• 검색 결과가 없습니다.

Chapter 6. Time-Dependent Schrodinger Equation

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 6. Time-Dependent Schrodinger Equation"

Copied!
21
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab

.

Hanyang Univ.

Chapter 6. Time-Dependent Schrodinger Equation

6.1 Introduction

Energy can be imparted or taken from a quantum system only if the system can jump from one energy Em to another energy En. A change from one orbit to another can occur if an external time-dependent force Fext acts on the quantum system.

We can associate this force with a new potential energy : , and the system’s total Hamiltonian can be given by

) , r ( )

, r (

Fext t  Vext t

) , r ( V )

r 2 (

) , r ( V H

H ext 2 V ext t

t m

a      

  (6.1.1)

The Schrodinger equation becomes

i t t

t

m V

 



 

     

) , r ( )

, r ( V )

r

2 ( ext

2 (6.1.2)

(2)

Nonlinear Optics Lab

.

Hanyang Univ.

6.2 Time-Dependent Solutions

Time-independent Schrodinger equation ; HanEnn

n: Complete & Orthonormal => Any function can be expressed by the n's

*

Following Dirac, the exact time-dependent wave function can be expressed by a sum of ;n's

) r ( )

, r

(

n

n

an

t (6.2.1)

(6.1.2) => [ ext ] (r) n(r)

n

n n

n

a

n t

i a V

H

a

 

) r ( )

r ( ]

[ ext n

n

n n

n

n

n t

i a V

E

a

 

(6.2.2)

(6.2.3)

(3)

Nonlinear Optics Lab

.

Hanyang Univ.

mn n

m n

m

m      d

(r) &

, |

(r) (r) 3r

space all

* space

all

 

n

n m

n m

m

m E a a V d

a

i * (r) ext (r) 3r

n

n mn

m m

m E a V t a

a

i ( )

where, Vmn

(

t

)   

*m

( r )

Vext

( r ,

t

) 

n

( r )

d3

r

: time-dependent Schrodinger equation

<Meaning of : probability amplitude>am

1

) , ( ) ,

(

3

*

 

 

r t r t d r a a d r

n

n n m

m m

3

*



 

 



 

 

  

 

 

m n m

m mn

n m

m n

n m

n

m a a a a

a* | *

| |2 1

Probability that the quantum system is

in its m-th orbit.

(6.2.7)

(4)

Nonlinear Optics Lab

.

Hanyang Univ.

6.3 Two-State Quantum Systems and Sinusoidal External Forces

Time-dependent potential for the interaction between an EM field and an electron ;

c.c.

ˆE 2 ) 1 R

k cos(

ˆE )

,

E(R t

0  

t

0ei(kRt)

0

R 

) , R ( E r )

, R r,

ext ( t e t

V    : dipole approximation

For a monochromatic wave,

Put, ˆE c.c.

2

1 )

0

eit For a two-state system,

) r ( )

( )

r ( ) ( )

, r

(  1122

t a t a t

(6.2.8)  ia1(t)  E1a1(t) V11a1(t)V12a2(t) ) ( )

( )

( )

( 2 2 21 1 22 2

2 t E a t V a t V a t

a

i   

0

ia1(t)  E1a1(t) V12a2(t) ) ( )

( )

( 2 2 21 1

2 t E a t V a t

a

i  

(6.3.1)

(6.3.4)

(5)

Nonlinear Optics Lab

.

Hanyang Univ.

Normalization condition ; | a1(t)|2  | a2(t) |21 (6.2.7), (6.3.1) =>

.) . ˆE

2( r 1 )

( 12 0

12 t e e c c

V   

it

.) . ˆE

2( r 1 )

( 21 0

21 t e e cc

V   

itwhere, r12

1*(r)r2(r)d3r

Define,

1 2

21

E E

0 21

21

) E r ˆ

(

e

0 12

12

) E r ˆ

(

e

Set, E1  0 (6.3.4) =>

) ( ) 2 (

) 1

( 12 21* 2

1 t e e a t

a

i  

it

it

) ( ) 2 (

) 1

( 21 2 21 12* 1

2 t a e e a t

a

i 

it

it

: Rabi frequency (field-atom interaction energy in freq. unit)

(6.3.11)

(6)

Nonlinear Optics Lab

.

Hanyang Univ.

0 E

:

0 0

i) ( radiation field=0)



] exp[

) 0 ( )

(

const.

) 0 ( )

(

21 2

2

1 1

t i

a t

a

a t

a

21

ii) ( nearly resonant radiation field) trial solution,



i t

e t c t

a

t c t

a

)

( )

(

) ( )

(

2 2

1

1 (6.3.11) =>





1 2

* 12 21

2 21

2

2

* 21 2

12 1

) 2 (

) 1 (

) (

) 2 (

) 1 (

c e

c t

c i

c e

t c i

t i t

i

Neglected by

rotating-wave approximation





 

1 2

1 21 2

21 2

2

* 21 1

2 1 2

) 1 (

) (

2 ) 1

(

c c

c c

t c i

c t

c i

where,  

21

: detuning

0 21

21 ( r ˆ) E

e

  

: Rabi frequency

(7)

Nonlinear Optics Lab

.

