• 검색 결과가 없습니다.

Chapter 3. Propagation of Optical Beams in Fibers

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 3. Propagation of Optical Beams in Fibers"

Copied!
39
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 3. Propagation of Optical Beams in Fibers

3.0 Introduction

Optical fibers  Optical communication

- Minimal loss - Minimal spread

- Minimal contamination by noise - High-data-rate

In this chapter,

- Optical guided modes in fibers

- Pulse spreading due to group velocity dispersion - Compensation for group velocity dispersion

(2)

Nonlinear Optics Lab . Hanyang Univ.

3.1 Wave Equations in Cylindrical Coordinates

Refractive index profiles of most fibers are cylindrical symmetric  Cylindrical coordinate system

The wave equation for z component of the field vectors :

2 2

0





 

z z

H

k E where,

2 2 2 2 2 2

2 1 1

z r

r r

r

2 2 2

2 n /c

k and

Since we are concerned with the propagation along the waveguide, we assume that every component of the field vector has the same z- and t-dependence of exp[i(t-bz)]

exp[ ( )]

) , (

) , ( )

, (

) ,

( i t z

r r t

t  b

H E r

H r E

# Solve for E ,z Hz first and then expressing Er,E,Hr,H in terms of E ,z Hz

(3)

Nonlinear Optics Lab . Hanyang Univ.

From Maxwell’s curl equations :

t

t

E

H H

E,

z

r H

H r i E

i b

 

 1

z

r H

H r i E

i

 

 b



) 1 (

1

 rH

r H r

E r

i z r

 

 

z

r E

E r i H

i b

1

z

r E

E r i H

i

 

  b

) 1 (

1

 rE

r E r

H r

i z r



 

 

  z z

r H

E r r E i

 b



b



 b

2 2



 

 

  z Hz

E r r E i

b



 b



b

2 2



 

 

  z z

r E

H r r H i

 b



b



 b

2 2



 

 

  z Ez

H r r H i

b



 b



b

2 2

in terms of

We can solve for E

r

, E

, H

r

, H

E ,

z

H

z

A } )

A ( 1{

k A )

( A a A )

A (1

a

r z r z r r

r r r

z z

A r

(4)

Nonlinear Optics Lab . Hanyang Univ.

2 2

0

z z

H

k E

(3.1-1)

z

z

H

Now, let’s determine

E ,

0 )

1 (

1 2 2

2 2 2 2

2

z z

H k E

r r r

r b

The solution takes the form : (r)exp( il)

H E

z

z

where, l0,1,2,3,...

1 0

2 2 2 2

2

2  

 

  

 

 

   b 

r k l

r r r

) ( )

( )

( rc

1

J

l

hrc

2

Y

l

hr

) ( )

( )

( rc

1

I

l

qrc

2

K

l

qr

1)

2)

:

2 0

2

b

k

:

2 0

2

b

k

where,

where,

2,

2 2k b h

2,

2

2 k

q b

l

l Y

J ,

l

l K

I ,

: Bessel functions of the 1st and 2nd kind order of l

: Modified Bessel functions of the 1st and 2nd kind of order l

(5)

Nonlinear Optics Lab . Hanyang Univ.

Asymptotic forms of Bessel functions :

l l

x x l

J

2

! ) 1

(

0.5772...

ln 2 ) 2

0( x x

Y

l

l x

x l

Y

( 1)! 2 )

(

l l

x x l

I

2

! ) 1 (

0.5772...

ln2 )

0( x x K

l

l x

x l

K

2

2 )!

1 ) (

(

,...

3 , 2 ,

1 l

,...

3 , 2 ,

1 l 1

For x For x1,l

4 cos 2

) 2 (

12

x l x x

Jl

4 sin 2

) 2 (

12

x l x x

Yl

x

l e

x x I

12

2 ) 1

(

x

l e

x x

K

2

1

) 2

(

(6)

Nonlinear Optics Lab . Hanyang Univ.

