾æÒ. ¾

vortex finder 5 Қš† «’B–º «¶ö ~‚ Vê' îÎö ~

‚ vÚ, vortex finder~ ææ 5 Қš† inlet-ductöB~ fouling

~ 'Ëj J~ F;>Ú¢ † ©š.

šçöB ÚÚ :f ?š, Қš† ÎNæzº *Ú B~Fÿ[

WË 5 Ú* ¶òö – 'Ëj ~–, š‚ 'Ë~ .Gj ۚ

'.‚ Қš† B–º B~Fÿ[ WË~ Ëçj š > ®º © b‚ ¾æÒ.

5. Ö †

IEA-CFBC Ξj šÏ~ ÿšzK B~Fÿ[~ Қš† WË

æzö Vž 'Ëj V~&. ÿšzK~ * Қš† ÎNf £ 98.7% ;ê‚ ¾æÒb–, Қš† ÎNš Ã&Žö V¢ solid hold- up 5 ‚Ú {KN& dense[~ ãÖ 6N 6²~– >šö freeboard

~ solid hold-up 5 ‚Ú {KN& Ã&~º ©b‚ ¾æÒ. 6‚

‚Ú Nꪺ Қš† ÎN~ Ã&ö V¢ ÒB~ï~ Ã&‚ ç

¦ freeboard~ Nê& 6N Ôj^ n;z>º ©b‚ ¾æÒb– « êª 6‚ 6N ·f «êª‚ æš>º ©b‚ .G>î. N ê n;z 5 Ú ÒB~~ Ã&‚ î ÎNê Ã&~¾, >šö Қš† ÎNš Ö ¸j ãÖöº CO VÂïš ¾, ² ÎNš

Ôjæº *çš .G>î. 6‚ š‚ Қš† ÎN~ çßj *

š Қš† vortex finder 5 «’ š' B–¢ >¯† ãÖ, B~

Fÿ[ WË Ëçš V&>º ©b‚ .G>î.

ÒÏV^

a : exponential decay constant [1/m]

Acyc,e: cross section area of cyclone entry [m2]

ds,crit : critical particle diameter [m]

ds,i : particle diameter of i class [m]

H : height [m]

Hd : dense bed height [m]

kcyc,acc : acceleration coefficient of cyclone [-]

kcyc,e : cyclone entrance efficiency coefficient [-]

ki,attr : attrition constant of i class [1/m]

ki,shrk : shrinking constant of i class [1/s]

: mass flow rate [kg/s]

wi : particle size fraction [-]

p : pressure [Pa]

Rcyc : radius of cyclone [m]

Rcyc,vort: radius of vortex finder [m]

rin : radius of cyclone inlet [m]

ucyc,e : entrance gas velocity in cyclone [m/s]

uo : superficial gas velocity [m/s]

uin : inner directional gas velocity in cyclone [m/s]

urad : tangential gas velocity in cyclone [m/s]

: terminal velocity of mean particle size [m/s]

ÒšÊ ^¶

: average solid volume fraction in dense bed [-]

: average solid volume fraction at infinite height [-]

λ : wall friction coefficient [-]

ηcyc,i : cyclone separation efficiency of i class [-]

ηpart,i : eddy separation efficiency of i class [-]

ηseg : segregation function [-]

µg : dynamic gas viscosity [kg/ms]

µs : solid load in gas [kg/kg]

µs,sat : saturation solid load in gas [kg/kg]

ρg : gas density [kg/m3] ρs : solid density [kg/m3]

^^ò

1. Heinbockel, I.: Ph. D. Dissertation, Siegen University, Germany(1995).

2. Zhang, L., Li, T. D., Zhen, Q. Y. and Lu, C. D.: 11th Int. Conf. on FBC, Montreal, Canada, 1289(1991).

3. Xu, X. and Mao, J.: Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 104(1993).

4. Lin, X. and Li, Y.: Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 547(1993).

5. Halder, P. K. and Datta, A.: Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 696(1993).

6. Saraiva, P. C., Azevedo, J. L. T. and Cavalho, M. G.: 12th Int. Conf.

on FBC, San Diego, CA, USA, 375(1993).

7. Hypannen, T., Lee, Y. Y., Ketunen, A. and Riiali, J.: 12th Int. Conf.

on FBC, San Diego, CA, USA, 1121(1993).

