• 검색 결과가 없습니다.

Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index"

Copied!
28
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 6. Processes Resulting from

the Intensity-Dependent Refractive Index

- Optical phase conjugation - Self-focusing

- Optical bistability - Two-beam coupling - Optical solitons

Reference :

R.W. Boyd, “Nonlinear Optics”, Academic Press, INC.

- Photorefractive effect (Chapter 10)

:

cannot be described by a nonlinear susceptibility c(n)for any value of n

(2)

Nonlinear Optics Lab . Hanyang Univ.

6.1 Optical Phase Conjugation

: Generation of a time-reversed wavefront

Signal wave :



 

r k

* s

*

* s

r k s s s

s s

ˆ A E

ˆ A E

i s

i

e e

e e

c.c.

E ) , r ( E ~

s

s

te

it

Phase conjugate wave : E ~ ( r , ) E

*

c.c.

s

c

tr e

it

where,

r

: amplitude reflection coefficient

(3)

Nonlinear Optics Lab . Hanyang Univ.

r k

* s

*

* s

A

s

E  e ˆ

s

e

i

Properties of phase conjugate wave :

1)

e ˆ

*s : The polarization state of circular polarized light does not change in reflection from PCM Ex)

s

e

0

ie

0

e

i/2

j

i) In reflection from metallic mirror [-phase shift]

ii) In reflection from PCM [-phase shift &

y component : i/2  -i/2 (- : delayed)]

2)

A

*s : The wavefront is reversed

) r

* ( )

r

( t t

A

A

s

a

s

e

i

s

a

s

e

i

3)

e

iksr : The incident wave is reflected back into its direction of incidence

s

s

k

k  

(4)

Nonlinear Optics Lab . Hanyang Univ.

Aberration correction by optical phase conjugation

Wave equation :

0 ) ~

r (

~

2 2 2

2

 

t

E Ec

Solution : ~ ( r , ) ( r )

( )

. . c c e

A t

E

i kzt

With slow varying approximation, ( r )

2

2 0

2 2

2

 

 

 

 

z

ik A A c k

T

A

Since the equation is generally valid, so is its complex conjugate, which is given explicitly by 0

) 2 r

(

2 * *

2 2

*

2

 

 

 

 

z

ik A A

c k

T

A

Solution : ~ ( r , )

*

( r )

( )

. . c c e

A t

E

c

i kzt

: A wave propagating in the –z direction whose complex amplitude is everywhere the complex of the forward-going wave

(5)

Nonlinear Optics Lab . Hanyang Univ.

(6)

Nonlinear Optics Lab . Hanyang Univ.

Phase Conjugation by Degenerated Four-Wave Mixing

1) Qualitative understanding

Four interacting waves :

~ ( r , ) ( r ) . . ( r )

( r )

. . c c e

A c c e

E t

E

i

i it

 

i i ki t

(i1,2,3,4)

Nonlinear polarization :

P

NL

 6 c

(3)

E

1

E

2

E

3*

 6 c

(3)

A

1

A

2

A

3*

e

i(k1k2k3)r

0(

2

1k

k Counter-propagating waves)

r

* 3 2 1 ) 3

( 3

6

 c A A A e

ik

New wave (k4) source term !

So, A

4

is proportional to A

3*

(complex conjugate of A

3

)

and its propagation direction is –k

3

(in the case of perfect phase matching)

(7)

Nonlinear Optics Lab . Hanyang Univ.

2) Rigorous treatment

Total field amplitude : EE

1

E

2

E

3

E

4

Nonlinear polarization : P

NL

 3 c

(3)

