• 검색 결과가 없습니다.

Chapter 4. The Intensity-Dependent Refractive Index

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 4. The Intensity-Dependent Refractive Index"

Copied!
28
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 4. The Intensity-Dependent Refractive Index

- Third order nonlinear effect

- Mathematical description of the nonlinear refractive index - Physical processes that give rise to this effect

Reference :

R.W. Boyd, “Nonlinear Optics”, Academic Press, INC.

(2)

Nonlinear Optics Lab . Hanyang Univ.

4.1 Description of the Intensity-Dependent Refractive Index

Refractive index of many materials can be described by

 

...

~2

2

0  

n n E t n

n0

n2

where, : weak-field refractive index : 2nd order index of refraction

 

( ) . .

~ t E e cc

E   it E~2

 

t 2E()E()*2E()2

 

2

2

0

2 n E

n n  

: optical Kerr effect (3rd order nonlinear effect)

(3)

Nonlinear Optics Lab . Hanyang Univ.

Polarization :

             

E E E E

P( )  (1) 3 (3) 2eff In Gaussian units, n2

 1  4 

eff

n02n2 E

 

2

214(1)12(3) E

 

2

 

2 22

 

4 (1) (3)

 

2

2 0 2

0 4n n E

4n E

1 4



12



E

n     

(1)

12

0

 1  4 

n

0 ) 3 (

2 3 n

n



(4)

Nonlinear Optics Lab . Hanyang Univ.

Appendix A. Systems of Units in Nonlinear Optics (Gaussian units and MKS units) 1) Gaussian units ;

  ~   ~   ....

) ~

~ (

t

(1)E t

(2)E2 t

(3)E3 t

P

  

   

cm 2

b statcoulom cm

statvolt

~

~ 

E

 

P

 

statvolt

~ cm

# (2) 1 





E

 

(3) 2 2 2

statvolt

~1 cm

# 





E

ess dimensionl

# 

(1)

The units of nonlinear susceptibilities are not usually stated explicitly ; rather one simply states that the value is given in

“esu” (electrostatic units).

(5)

Nonlinear Optics Lab . Hanyang Univ.

2) MKS units ;

     

~ ~ ~ ....

)

~( (1) (2) 2 (3) 3

0   

E t E t E t

t

P

   

 

~ 2

m

PC

 

m E~  V

: MKS 1

  ~   ~   ....

) ~

~ (

(1) (2) 2 (3) 3

0

  

E t E t E t

t

P

   

: MKS 2

ess dimensionl

) 1

(

  

V m E





 1~

) 2

(

 

(3) 22

V

m

 

(2) 2

V

C

 

(3) 3

V

Cm

 [C/V]

[F]

F/m, 10

85 . 8

# 0  12

In MKS 1,

In MKS 2,

(1)

 dimensionl ess

(6)

Nonlinear Optics Lab . Hanyang Univ.

3) Conversion among the systems

1 4 (1)

~ 4 ~

~ ~

) 2

( DE

PE



(1)

0

0~ ~ ~1

~ 

EP

E

D

(Gaussian)

E~ 10 3 (MKS)

E~ V 300 statvolt

1 ) 1

(     4

(Gaussian) (MKS)

(Gaussian) 4

(MKS) (1)

) 1

(



) 3 (

(Gaussian) 10

3 1) 4

(MKS 4 (2)

) 2

(

 

 

(Gaussian) 10

3 2) 4

(MKS 04 (2)

) 2

(

 

 

(Gaussian) )

10 3 ( 1) 4

(MKS 4 2 (3)

) 3

(

 

 

(Gaussian) )

10 3 ( 2) 4

(MKS 40 2 (3)

) 3

(

 

 

(7)

Nonlinear Optics Lab . Hanyang Univ.

Alternative way of defining the intensity-dependent refractive index

I

n n

n

0

2

0 ( )2

2

E c In

(4.1.4)

2 2

0 2n E() n

n 

) 3 ( 2

0 2

0 ) 3 (

0 2 0 2

12 3

4

4

    

c n n

c n n

c

nn  

)

?