Hanyang Univ.

Solution) initial condition ; c1(0) 1, c2(0)  0







 

 

 



 

 

 

 

2 / 2

2 / 1

sin 2 )

(

sin 2 cos 2

) (

t i

t i

t e i

t c

t e t i

t c

where, (

2 2)1/2 : Generalized Rabi frequency

Probability ; P1(t) |a1(t)|2, P2(t) |a2(t)|2





 

 

 

 

 

 





 

 

 

] cos

1 2 [

) 1 (

2 cos 1 1

2 ) 1 (

2 2

2 2

1

t t

P

t t

P

(8)

Nonlinear Optics Lab

.

Hanyang Univ.

6.4 Quantum Mechanics and the Lorentz Model

- Lorentz (classical) model can’t give the oscillator stength,

- Why the classical model offers good explanation for a wide variety of phenomena ? f

Basic dynamic variable for an atomic electron : Displaceement, in classical model, Corresponding quantum displacement : expectation value,

x

 r



 r

*

( r ,

t

) r ( r ,

t

)

d3

r

For the two-state atom,



 r (

a1* 1* a*2 *2

) r (

a1 1 a2 2

)

d3

r

12 1

* 2 12

2

* 1 22

2 2 11

2

1 | r | | r r r

| aaa aa a

where,

r

ij

*i

( r ) r

j

( r )

d3

r

(9)

Nonlinear Optics Lab

.

Hanyang Univ.

. . r

r r

r  12a1*a221a2*a112a1*a2cc

For a case of linear polarization,

ˆE0 is real.

0 r

, 0

Viiii

)

|

|

| (|

) (

) (

) 4 . 3 . 6

(

a1*a2 i E2 E1 a1*a2 iV21 a1 2 a2 2 dt

d

    

 

)

|

|

| (|

) (

)

( 1* 2 2 1 2 1* 2 21 1 2 2 2

2 2

2 a a i E E a a iV a a

dt

d     

 

)]

|

|

| (|

[

V21 a1 2 a2 2 dt

i d

 

Since r12 is real,  r  r12(a1*a2a1a2*)

)

|

|

| )(|

E r

( 2 r

r 0 12 21 1 2 2 2

2 2 0

2

a e a

dt

d    

 

 

 

 

where,

1 2

0

E E

 

(10)

Nonlinear Optics Lab

.

Hanyang Univ.

If we assume, | a2 |21 & |a1 |21 ) E r

( 2 r

r 0 12 21

2 2 0

2   

 

 

e

dt d

Suppose the E-field points in the z-direction, E  zˆE E

2 r

r 0 12 21

2 2 0

2

e z dt

d

 

 

 

example) Let atomic state 1 and 2 be the 100 and 210 (1S and 2P)

) , ( (r)Y r)

( 1,0 00

1R

 

2

( r) 

R2,1

(r)Y

10

(  ,  ) r

) r ( )

r

(

1 3

* 2

21 z d

z



 

d d Y

Y d

R

R



0

2

0 0

0 , 0

* 0 , 1 0

, 1

* 1 , 2

3 (r) (r) r ( , )sin cos ( , )

r

r21

21

(11)

Nonlinear Optics Lab

.

Hanyang Univ.

Table 6.1, 6.2,

0 0

/ 3 r 2 / r 0

2 / 3 0 2

/ 3 0

21 r r 1.29

2 ) r

2 3 ( ) 2 2

(

r e 0 e 0 d a

a a

a  a a

 

where, 4 2 0.53A

2 0

0    

a



me : Bohr radius

 

  

2

0 0

2

21 3

sin 1 4 cos

3 4

zˆ 1 d d

0 21

21

21 ˆ 0.745

z  r za

E zˆ ) z 2 (

E z z 2 zˆ

r 0 12 21 0 12 2

2 2 0

2

e

e

dt

d   

 

 

cf) 2 02 x zˆE

2

m e dt

d  

 

 

in classical model

Homework : Appendix 5.A !

(12)

Nonlinear Optics Lab

.

Hanyang Univ.

Classic

Quantum mechanics

m

e2

2e2 0 z122

(3.7.5)

Oscillator Strength : m f e m

e22

2

0 122

m z

f

 

example) Hydrogen n=1 => n=2,

1216A, f  0.416 (Table 3.1)

417 . 10 0

054 . 1

10 1216

10 3

10 2 1

. 9 2

34

10 8 31

  

 

 

f

(13)

Nonlinear Optics Lab

.

Hanyang Univ.

6.5 Density Matrix and (Collisional) Relaxation

Two level system, time-dependent Schrodinger equation, )

r ( )

( )

r ( ) ( )

, r

(  1122

t a t a t (6.3.2)



i t

e t c t

a

t c t

a

)

( )

(

) ( )

(

2 2

1

1 (6.3.12)





 

1 2

2

2

* 21 1

2 ) 1

(

2 ) 1

(

c c

t c i

c t

c i

(6.3.14)

Via (6.4.3),  r  r12a1*a2c.c., the combination variable a1*a2 and a1a*2 are more useful than either a1 or a2 alone.