3.2 The Step-Index Circular Waveguide

<Index profile of a step-index circular waveguide>

1)

r a

(cladding region) :

The field of confined modes :

 1 x

*

2 0

2 

k b

: evanescent (decay) wave

c n k

n /

and b  2 02

*

: virtually zero at rb()

x

l x x e

I ( ) 12 is not proper for the solution

 

i t l z

qr CK

t

E

z

l

    b

(r , ) ( ) exp

 

i t l z

qr DK t

H

z

(r , ) 

l

( ) exp     b

a rwhere, q2b2n22k02

(7)

Nonlinear Optics Lab . Hanyang Univ.

2)

r a

(core region) :

x  1

*

2 0

2 

k b

: finite at

c n k

n /

and b  1 01

*

: propagating wave

l

l x x

Y ( ) is not proper for the solution

where, h2n12k02b2

0 r

 

i t l z

hr BJ t

H

z

(r , ) 

l

( ) exp     b

 

i t l z

hr AJ t

E

z

(r , ) 

l

( ) exp     b

a r

* Necessary condition for confined modes to exist : (from )

0 2 0

1

k n k

n  b 

0 and

0 2

2q

h

(8)

Nonlinear Optics Lab . Hanyang Univ.

Other field components

 

i t l z

hr r BJ

l hr i

J h Ah

Er i l l b

b



b

2 ( ) ( ) exp

 

i t l z

hr J Bh hr

r AJ il h

E i l l   b

b



b

2 ( ) ( ) exp

 

i t l z

hr AJ

Ezl( )exp   b

 

i t l z

hr r AJ

l hr i

J h Bh

Hr i l l   b

b



b

2 ( ) 1 ( ) exp

 

i t l z

hr J Ah hr

r BJ il h

H i l l b

b



b

2 ( ) 1 ( ) exp

 

i t l z

hr BJ

Hz l( )exp b

) (

core

1) ra 2) cladding (ra)

 

i t l z

qr r DK

l qr i

K q Cq

Er i l l b

b



b

2 ( ) ( ) exp

 

i t l z

qr K Dq qr

r CK il q

E i l l b

b



b

2 ( ) ( ) exp

 

i t l z

qr CK

Ez l( )exp b

 

i t l z

qr r CK

l qr i

K q Dq

Hr i l l b

b



b

2 ( ) 2 ( ) exp

 

i t l z

qr K Cq qr

r DK il h

H i l l b

b



b

2 ( ) 2 ( ) exp

 

i t l z

qr DK

Hz l( )exp b

(9)

Nonlinear Optics Lab . Hanyang Univ.

Boundary condition

: tangential components of field are continuous

at

ra

z

z

H H

E

E

, ,

,

0 ) ( )

( )

( )

( 2

2





K qa

D q qa a K

q C il ha h J

B ha aJ

h

A il l l l l

b



b



0 ) ( )

( )

( )

( 2 2 2

1





K qa

a q D il qa

q K C ha a J

h B il ha h J

A l l l l

b



b



0 ) ( )

(ha CK qa

AJl l

0 ) ( )

(ha DK qa

BJl l

(3.2-10) ar

az

a

(10)

Nonlinear Optics Lab . Hanyang Univ.

Amplitude ratios : [

from (3.2-10) with determined eigenvalue b, Report]

) (

) (

qa K

ha J A C

l

l

1

2 2 2

2 ( )

) ( )

( ) ( 1

1





aqK qa

qa K ha

haJ ha J a

h a q l i A B

l l l

l



b

A B qa K

ha J A D

l l

) (

)

 (

: the relative amount of Ez and Hz in a mode Condition for nontrivial solution to exist : (Report)

2

0 2 2

2 2

2 2 2

1 1 1

) (

) ( )

( ) ( )

( ) ( )

( )

( 







k ha

l qa qa

qaK qa K n ha haJ

ha J n qa qaK

qa K ha

haJ ha J

l l l

l l

l l

l b

is to be determined for each l

b

(3.2-11)

(11)

Nonlinear Optics Lab . Hanyang Univ.

Mode characteristics and Cutoff conditions

(3.2-11) is quadratic in Jl(ha)/haJl(ha)  Two classes in solutions can be obtained, and designated as the EH and HE modes.