3 (

2

 

n

 

esu 0.0395

 

esu

12 10 W

cm (3)

2 0 )

3 ( 7 2

0 2 2

2

  

n c

n  n

 

), :

( 12esu

10

) 1.9

3 ( 2

CS n01.58, I1MW/cm2, n?

   

W cm n esu n

/ 10

3

10 9 . 58 1 . 1

0395 .

0 0395

. 0

2 14

12 2

) 3 ( 2

0 2

8 14

6

2 110 310 310

n n I Example)

(8)

Nonlinear Optics Lab . Hanyang Univ.

(9)

Nonlinear Optics Lab . Hanyang Univ.

Physical processes producing the nonlinear change in the refractive index

1) Electronic polarization : Electronic charge redistribution

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field

4) Saturated absorption : Intensity-dependent absorption

5) Thermal effect : Temperature change due to the optical field

6) Photorefractive effect : Induced redistribution of electrons and holes 

Refractive index change due to the local field inside the medium

(10)

Nonlinear Optics Lab . Hanyang Univ.

(11)

Nonlinear Optics Lab . Hanyang Univ.

4.2 Tensor Nature of the 3

rd

Susceptibility

r r r r

F~ 2~ (~ ~)~

0  

m mb

res

Centrosymmetric media

Equation of motion :

m t e

b(~ ~)~ ~( )/

~ 2 ~

~ 2

0r r r r E

r

r

Solution :

c c e

E e

E e

E

t) i t i t i t .

~( 1 2 3

3 2

1

E

n

t i n

e n

E( )

Perturbation expansion method ;

...

)

~ ( )

~ ( )

~ ( )

~r(t  r(1) t 2r(2) t 3r(3) tm t e~( )/

~ 2 ~

~ 2 (1)

0 ) 1 ( )

1

( r r E

r

~ 0 2 ~

~ 2 (2)

0 ) 2 ( )

2

( r r

r

~ ~

~ 0

~ 2 ~

~ 2 (3) (1) (1) (1)

0 ) 3 ( )

3

( r r r r r

r b

(12)

Nonlinear Optics Lab . Hanyang Univ.

3

rd

order polarization :

) ( )

( (3)

) 3 (

q

q Ne

r

P

     



jkl mnp

p l n k m j p n m q ijkl q

i E E E

) (

) 3 ( )

3

( ()(,,,)   

P

     

jkl

p l n k m j p n m q

ijkl E E E

D(3)(,,,)   

where, D : Degeneracy factor

(The number of distinct permutations of the frequency m, n, p) 4th-rank tensor : 81 elements

Let’s consider the 3rd order susceptibility for the case of an isotropic material.

3333 2222

1111

3322 3311

2233 2211

1133 22

11

3232 3131

2121 2323

1313

1212

3223 3113

2332 2112

1331

1221

1221 1212

1122

1111

21 nonzero elements :

and,

(Report)

(Report)

Element with even number of index

(13)

Nonlinear Optics Lab . Hanyang Univ.

Expression for the nonlinear susceptibility in the compact form :

jk il jl

ik kl

ij

ijkl

        

112212121221

Example) Third-harmonic generation :

ijkl(3

)

1221 1212

1122  

) (

) 3

( )

3

( 1122 ij kl ik jl il jk

ijkl

              

         

Example) Intensity-dependent refractive index :

ijkl(

)

1221 1212

1122  

jk il jl

ik kl ij

ijkl

                   

(3    ) 1122(    )(  ) 1221(    )

(14)

Nonlinear Optics Lab . Hanyang Univ.

Nonlinear polarization for Intensity-dependent refractive index

     

jkl

l k

j ijkl

i() 3 ( )E E E

P

 

EE

 

EE

P    

i() 61122Ei 31221Ei P61122

 

EE E31221

 

EE E in vector form

Defining the coefficients, A and B as

1221

1122, 6

6

B

A (Maker and Terhune’s notation)

E E E E E E

P A B

2

1

(15)

Nonlinear Optics Lab . Hanyang Univ.