(        ) E

2

E

*

3 4 2*

* 4 4 1

* 3 3 1

* 2 2 1

* 1 2 1 ) 3 (

1

3 E E 2 E E E 2 E E E 2 E E E 2 E E E

P     

 c

22 2* 2 1 1* 2 3 3* 2 4 4* 3 4 1*

) 3 (

2

3 E E 2 E E E 2 E E E 2 E E E 2 E E E

P  c    

1 2 4*

* 4 4 3

* 2 2 3

* 1 1 3

* 3 2 3 ) 3 (

3

3 E E 2 E E E 2 E E E 2 E E E 2 E E E

P  c    

42 4* 4 1 1* 4 2 2* 4 3 3* 1 2 3*

) 3 (

4

3 E E 2 E E E 2 E E E 2 E E E 2 E E E

P  c    

4 3 2

1

, E E , E

E 

 Neglect the 2nd order terms of E3 and E4

1 2 2*

* 1 2 1 ) 3 (

1

3 E E 2 E E E

P  c 

2 1 1*

* 2 2 2 ) 3 (

2

3 E E 2 E E E

P  c 

3 1 1* 3 2 2* 1 2 4*

) 3 (

3

3 2 E E E 2 E E E 2 E E E

P  c  

4 1 1* 4 2 2* 1 2 3*

) 3 (

4

3 2 E E E 2 E E E 2 E E E

P  c  

(8)

Nonlinear Optics Lab . Hanyang Univ.

Wave equation :

i i

i

P

t c t

E

E c ~ 4 ~

~

2 2 2 2

2 2 2

 

 

  

where,

~ ( r , ) ( r ) . . ( r )

( r )

. . c c e

A c c e

E t

E

i

i it

 

i i kit

(1) Pump waves, A

1

and A

2

(slow varying approximation)

 

1 1 1

2 2 2

1 ) 3

1

6

(

| | 2 | |

A i A A nc A

i dz

dA   c

 

2 2 2

2 1 2

2 ) 3 2 (

|

| 2

| 6 |

A i A A nc A

i dz

dA   c

# Each wave shifts the phase of the other wave by twice as much as it shift its own phase

# Since only the phase of the pump waves are affected by nonlinear coupling, the quantities

|A1|2 and |A2|2 are spatially invariant, and hence the k1 and k2 are in fact constant

Solution :

z

e

i

A z

A

1

( ) 

1

( 0 )

1

A

2

( z )  A

2

( 0 ) e

i2z

* 3 ) ( 2

1

* 3 2 1 4

2

)

1

0 ( ) 0

( A e A

A A A A

P  

i z

(6.1.15)

: Nonlinear polarization responsible for producing the phase conjugate wave varies spatially.

) 0 ( ) 0 ( ) ( ) ( )

0 ( )

0

(

2 1 2 1 2 1 2

1

A A z A z A A

A       

Therefore, two pump beams should have equal intensities :

(9)

Nonlinear Optics Lab . Hanyang Univ.

(2) Signal ( A

3

) and conjugate waves ( A

4

)

 

3 3 4*

* 4 2 1 3 2 2 2

1 ) 3 3 (

)

|

| 2

| 12 (|

A i A i A A A A A

nc A i dz

dA   c

 

3 4 3*

* 3 2 1 4 2 2 2

1 ) 3

4

12

(

(| | 2 | | )

A i A i A

A A A A

nc A i dz

dA   c

where,

12 (| | 2 | |

2

)

2 2

1 ) 3 (

3

A A

nc

i

   c

2 1 ) 3

12

(

A nc A

i  c

  

put,

A

3

A

3'

e

i3z

z

e

i

A A

4

4' 4

' 3 '

4

' 4 '

3

A dz i

dA

A dz i

dA

) 4 , 3

0

(

|

|

2 '

2 '

i

A

i i

dz

dA

(10)

Nonlinear Optics Lab . Hanyang Univ.

Solution :

) 0

| (

| cos

)]

(

| sin[|

) |

| (

| cos

|

| ) cos (

) 0

| (

| cos

)]

(

| cos[|

)

| (

| cos

|

| sin

| ) |

(

'*

3 '

4 '

4

'*

3 '

4 '*

3

L A L z L i

L A z z

A

L A L L z

L A z z i

A

 

 

0 )

'

(

4

L

A

( conjugate wave at z=L is zero)

) 0 ( )

|

|

| (tan ) |

0 (

|

| )/cos 0 ( )

(

'*

3 '

4

'*

3 '*

3

A i L

A

L A

L A

 

i)

A

3'*

( L )  A

3'*

( 0 )

 0 ~ ) 0

'

( A

4

ii)

: amplification

: depends on

|  | L

(can exceed 100%  pump wave energy)

(11)

Nonlinear Optics Lab . Hanyang Univ.

Processes of degenerated four-wave mixing

:

One photon from each of the pump waves is annihilated

and one photon is added to each of the signal and conjugate waves

one photon transition two photon transition wave-vectors

 Amplification of A3 and over 100% conversion of A4/

A

3 are possible

(12)

Nonlinear Optics Lab . Hanyang Univ.

