• 검색 결과가 없습니다.

Nonlinear Optics

N/A
N/A
Protected

Academic year: 2022

Share "Nonlinear Optics"

Copied!
32
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab

.

Hanyang Univ.

Nonlinear Optics

(비선형 광학)

담당 교수 : 오 차 환

교 재 : A. Yariv, Optical Electronics in Modern Communications, 5th Ed., Oxford university Press, 1997

부교재 : R. W. Boyd, Nonlinear Optics, Academic Press, 1992

A. Yariv, P. Yeh, Optical waves in Crystals, John Wiley & Sons, 1984

(2)

Nonlinear Optics Lab

.

Hanyang Univ.

Chapter 1. Electromagnetic Theory

1.0 Introduction

Propagation of plane, single-frequency electromagnetic waves in - Homogeneous isotropic media - Anisotropic crystal media

1.1 Complex-Function Formalism

Expression for the sinusoidally varying time functions ;

], A

Re[

] 2 [

| A ) |

cos(

| A

| )

( t t

a

e

i( t )

e

i( t )

e

i t

a     

a

a

i a

e

| A

| A

where

Typical expression ;

a ( t )  A e

it

 ??

(3)

Nonlinear Optics Lab

.

Hanyang Univ.

Distinction between the real and complex forms

1)

a t i e

i t

dt

d ( )    | A | sin(  t  

a

)   A

2)

[cos( 2 ) cos( )]

2

| B

||

A ) |

( )

( t b t t

a b a b

a          

) 2

|

(

B

||

A

| e

i tab

* Time averaging of sinusoidal products

) 2 cos(

| B

||

A ) |

cos(

| B

| ) cos(

| A 1 |

) ( ) (

0

b a

b T

a

t dt

T t t

b t

a           

 

*) AB 2 Re(

 1

(4)

Nonlinear Optics Lab

.

Hanyang Univ.

1.2 Considerations of Energy and Power in Electromagnetic Field

Maxwell’s curl equations (in MKS units) ;

t

 

d

i

ht

 

b

e [ , ] d  

0

ep b  

0

(hm) p

e e e i

e h

e tt

 

 

 

 ( )

2

0

m h

h h e

h tt

 

 

 

0

( )

0

2 

Vector identity ;

  ( AB)B    AA    B

t t

t

 

 

 

 

 

   

 

m

p h e h h e

e i

e h) e

-   

0

2

( 2

0 0

(5)

Nonlinear Optics Lab

.

Hanyang Univ.

Divergence theorem ;

s v

da dv A n A)

( v s

n

t dv t

da t

dv

s v

v

 

m

p h e h

h e

e i

e n

h) e h)

e   

0

2 ( 2

(

0 0

: Poynting theorem

Total power flow into the volume

bounded by s

Power expended by the field on the moving charges

Rate of increase of the vacuum electromagnetic

stored energy

Power per unit volume expended by

the field on electric and magnetic dipoles

(6)

Nonlinear Optics Lab

.

Hanyang Univ.

Dipolar dissipation in harmonic fields

The average power per unit volume expended by the field on the medium electric polarization ;

t

p

volume e power

Assume, field and polarization are parallel to each other

] Re[

)

(t Eei t

e p(t)Re[Peit], where P

0

eE

) Re(

| 2 |

*]

2Re[

1 volume

power 2

0

0 e e

t t

iωω i EE E i

E 

Re[ e ]Re[ e ]

Put, ee'ie"

0 2

| 2 |

"

volume power

e

E

 

)

* 2

0

i,j

Re( i

ij

E

i

E

j

   

: Isotropic media

: Anisotropic media

(7)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) single localized electric dipole, μ(ex) power

DF t

e

Let, position of electron : electric field :

)

0cos( t e

x

x

t

E

ex0cos

power

DF 0cos [ ex0cos( t e)] ex0E0cos tsin( t e) t t

E



  

 

1) :

2

e power

DF

ex0E0cos2

t

2) :

2

e power

DF 

ex0E0cos2

t

: The dipole(electron) continually loses power to the field : The field continually gives power to the dipole

 Power exchange between the field and medium via dipole interaction

(8)

Nonlinear Optics Lab

.

Hanyang Univ.