In some purpose, it is useful to describe the nonlinear polarization by in terms of an

effective linear susceptibility,

j

j ij

i E

P

ij as

 

ij

i j i j

ijA  BE EEE

 2

1

EE

1221

1122 3

2 6

1

A B A

61221

B B where,

Physical mechanisms ;

iction electrostr

: 0 ,

0

response

electronic t

nonresonan

: 2 ,

1

n orientatio molecular

: 3 '/

, 6 /

B'/A' B/A

B'/A' B/A

A B A

B

(16)

Nonlinear Optics Lab . Hanyang Univ.

4.3 Nonresonant Electronic Nonlinearities

# The most fast response :

  2  a

0

/ v  10

16

s

[a0(Bohr radius)~0.5x10-8cm, v(electron velocity)~c/137]

Classical, Anharmonic Oscillator Model of Electronic Nonlinearities

Approximated Potential :

 

02 2 4

4 1 2

1 r r

r m mb

U

 

) ( ) ( ) ( ) ( ) 3

, , ,

( 3

4 )

3 (

p n

m q

jk l i jl ik kl ij p

n m q

ijkl m D D D D

Nbe

 

 

 

   

 

 

 

m D D

Nbe ij kl ik jl il jk

ijkl 3 3

4 )

3 (

) 3 (

(1.4.52)

where, D

 

02 2 2i

According to the notation of Maker and Terhune,

   

m D D

B Nbe

A 3 3

2 4

(17)

Nonlinear Optics Lab . Hanyang Univ.

Far off-resonant case, 0 D() 02, b02/d2

2 6 0 3

4 )

3 (

d m

Ne

  

esu 10

2

~

g 10 1 . 9 , rad/s 10

7

esu 10

8 . 4 , cm 10

3 , cm 10

4

14 )

3 (

28 15

0

10 8

3 22

m

e d

N

Typical value of (3)

(18)

Nonlinear Optics Lab . Hanyang Univ.

4.4 Nonlinearities due to Molecular Orientation

The torque exerted on the molecule when an electric field is applied :

E P 

τ

induced dipole moment

(19)

Nonlinear Optics Lab . Hanyang Univ.

Second order index of refraction

Change of potential energy :

1 1

3

3 dE p dE

p d

p

dU    E   

3E3dE3

1E1dE1

 

1 2 2

2 2

3 2

1 1 2

3

3 cos sin

2 1 2

1 E E E E

U      

    

1 2 3 1 2

cos

2

2

1 2

1

E

 

E

* Optical field (orientational relaxation time ~ ps order) : E2

E

~

2

 

t

E

~

2

Mean polarization :

3 cos2 1 sin2 1( 3 1) cos2

N n2 14

2

2

1 E

U  

1) With no local-field correction :

*

(20)

Nonlinear Optics Lab . Hanyang Univ.

 

 

   

 

kT U

d

kT U

d

/ exp

/ exp

cos cos

2 2

Defining intensity parameter, J

 

E~ /kT 2

1 2

1

3

 

 

 

0

2 0

2 2

2

sin cos

exp

sin cos

exp cos

cos

d J

d J

i) J  0

3 1 sin

sin cos

cos

0 0

2

0

2

d d

1

0 3 3

2 3

1

 

 

 

02 3 1

3 2 3

4 1

1 

N

 

n : linear refractive index

(21)

Nonlinear Optics Lab . Hanyang Univ.

ii) J 0

 

1 3 1 2

2 14 N   cos

n

 



   

2 02 1 3 1 2 3

3 cos 1

3

4

N 1

    

n n

 

 

 

 

 3

cos 1 4 

N

3

1 2

2 0 2

0

2 n n

n  

 

 

 

 

 3

cos 1

2

2

1 3 0

0

   

n

n N

n

n

(22)

Nonlinear Optics Lab . Hanyang Univ.

 

 

0

2 0

2 2

2

sin cos

exp

sin cos

exp cos

cos

d J

d J

945 ....

8 45 4 3

1 2

J J

   

kT E n

N J

n N

n

2 2 1 3 0 1

3 0

~ 45

4 45 4 2

4

     

   

2

~

2

E

n

Second-order index of refraction :

 

kT n

n N

2 1 3

0

2

45

4    

(23)

Nonlinear Optics Lab . Hanyang Univ.