Experimental set-ups

0 )

(k1k2  (k3k4)0

A1

A2

A3

A4

4

3 A

A

(13)

Nonlinear Optics Lab . Hanyang Univ.

17.5 Optical Resonator with Phase Conjugate Reflectors (A. Yariv)

1 8

9

1 7

8

1 6

7

1 5

6

1 4

5

1 3

4

1 2

3 1 2

) , (

) , (

) , ( )

, (

) , (

)) , ( (

) , ( )

, (

n m

n m

n m n

m n m

n m

n m n

m

l

l

l l

R

R l

l R

l R l

R

R

 

l

( m , n )

# The self-consistence condition is satisfied automatically every two round trips.

 The phase conjugate resonator is stable regardless of the radius of curvature R of the mirror and the spacing l.

(14)

Nonlinear Optics Lab . Hanyang Univ.

17.6 The ABCD Formalism of Phase Conjugate Optical Resonator

The wave incident upon the PCM :

 

 

  

 

 

   

 )

( 2 exp ) ( 2 )

( exp ) ( E

2 2

2 2

i i

i

i

q

kz kr t ε i

w r kz kr

t

ε i

  r

r

 

 

  

 

 

   

 )

( 2 exp ) ( 2 )

( exp ) ( E

2

* 2 2 2

*

r i

i

r

q

kz kr t ε i

w r kz kr

t

ε i

  r

r

2

1 1

w - i q

i

 

where,

Reflected conjugate wave :

* 2

1 1

1

i

r

w q

i

q     

 

 

 

 

 

 

 

 

 0 - 1

0 1 D

C

B , A

D C

B A

*

*

M

i i

r

q

q q

Ray transfer matrix for the PCM mirror

By comparing the ABCD law for ordinary optical elements,

(15)

Nonlinear Optics Lab . Hanyang Univ.

ABCD law at any plane following the PCM :

T

* T

T

* T

D C

B A

 

i i

out

q

q q

Example)





























1 0

0 1 R 1

2 -

0 1

D C

B A 1 0

0 1 D C

B A R 1

2 -

0 1 D

C B A

1 1

1 1

M1

Matrix after one round trip :

Matrix after two round trip :

 

M I

M 

 





 

 





 

 





 0 1

0 1 1 0

0 1 R 1

2 -

0 1 1 0

0 1 R 1

2 -

0

2 1

1 2

: Self-consistence condition is satisfied automatically every two round trips

(16)

Nonlinear Optics Lab . Hanyang Univ.

17.7 Dynamic Distortion Correction within a Laser Resonator

Phase conjugate resonator

Distortion corrected beam

(17)

Nonlinear Optics Lab . Hanyang Univ.

17.8 Holographic Analogs of Phase Conjugate Optics

1) Holography

recording reading

(18)

Nonlinear Optics Lab . Hanyang Univ.

2) Phase conjugate optics

4

3 A

A

Holography by phase conjugation

- Real time processing (no developing process) - Distortion free image transmission

(19)

Nonlinear Optics Lab . Hanyang Univ.

17.9 Imaging through a Distorted Medium

Distortion free transmission (A2)

(20)

Nonlinear Optics Lab . Hanyang Univ.

6.2 Self-Focusing of Light

2

I

0

n

n n  

2

e

2

)

I( r

r w

Gaussian beam :

 

defocusing -

self

focusing -

self

: 0

: 0

2 2

n

n

(21)

Nonlinear Optics Lab . Hanyang Univ.

Self-Trapping

: Beam spread due to diffraction is precisely compensated by the contraction due to self-focusing

Simple model for self-trapping

Critical angle for total internal reflection :

n n

n

 

 

0 0

cos

0 0

 0

2 1

0 0

0 2

0

2 2 1 1 1

 

 

 

n n n

n

 

 

(22)

Nonlinear Optics Lab . Hanyang Univ.

A laser beam of diameter d will contain rays within a cone whose maximum angular extent is of the order of magnitude of diffraction angle ;

d n d

d

n

0 0

6 .