(Hybrid modes) (3.2-11) 

12

2 2 2 2

2 2

0 2 1 2 2 2

2 1

2 2 2 1 2

1 2 2 2

1 1 1

2 2

) (

) (

















a h a

q k

n l qaK

K n

n n qaK

K n

n n ha

haJ ha J

l l l

l l

l b

By using the Bessel function relations : ( ) 1( ) J (x), x

x l J x

Jl l l

( ) 1( ) J (x)

x x l J x

Jl l l

 





R

ha l qa

qaK qa K n

n n ha haJ

ha J

l l l

l

2 2 1

2 2 2 1 1

) (

) ( 2

) (

) (

 









R

ha l qa

qaK qa K n

n n ha

haJ ha J

l l l

l

2 2

1 2 2 2 1 1

) (

) ( 2

) (

) (

12

2 2 2 2 2 2

0 1 2 2

2 1

2 2 2

1 1 1

) (

) (

2













nk q a h a

l qa

qaK qa K n

n R n

l

l b

where,

: EH modes

: HE modes

: Can be solved graphically (3.2-15)

(12)

Nonlinear Optics Lab . Hanyang Univ.

Special case (l=0)

1) HE modes

) (

) ( )

( ) (

0 1 0

1

qa qaK

qa K ha

haJ ha

J

) ( )

( , ) ( )

( 1 1 1

'

0 x K x J x J x

K

(3.2-15b) &

From (3.2-10),

A C  0

(Report)

Therefore, from (3.2-6)~(3.2-9), nonvanishing components are Hr,Hz,E (TE modes)

) ( )

( , ) ( )

( 1 1 1

'

0 x K x J x J x

K

(3.2-15a) &

From (3.2-10),

B D  0

(Report)

Therefore, from (3.2-6)~(3.2-9), nonvanishing components are Er,Ez,H (TM modes) 2) EH modes

) (

) ( )

( ) (

0 2 1

1 2 2 0

1

qa K n qa

qa K n ha

haJ ha

J

(13)

Nonlinear Optics Lab . Hanyang Univ.

Bessel functions of the 1st kind order of l=0,1,2 Modified Bessel functions of the 2nd kind of order l=0,1,2,3

Bessel functions

(14)

Nonlinear Optics Lab . Hanyang Univ.

Graphical Solution for the confined TE modes (l=0)

) (

) ( )

( ) (

0 1 0

1

qa qaK

qa K ha

haJ ha

J

2 1 ) 0 (

) 0 (

0

1

haJ J



) ln(

) (

~ 2 ) (

) (

2 2 2 2

2 2 0

1

a h V a

h V V

ha qaK

V ha K

should be real to achieve the exponential q

decay of the field in the cladding

2 2 0 2 1

2n k b

h & n2k0bn1k0

*

2 2

2 0 2 2 2 1

2 ( ) ( )

)

(qann k aha

2 / 1 2 2 2 1

0

( )

0  haVk a nn

) (

) ( )

0 (

) 0 (

0 1 0

1

V VK

V K ha

qaK ha

K

4) 1 tan(

)~ 1 (

) 1 (

0

1

ha

ha ha

haJ ha J

Roots of J0(ha)=0

Normalized frequency (V-parameter)

(15)

Nonlinear Optics Lab . Hanyang Univ.

* If the max value of ha, V is smaller than the first root of J0(x), 2.405 => no TE mode

* Cutoff value (a/l) for TE0m (or TM0m) waves :

22

12

2 1

0

0 2 n n

x

a m

m  



 

 l 

where, x0m : m-th zero of J0(x)

* Asymtotic formula for higher zeros :

 4) ( 1

0 ~ mx m

J0(x)

Intersection of two curves approaches to the root of x m

n n

a k V

hamax   0 ( 1222)1/20

* TM modes behaves identically except for a factor of on the right side of (3.2-17b) 2

1 2 2

n n

(16)

Nonlinear Optics Lab . Hanyang Univ.

Special case (l=1)

<EH modes> <HE modes>

* HE mode does not have a cutoff.