8. Mori, S., Narukawo, K., Yamada, I., Takebayashi, T., Tanii, H., To- moyasu, Y. and Mii, T.: 11th Int. Conf. on FBC, Montreal, Canada, 1261(1991).

9. Sengupta, S. P. and Basu, P.: 11th Int. Conf. on FBC, Montreal, Can- ada, 1295(1991).

10. Hannes, J. P., van den Bleek, C. M. and Renz, U.: Proceedings of the 13th Int. Cong. on FBC, Orlando, FL, USA, 287(1995).

11. Prichett, J. W., Blake, T. R. and Garg, S. K.: AIChE Symp. Ser., 74,

ut

εs d,

εs,

(9)

134(1978).

12. Balzer, G. and Simonin, O.: Proc. 5th Int. Symp. on Refined Flow Modelling and Turbulence Measurements, Paris, France(1993).

13. Hannes, J. P.: Ph. D. Dissertation, Delft University of Technology, The Netherlands(1996).

14. Wen, C. Y. and Chen, L. H.: AIChE J., 28, 117(1982).

15. Rhodes, M.: Powder Technology, 53, 155(1987).

16. Kunii, D. and Levenspiel, O.: “Fluidization Engineering ,” Robert E.

Krieger Publishing Company, Huntington, New York(1977).

17. Davidson, J. F. and Harrison, D.: “Fluidized Particles,” Cambridge University Press, New York(1963).

18. Johnsson, F., Andersson, S. and Leckner, B.: Powder Techonlogy, 68, 117(1991).

19. Darton, R. C., LaNauze, R. D., Davidson, J. F. and Harrisson, D.:

TransIChemE, 55(1977).

20. Kruse, M., Hartge, E. U. and Werther, J.: Powder Technology, 70, 293(1992).

21. Merrick. D.: Fuel, 62, 534(1983).

22. Field, M. A., Gill, D. W., Morgan, R. B. and Hawksley, P. G. W.:

“Combustion of Pulverized Coal,” British Coal Utilization Research

Association, Great Britain(1967).

23. Schouten, J. C. and van den Bleek, C. M.: Chemical Engineering Science, 43, 2051(1988).

24. Wolff, E. H. P.: Ph. D. Dissertation, TU-Delft University, The Neth- erlands(1991).

25. Johnsson, J. E.: Presented at the 21th IEA-AFBC Meeting in Beo- grad(1990).

26. Hautman, D. J., Dryer, F. L., Schug, K. P. and Glasman, I.: Combus- tion Science and Technology, 25, 219(1981).

27. Wirth, K. E.: Chemical Engineering Science, 50, 2137(1995).

28. Sun, D. W., Bae, D. H., Hee, K., Son, J. E., Kang, Y., Wee, Y. H., Lee, J. S. and Ji, P. S.: HWAHAK KONGHAK, 34, 321(1996).

29. Lee, J. M. and Kim, J. S.: Proceedings of the 6th Asian Conference on Fluidized-Bed and Three-Phase Reactor, CheJu Island, Korea, 501 (1998).

30. Cheliand, P. K. and Gamble, R.: “Fluidized Bed Combustion Volume- 1,” ASME, 535(1995).

31. Jones, P. A., Syngle, D. V. and Sinn, B. T.: “Fluidized Bed Combus- tion Volume-2,” ASME, 1211(1995).

참조

관련 문서

특히 화상 환자들의 경우 피부 기증을 통한 동종피부이식 수술을 통해 생존율이 높 아졌다고 하는데 아직까지는 피부조직의 대부분을 해외로부터의 수입에 의존하는 , 것이 현실

The key issue is whether HTS can be defined as the 6th generation of violent extremism. That is, whether it will first safely settle as a locally embedded group

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&amp;P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

클라우드 매니지드 DDI는 기업이 클라우드를 통해 모든 위치의 통합 DDI 서비스를 중앙 집중식으로 관리하여 지사에 향상된 성능을 제공하고, 클라우드 기반 애플리케이션에 대 한 보다

웹 표준을 지원하는 플랫폼에서 큰 수정없이 실행 가능함 패키징을 통해 다양한 기기를 위한 앱을 작성할 수 있음 네이티브 앱과