(14)

Nonlinear Optics Lab

.

Hanyang Univ.

Define,

12c1c2*

* 1 2 21c c

2 1

* 1 1

11c c| c |

2 2

* 2 2

22c c| c |

* 1 2

1

* 2 2

*

* 2 1

* 2 1

12

)

2 ( 1

2 )

( 1

c c c i c i c

i c

c c

c

 

         

   

) 2 ( 22 11

*

12

  

 

i i similarly,

) 2 (

22 11

21

21

   

   

i

 

i

 )

2 (

21

* 12

11

  

  

i

)

2 (

21

* 12

22

  

 

i

y probabilit occupation

s level' :

,

* 11 22

) population (

amplitude complex

: ,

* 12 21

r nt, displaceme s

electron' the

of

(15)

Nonlinear Optics Lab

.

Hanyang Univ.

The equations are not yet in their most useful form, since they do not reflect the existence of relaxation such as collision.

<Relaxation Processes>



levels other

decay to :

collision inelastic

change phase

n oscillatio :

collision elastic

collision -

0

| ) ( and

, at t occurs Collision

*

const.

steady.

is field radiation

the if

*

. ,

the change

only const.

,

*

effect collision

Elastic 1)

21 1

1

21 12

22 11

t

t t

(6.3.14) =>

( 1 )

2

) ) (

(

22 11 ( )

21

t1

t

e i

t

 

   

level 1

to 2 from decay

: emission s

spontaneou -

(16)

Nonlinear Optics Lab

.

Hanyang Univ.

Average value

 

/ 1 2

) ) (

1 2 (

) ) (

( 22 11 1 ( )/ ( ) 22 11

21

1 1

e i e

dt t

t

t t i t

t

 

 

 



This result can also be reached by a simple modification of the original equation of motion ;

i

) 2 (

1 )

(

21 22 11

21

   

       

 

i i

Similarly,

) 2 (

1 )

( 22 11

* 12

12

   

  

i i

(17)

Nonlinear Optics Lab

.

Hanyang Univ.





22 21 spon

11

22 1 col

11

22 21 spon

22

22 2 col

22 22 11

A )

(

) (

A )

(

) (

, i)

1 2

A21

2

1

(6.5.2) =>

( )

A

21 22

2

12 * 21

11 1

11

    

     

i

) 2 (

) A

(

2 21 22 12 * 21

22

   

     

i

emission s

Spontaneou and

effect collision

Inelastic 2)

(18)

Nonlinear Optics Lab

.

Hanyang Univ.

effects two

the of average

evenly.

or to

s contribute and

on effect each

], ,

[ (6.5.1) definition

By

, ii)

21 12

22 11

* 1 2 21

* 2 1 12

21 12

c c c

c

(6.5.2) => ( )

) 2

( 22 11

* 12

12

    

   i i

) 2 (

)

(

21 22 11

21

    

    

i

 

i

where, ( A )

2 1 1

21 2

1  

: total relaxation rate

(19)

Nonlinear Optics Lab

.

Hanyang Univ.

<Special case> 1  2  0,   0





) 2 (

A

) 2 (

A

21

* 12

22 21 22

21

* 12

22 21 11





i i





) 2 (

) 2 (

11 22

21 21

11 22

* 12

12

 



 



i i

A

21

2 1 ,  1 

 

1

0 11 22

22

11     

 

No dynamic information !

So, we can pay attention solely to the differences,

22

11,

12

21



11 22

12

21 )

(

w

i v

(20)

Nonlinear Optics Lab

.

Hanyang Univ.

) 0 ,

0 (&

real, is

that Assume

-

1  2   



 

     

 ( )

) 2 2 (

)

(

21

12



21

 

22

11



12

 

22

11

i   i i i

w v

) 2 (

)

2 ( 12 21 21 22 12 21

22 21 11

22

        

       

i

i A A

w  

v w

A v

A

 

   

21( 22 1 11) 21(1 )

(Chapter 8 : Bloch equation)

The notation used for

's



 

 

22 21

12 11

 

: density matrix

(21)

Nonlinear Optics Lab

.

Hanyang Univ.

참조

관련 문서

In a dense scenario, the number of events may be huge, so the time points when events happen may be extremely close to one another (i.e., quite successive on the time

‰ in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if

another processor P2 to X returns the written value if the read and write are sufficiently separated in time and no other writes to X occur between the two

The positive change pattern of CK-MB according to time on acute myocardiac infarction patient.. The positive change pattern of troponin-T according to time on

In Moore machines, outputs are dependent only on the present state, the output will change synchronously if combinational logic

• Since time is required in building up or depleting a charge distribution, the stored charge must inevitably lag behind the current in a time-dependent problem.. This is

3) A comparison of the stoichiometric equation with the experimental kinetic expression can suggest whether or not we are dealing with an elementary reaction. 4) If one

Ex) Although most people experience social shyness at one time or another, an individual with a social phobia experiences extreme self-consciousness.. Although는 하나의