* All other HE1m, EH1m modes have cutoff value of a/l :

* Asymptotic formula for higher zero : la 1m2

nx121mn' 22

12

 4) ( 1

1 ~ m

x m where, m'm forEH1m modes

modes for

1

' m HE1m

m

(17)

Nonlinear Optics Lab . Hanyang Univ.

The cutoff value for a/l (l>1)

22

12

2

2 n1 n z

a HE lm

lm  



 

l 

22

12

2

2 n1 n x

a EH lm

lm  



 

 l 

where, zlm is the mth root of ( ) ( 1) 1 2 1( )

2 2

1 J z

n l n

z

zJl  l



(18)

Nonlinear Optics Lab . Hanyang Univ.

Propagation constant, b

k

0

n b

: (effective) mode index

) / of value cutoff

( lm 0

2 k

n

n b

: poorly confined n1

n : tightly confined

# V<2.405 

Only the fundamental HE11 mode can propagate (single mode fiber)

#

#

2 2 2 1

2 a n n

V

l

(19)

Nonlinear Optics Lab . Hanyang Univ.

3.3 Linearly Polarized Modes

The exact expression for the hybrid modes (EHlm, HElm) are very complicated.

If we assume n1-n2<<1 (reasonable in most fibers) a good approximation of the field components and mode condition can be obtained. (D. Gloge, 1971)

 Cartesian components of the field vectors may be used.

b





n q h

n

1 2

1 ,

<Wave equation for the Cartesian field components>

1) y-polarized waves

 

 

 

 

z t

i e

qr BK

z t

i e

hr

E AJ il

l

il l

y  b

b

exp )

(

exp )

0 (

x

E ra

a r

(2.4-1), (3.1-2) & assume Ez<<Ey

y y

x E E

z H i



b



Hy 0 z Ey

x H i

 z x y Ey

H i y E i



 b

 2

(20)

Nonlinear Optics Lab . Hanyang Univ.

Expressions for the field components in core (r<a)

After tedious calculations, (3.3-6)~(3.3-17), … (x, y)

Expressions for the field components in cladding (r>a)

 

i t z

e qr BK

Eyl( ) il exp

b

 0 Ex

 

i t z

e qr BK

Hx l il  b



b

 ( ) exp Hy 0

K qr e K qr e

i

t z

B

Hz iq l i l l i l  b



( ) ( ) exp 2

) 1 ( 1

) 1 ( 1

K qr e K qr e

 

i

t z

B

Ez q l i l l i l  b

b

 

( ) ( ) exp

2

) 1 ( 1

) 1 ( 1

0

Ex EyAJl(hr)eil exp

i

t bz

 

J hr e J hr e

 

i

t z

A

Ez h l i l l i l  b

b

 

( ) ( ) exp 2

) 1 ( 1

) 1 ( 1

 

i t z

e hr AJ

Hx l il  b



b

 ( ) exp Hy 0

J hr e J hr e

 

i

t z

 

A

Hz ih l i l l i l  b



( ) ( ) exp

2

) 1 ( 1

) 1 ( 1

Continuity condition : )

( ) (

qa K

ha B AJ

l

l 0

2 0

, bn1kn k

참조

관련 문서

약국은 당초 수집 목적과 합리적으로 관련된 범위에서 정보주체에게 불이익이 발생하는지 여부, 암호화 등 안전성 확보에 필요한 조치를 하였는지 여부 등을

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

(Taekwondo, Weight Lifting Players) (90 min × 6 days/week) Warming

The stain field associated with a dislocation can in certain cases provide a favorable interaction with the strain field of the martensite nucleus, such that one of the

[r]

자석 팽이는 볼록한 두 부분에는 고리 자석이 들어 있고, 받침대에는 팽이의 고 리 자석 위치와 일치하는 부분에 삼각형 모양의 자석이 네 개 들어 있다.. 그리고

χ is the fraction of the emitted light flux absorbed in the water Ф OH is the quantum yield for generation of ·OH radicals... &lt;Example 1&gt;. We assume that for

회원국의 영토밖에서 다른 회원국의 , 영토내에서 회원국의 서비스 소비자에게