1.3 Wave Propagation in Isotropic Media

Electromagnetic plane wave propagating along the z-axis in homogeneous, isotropic,

and lossless media (

,

:scalar constants)

Put, eexux, hhyuy

t ε e z

h t

h z

ex y y x

, 2 2 2 , 2 2 2 2

t ε h z

h t

e z

ex x y y



General solutions : ex(z,t)Exei(tkz)Exei(tkz), ( , ) 1

( ) x i( t kz)

kz t i x

y z t E e E e

h

* Phase velocity :

n c ε

c k 1 0

* wavelength :

c

k 2 2

* Relative amplitude :

x , where

y

H E

(9)

Nonlinear Optics Lab

.

Hanyang Univ.

Power flow in harmonic fields

Intensity (average power per unit area carried in the propagation direction by a wave) :

*]

2Re[

| 1

|e h exhy ExHy I   

(1.3-17) 

 

2

|

| 2

| ] |

* ) (

* ) [(

] [

2 Re

1 2 2

x ikz x ikz x ikz x ikz Ex Ex

e E

e E

e E e

E I

Electromagnetic energy density :

*}

2Re{

1

*} 2 2Re{

1 2 2

2

2 2

y y x

x y

x h E E H H

V e



E

(1.3-17)  {| | | | }

2 1 2

2

2 2

2

2 

ex hy Ex Ex V

E

For positive traveling wave : E E c V

I

x

x



| 1 2| /

| 2 |

1 /

2 2

E

| | [W/m ]

2

1 2 2

I c

Ex

(10)

Nonlinear Optics Lab

.

Hanyang Univ.

1.4 Wave Propagation in Crystals-The Index Ellipsoid

In general, the induced polarization is related to the electric field as





zz zy

zx

yz yy

yx

xz xy

xx

E,

0 where

P

: electric susceptibility tensor





) (

) (

) (

' ' 3 ' 3 ' ' 2 ' 3 ' ' 1 ' 3 0 '

' ' 3 ' 2 ' ' 2 ' 2 ' ' 1 ' 2 0 '

' ' 3 ' 1 ' ' 2 ' 1 ' ' 1 ' 1 0 '

z y

x z

z y

x y

z y

x x

E E

E P

E E

E P

E E

E P

If we choose the principal axes, (Diagonalization)





z z

y y

x x

E P

E P

E P

33 0

22 0

11 0

z y x ,,





z z

y y

x x

E D

E D

E D

33 22 11





) 1

(

) 1

(

) 1

(

33 0

33

22 0

22

11 0

11

where

/0

n

(11)

Nonlinear Optics Lab

.

Hanyang Univ.

) (

)

( t k r , i t k r

i e

e

E0 H H0 E

Secular equation

For a monochromatic plane wave ;

From Maxwell’s curl equations,

2 2

t

 

E

E 

0 )

(   2

k E

  

E k 

In principal coordinate,

z y x

ε ε ε

0 0

0 0

0 0

0

2 2 2

2 2 2

2 2 2

z y x

y x z y

z x

z

z y z

x y x

y

z x y

x z

y x

E E E

k ε k

k k k

k

k k k

ε k k

k

k k k

k k

ε k

(12)

Nonlinear Optics Lab

.

Hanyang Univ.

Simple example ( kxk, kykz0) : wave propagating along the x-axis

 

 

0 )

(

0 )

(

0

2 2

2 2

2

z z

y y

x x

E ε k

E ε k

ε E

Ex0 : transverse wave !!



 

0 ,

0 ,

and and

y z

z y

ε E k

ε E k

For nontrivial solution to exist, Det=0 ;

0

2 2 2

2 2 2

2 2 2

y x z y

z x

z

z y z

x y x

y

z x y

x z

y x

k ε k

k k k

k

k k k

ε k k

k

k k k

k k

ε k

(13)

Nonlinear Optics Lab

.

Hanyang Univ.

kz

kx

ky

c nz/ c

nz/

c nx/

c nx/

c ny/

c ny/

Normal surface

Optic axis

Simple example ( kz0

, determinant equation 

2 0

2 2

2 2 2

2 2 1

2 2

3





y x x

y y

x k k k

c k n

c k n

c k

n

)

2 2 3

2

c

k n

kx y : circle

1

1 2

2

2

c n

k

c n

kx y

: ellipse c s

kn ˆ

(14)

Nonlinear Optics Lab

.