2) With local-field correction

P E

E ~

3 4

~

~loc

p

E~loc

Np P~

and

 

 

P E P~

3 4

~

~ N

 

E

P ~

3 1 4

~



 

 

 

N

N

 

(1)E

~



 

 

 

 

N N

3 1 4

) 1 (

) 1 ( )

1

(

1 4 

  

N

3 4 2 1

) 1 (

) 1

(

  N

n n

3 4 2 or 2 1

2

: Lorentz-Lorenz law

 

kT n

n n N

2 1 3 2 4

0 0

2 3

2 45

4

 



 

  

(24)

Nonlinear Optics Lab . Hanyang Univ.

8.2 Electrostriction

: Tendency of materials to become compressed in the presence of an electric field

Molecular potential energy :

2 0

0 2

1 2

1 E

d d

p

U  

EE  

EE  E  EE   Force acting on the molecule :

 

2

2

1 E

U



F

density change

(25)

Nonlinear Optics Lab . Hanyang Univ.

Increase in electric permittivity due to the density change of the material :

 

  

 

Field energy density change in the material = Work density performed in compressing the material

 

 



 

 

 8 8

2

2 E

u E

 

 

st pst

V p V w

So, electrostrictive pressure :

 

 

8 8

2

2 E

pst E  e

 

where,

e : electrostrictive constant

(26)

Nonlinear Optics Lab . Hanyang Univ.

st

st CP

P P





1

Density change :

C P

where, 1 : compressibility

 

8

E2

C e

For optical field,

8

~2 E C e

 

 



 

 



 4

1 4

 

4

1 8

~2



 

E

C e 2

2

~ 32

1 C

e E

e

(27)

Nonlinear Optics Lab . Hanyang Univ.

 

. .

~ tEeitcc

E E~2 2EE

2 2EE

16 1

C

e

 

<Classification according to the Maker and Terhune’s notation>

Nonlinear polarization : P 

E

E E

P 2 2 2

16 1

Ce

 3(3)()E2E

2 2 )

3 (

48 ) 1

( C

e

 

   

0 16 ,

2

2

is,

That

C B

A

T e

(28)

Nonlinear Optics Lab . Hanyang Univ.

 

e

2 1

n

e

2 1



2 2

/3

n n

e

: For dilute gas

: For condensed matter (Lorentz-Lorenz law)

Example) Cs2, C ~10-10 cm2/dyne, e ~1  (3) ~ 2x10-13 esu

Ideal gas, C ~10-6 cm2/dyne (1 atm), e =n2-1 ~ 6x10-4  (3) ~ 1x10-15 esu

참조

관련 문서

Figure 23-8 Calibration curve used to estimate the molecular mass of an unknown protein by molecular exclusion chromatography..

*단어 사이의 공통성과

동결방지 조치를 취하여 등을 사용하여 적절한 우려가 있는 곳은 보온재 드레인 호스 설치시 동결.

자석 팽이는 볼록한 두 부분에는 고리 자석이 들어 있고, 받침대에는 팽이의 고 리 자석 위치와 일치하는 부분에 삼각형 모양의 자석이 네 개 들어 있다.. 그리고

멘토링 과정에서는 많은 어려움이 발생하기 때문에 초지일관 자신 감과참을성을 가지고 끈질기게 멘토링에 참여하는 것이 필요하다. 계획된 멘토링에 진지하고 헌신적으로

그 외 사회 전반에 적용되는 광의의 플랫폼 - 공용플랫폼/ 디자인 플랫폼/ 브랜드 플랫폼 등. 플랫폼은 공용하고 차량의 스타일 등을 결정하는

■ 인접 플랫폼이나 신규 플랫폼을 상시 모니터링 하여 자사의 플랫폼 전략에 반영할 필요 있음. 외부 환경과 기업 상황에 맞는

이렇게 작동을 하게 하려면 각 예제 폼들을 자식 윈 도우로 설정해야 하는데 그 방법으로는 다음과 같이 자식으로 생성될 폼 들의 속성을