2 0 

   

So, the condition for self-trapping :

0

d

2

0 0

0 2

1

0

6 . 0 2 6 1

. 2 0



 

 

 

 

 

n dn d n

n n

n

  

2

0 2

I

12

6 .

0

dn n

2

I n n

Critical laser power :

 

2 0

2 2

8 6 . I 0

P 4

n d n

cr

# Independent of the beam diameter

Ex) CS2, n2=2.6x10-14 cm2/W, n0=1.7, =1m

 Pcr = 33 kW

(23)

Nonlinear Optics Lab . Hanyang Univ.

Simple model of self-focusing

2w

0

z

f

n n

2 1

0n n0

2 ) ( 1

) (

)

(n0 n z2 w02 12 n0 n zf

  

f

  

2 0 0 0

0 2

1 2

) 1

(

 

 

 

f f

f f

f z

n w z n

z n

z n n

z

 

2 1

0 0

0 0

2 1 0

0

2

2       

 

 

 

n n w

n w n

z

f

 

where, : critical angle

2I nn

12

2 2 0 0 12

2 0

0 I 2

 

 

 

 

 

 

n P

w n n

w n

zf

where, I

2 1 2

w0

P

 

: total power

 

12

2 0

0 1

6 . 0 2

cr

f P P

w z n

 

(24)

Nonlinear Optics Lab . Hanyang Univ.

6.3 Optical Bistability

: Two different output intensities for a given input intensity

 Switch in optical computing and in optical computing

Bistability in a nonlinear medium inside of a Fabry-Perot resonator

T

R

2

2

, 

Intensity reflectance and transmittance :

 ,

where, : amplitude reflectance and transmittance

l

e

ikl

2

 A

2 2

A

2 1

2

A A

A     

l

e

ikl

2 2 21

1

A A

(6.3.3)

(25)

Nonlinear Optics Lab . Hanyang Univ.

1) Absorptive Bistability

In the case when only the absorption coefficient depends nonlinearly on the field intensity, at the resonance condition,

2

e

2ikl

R

Assume,

l  1

) 1

( 1

A

2

A

1

l R

 

 

 2 A

2

I

i

nc

i

1

2 2

I I

1 (1 )

T

Rl

  

Introducing the dimensionless parameter C,

R l C R

  1

2 1

2

( 1 )

I I 1

C T

(6.3.7)

(26)

Nonlinear Optics Lab . Hanyang Univ.

Assume the absorption coefficient obeys the relation valid for a two-level saturable absorber ;

I

S

I 1

0

  

Intracavity intensity :

I

2

 I

'2

 2 I

2

) 1 , (

I 2I 1

0 0 2

0

R l

C R C C

S

 

 

where,

2

2 0 2

1

I 1 1 2I I

I 

 

 

S

T C

(6.3.7) 

2

3

I

I  T

(27)

Nonlinear Optics Lab . Hanyang Univ.

2) Dispersive Bistability

In the case when only the refractive index depends nonlinearly on the field intensity,

) I ( ,

0 nf

 

(6.3.3)  ikl

e R e  

 

1 A 1

A

2

A

212

1

where,

2

R e

i

2

0

  

c l n

0

 

2 0 : linear phase shift : nonlinear phase shift cl

n

22 2I

4sin   2

1

I

) cos 2

1 (

I )

1 )(

1 ( I I

2 2

1

2 1 1

2

T

R

T

R R

T e

R e

R T

 

 

 

Similarly as before,

(28)

Nonlinear Optics Lab . Hanyang Univ.

4sin   2

1

1 I

I

2 2

1

2

R T

T

 

2 2

0

4  I

 

 

l

n C

2

3

I

I  T

참조

관련 문서

 Manipulations of polarization state and transmittance of light.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field.. 4) Saturated absorption

Nonlinear Optics Lab...

In certain optical materials containing magnetic atoms or ions, the two counter-rotating, circularly-polarized modes have different indices of refraction when an

(8.8-1) describe traveling-wave parametric interaction, it is still valid if we Think of propagation inside a cavity as a folded optical path...

If we assume n 1 -n 2 <<1 (reasonable in most fibers) a good approximation of the field components and mode condition can be obtained. Gloge, 1971)..  Cartesian

In such case, energy transfer occurs as a result of a spatial phase shift between the nonlinear index grating and the optical intensity distribution....

Nonlinear Optics Lab...