Hanyang Univ.

Index ellipsoid

The surface of constant energy density in D space :

e z

z y

y x

x D D U

D 2

2 2

2   

Energy density :

j i ij

e E E

U

2

1

r Ue

D/ 2

/ 1 /

/ 0

2

0 2

0

2   

x y z

z y

x or 2 1

2 2

2 2

2   

z y

x n

z n

y n

x : Index ellipsoid

(15)

Nonlinear Optics Lab

.

Hanyang Univ.

Classification of anisotropic media

1) Isotropic : nxnynz

ex) CdTe, NaCl, Diamond, GaAs, Glass, …

2) Uniaxial : nxnynz

(1) Positive uniaxial : nznx

ex) Ice, Quartz, ZnS, … (2) Negative uniaxial : nznx

ex) KDP, ADP, LiIO3, LiNbO3, BBO, …

) :

, :

(nzne extraordinary nxn0 ordinary  Fast/Slow axis

3) Biaxial : nxnynz

ex) LBO, Mica, NaNO2, …

(16)

Nonlinear Optics Lab

.

Hanyang Univ.

Example of index ellipsoid (positive uniaxial)

2 1

2 2

0 2

2  

ne

z n

y x

) sin ,

cos ,

0

( ne

ne

x

y z

) 0 , ,

0

( n0

) 0 , 0 , (n0

) , 0 , 0

( ne

B A

0

propagation direction

(17)

Nonlinear Optics Lab

.

Hanyang Univ.

Intersection of the index ellipsoid

y z

A

0

ne() n0

2 2

2( ) z y

ne

 

2 1

2 2

0

2  

ne

z n

y

)sin , ( )cos

( e

e y n

n

z 

) ( 1 sin

cos

2 2

2 2

0 2

e

e n

n

n  

Birefringence : |ne(

)n0|

0 0

0| 0, | (90) | )

0 (

|nennennen

(18)

Nonlinear Optics Lab

.

Hanyang Univ.

Normal index surface

: The surface in which the distance of a given point from the origin is equal to the index of refraction of a wave propagating along this direction.

1) Positive uniaxial (ne>no)

z

y ne

n0

n0

2) negative uniaxial (ne<no) z

y n0

ne

n0

3) biaxial ( ) z

y ny

nx nz

z y

x n n

n  

(19)

Nonlinear Optics Lab

.

Hanyang Univ.

1.5 Jones Calculus and Its Application in Optical Systems with Birefringence Crystals

Jones Calculus (1940, R.C. Jones) :

- The state of polarization is represented by a two-component vector - Each optical element is represented by a 2 x 2 matrix.

- The overall transfer matrix for the whole system is obtained by multiplying all the individual element matrices.

- The polarization state of the transmitted light is computed by multiplying the vector representing the input beam by the overall matrix.

Examples)

- Polarization state :

- Linear polarizer (horizontal) :

- Relative phase changer :





y x

V V V





0 0

0 1





y

x

i i

e e

0

0

Report) matrix expressions

- Linear polarizers (horizontal, vertical) - Phase retarder

- Quarter wave plate (fast horizontel, vertical) - Half wave plate

(20)

Nonlinear Optics Lab

.

Hanyang Univ.

Retardation plate (wave plate)

: Polarization-state converter (transformer)

Polarization state of incident beam :





y x

V

V V where, V ,x Vy : complex field amplitudes

along x and y

s, f axes components :

















y x y

x

V R V

V V V

V ( )

cos sin

sin cos

f

s

Polarization state of the emerging beam :





f s

f s

f s

exp 0

0 exp

V V c l

in c l

in V

V

(21)

Nonlinear Optics Lab

.

Hanyang Univ.

Define,

- Difference of the phase delays :

c n l

n

) ( sf

 - Mean absolute phase change :

c n l

n

( )

2 1

f s



 







 

 

f s 2

2

f s

0

0

V V e

e e V

V

i i

i

Polarization state of the emerging beam in the xy coordinate system :













f s

cos sin

sin cos

V V V

V

y x



 

 



 

 

y x y

x

V R V

W V R

V (

) 0 (

)

cos , sin

sin ) cos

( 



R 



2 / 2

/

0 0

0

i i

i

e e e

W

where,

(22)

Nonlinear Optics Lab

.

Hanyang Univ.

Transfer matrix for a retardation plate (wave plate)

2 )

2 / ( 2

) 2 / ( 2

) 2 / ( 2

) 2 / (

0

cos sin

) 2 2 sin(

sin

) 2 2 sin(

sin sin

cos

) ( )

( )

, (

i i

i i

e e

i

i e

e

R W R

W W

1

W

Transfer matrix is a unitary ( ) W

: Physical properties are invariant under unitary transformation

=> If the polarization states of two beams are mutually orthogonal, they will remain orthogonal after passing through an arbitrary wave plate.

(23)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) Half wave plate





1

: 0 beam incident

, 4 /

, V

4 / cos 4

/ sin )

2 / 2sin(

sin

) 2 / 2sin(

sin 4

/ sin 4

/ cos

2 ) 2 / ( 2

) 2 / ( 2

) 2 / ( 2

) 2 / (

i i

i i

e e

i

i e

e W

11) 5 . 1 (

0 0

i i



















0

1 0

1 0 0

' 0 i i

i

V i : x-polarized beam

Report : Problem 1.7

(24)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) Quarter wave plate





1

: 0 beam incident

, 4 / ,

2

/ V

11) 5 . 1

( 1

1 2 1

i W i



















i

i i i

V i 1

1 2 2 1 1

0 1 1 2 ' 1

: left circularly polarized beam

: y-pol.





0

: 1 beam incident

, 4 / ,

2

/ V













i i

V i 1

2 1 0

1 1 1 2 ' 1

: right circularly polarized beam

: x-pol.

(25)

Nonlinear Optics Lab

.

Hanyang Univ.

Intensity transmission

In many cases, we need to determine the transmitted intensity, since the combination of retardation plates and polarizers is often used to control or modulate the transmitted optical intensity.

Incident beam intensity :



 

 

y x

V

V V 2 2

y

x

V

V

I    

V V

Output beam intensity : 

 

 

y x

V V V

' 2 ' 2

' V

x

V

y

I  

Transmissivity :

2 2 2 2

y x

y x

V V

V V

 

(26)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) A birefringent plate sandwiched between parallel polarizers , ) (

2 e o

nnd

 /4













cos2 0 1

0

cos2 sin2

sin2 cos2

1 0

0 ' 0

i

i V

 

 

 

 

 

n n d

I (

e o

)

2 cos cos

'

2 2

: fn. of d and  Ex) A birefringent plate sandwiched between a pair of crossed polarizers













0 sin2 1

0

cos2 sin2

sin2 cos2

0 0

0

' 1 i

i

i

V

  

 

 

 

n n d

I (

e o

)

sin

'

2

(27)

Nonlinear Optics Lab

.

Hanyang Univ.

Circular polarization representation

It is often more convenient to express the field in terms of “basis” vectors that are circularly polarized ;

1 : 0 0 CW

: 1

CCW and : constitute a complete set that can be used to describe a field of arbitrary polarization.

Right circularly polarized Left circularly polarized

Rectangular representation : Circular representation :













y x y

x V

V V

V 1

0 0

V 1

V

V V

V 1

0 0

V 1

참조

관련 문서

• Development of systematic methods of analyzing optical systems with numerous elements. • Matrices for analyzing the translation, refraction, and reflection of

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field.. 4) Saturated absorption

Nonlinear Optics Lab...

(8.8-1) describe traveling-wave parametric interaction, it is still valid if we Think of propagation inside a cavity as a folded optical path...

If we assume n 1 -n 2 &lt;&lt;1 (reasonable in most fibers) a good approximation of the field components and mode condition can be obtained. Gloge, 1971)..  Cartesian

In such case, energy transfer occurs as a result of a spatial phase shift between the nonlinear index grating and the optical intensity distribution....

17.5 Optical Resonator with Phase Conjugate Reflectors (A.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab. Hanyang Univ... 17.7 Dynamic Distortion

Nonlinear Optics Lab...