• 검색 결과가 없습니다.

Chapter 2. The Propagation of Rays and Beams

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 2. The Propagation of Rays and Beams"

Copied!
23
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 2. The Propagation of Rays and Beams

2.0 Introduction

Propagation of Ray through optical element : Ray (transfer) matrix

 Gaussian beam propagation

2.1 Lens Waveguide

A ray can be uniquely defined by its distance from the axis (r) and its slope (r’=dr/dz).

r

r’=dr/dz

z

) ('

) (

z r

z

r

 r

(2)

Nonlinear Optics Lab . Hanyang Univ.

Paraxial ray passing through a thin lens of focal length f

f r r

r

r r

in in

out in out

' '

'  

in in out

out

r r r f

r

1 ' 1

0 1

'  

: Ray matrix for a thin lens

Report) Derivation of ray matrices

in Table 2-1

(3)

Nonlinear Optics Lab . Hanyang Univ.

Table 2-1 Ray Matrices

(4)

Nonlinear Optics Lab . Hanyang Univ.

(5)

Nonlinear Optics Lab . Hanyang Univ.

Biperiodic lens sequence (f

1

, f

2

, d)

in in out

out

r r f d f

d r

r

) ' 1

1 ( 1

'   

s s s

s

r r f d f

d f

d f

d r

r

) ' 1

1 ( 1 ) 1

1 ( 1

' 1 1 1 2 2

1

s s

r r f d f

d f

d f

d f

f

f d d f d

d

) ' 1 )(

1 ( )

1 1 ( 1

) 1 ( 1

2 1

1 1

2 1

2 2

s s

s

s s

s

Dr Cr

r

Br Ar

r

' '

'

1 1

In equation form of

) 2

( 1

2 2

f d d

B

f A d

 

 

 

 

 

 

 

 

 

 

 

 

 

2 1

1

1 2

1

1 1

1 1 1

f d f

d f

D d

f d f

C f

(6)

Nonlinear Optics Lab . Hanyang Univ.

  ,

'

s

1 r

s 1

Ar

s

rB

'

s 1

1r

s 2

Ar

s 1

r B

(2.1-5) 

0

2

1

2

  

r

s

br

s

r

s 



2 1

2

1

2 2

1 ) 2(

1

where,

f f d f

d f D d

A b

1

AB CD (actually for all elements)

trial solution :

0 1

2iq

 2 be

iq

  e

isq s

r e r

0

i

iq

b i b e

e    

 1

2 where, cos

b

general solution :

)

max

sin(   

r s

r

s

(7)

Nonlinear Optics Lab . Hanyang Univ.

Stability condition

: The condition that the ray radius oscillates as a function of the cell number s between rmax and –rmax.

:  is real 

b  1 

2 1 2 1

1 0

2 1 1

1

2 1

2 1

2

1 2

 

 

 

 

 

 

f d f

d

f f d f

d f

d

Identical-lens waveguide (f, f, d)

f D d

C f d B

A  1 , 1 ,

, 1

f b d

1 2

cos

  

 Stability condition : 0  d  4 f

(8)

Nonlinear Optics Lab . Hanyang Univ.

2.2 Propagation of Rays Between Mirrors

! 2 / R f

) sin(

) sin(

max max

y n

x n

n y

y

n x

x

 2 l

2 

(, l : integers)

stability condition :

example)

2, l=1  =/2  cos = b = 1-d/2f = 0

f d 2

(symmetric confocal)

) 2

/

max

sin(   

r n

r

n

(9)

Nonlinear Optics Lab . Hanyang Univ.

2.3 Rays in Lenslike Media

Lenses : optical path across them is a quadratic function of the distance r from the z axis ;



 

 

f

y ik x

y x E y

x

ER L

exp 2 ) , ( )

, (

2 2

phase shift

Index of refraction of lenslike medium :

 

   

 ( )

1 2 )

,

(

0 2

x

2

y

2

k n k

y x n

<Differential equation for ray propagation>

0

r

s ray path

wave front :const

E ( r )  E ˆ ( r ) e

ik0(r)

) r sˆ n(

) r (

where,

 

 

: optical path

(10)

Nonlinear Optics Lab . Hanyang Univ.

i)

sˆ //   , | sˆ |  1

ii) Maxwell equations :

 

 

0 (r)

H ˆ

0 (r)

E ˆ

0 (r) H ˆ (r)- E ˆ

0 (r) E ˆ (r) H ˆ

1

(Eˆ(r)

)

Eˆ(r)(

)2

Eˆ(r)0

if =1, (

)2

n2 That is, |

|n

s

n ˆ

ds

s ˆ dr

So,

   ds

n dr

2 2

2 ] 1 ) 2 [(

) 1 1 (

) ( )

( )

( n

n n

n ds

dr ds

d ds

n dr ds

d                     

ds n n dr ds

d  

 ( )

: Differential equation for ray propagation, (2.3-3)

(11)

Nonlinear Optics Lab . Hanyang Univ.

For paraxial rays,

dz d ds

d

2

0

2

2

 

 

  r k k dz

r d

0 2

0 2 2

0 2

2 0

2

' cos

sin )

( '

' sin

cos )

(

r k z r k

k z k k

z k r

r k z k k

r k k z z k

r





 





 





 





 

Focusing distance from the exit plane for the parallel rays : 



  l

k k k

k

h n 2

2 0

1 cot

Report) Proof

(12)

Nonlinear Optics Lab . Hanyang Univ.

2.4 Wave Equation in Quadratic Index Media

Gaussian beam ?

t

t

 

 

 

H

E E

H  , 

Maxwell’s curl equations (isotrpic, charge free medium)

: Scalar wave equation

2 0

2

2

 

t

E  E

Put, E(x,y,z,t)E(x,y,z)eit (monochromatic wave)

=> Helmholtz equation :

2

Ek

2

( r ) E  0

=>

where,



 

 

 

 1 ( ) )

( 2

2 i r

r

k 

medium gain

medium

loss

: 0

: 0

We limit our derivation to the case in which k2(r) is given by

where,

(0)

) 0 1 (

) 0 ( )

0

( 2

2 2





i

k k

2 2 2

2

( r , , z ) k kk r k   

2 2 2

2 2

2 2

2 1

z r r r

t z

 

 

 

 

(13)

Nonlinear Optics Lab . Hanyang Univ.

Assume, E0  (x, y,z)eikz

=> 2 2 2 2 0

2 2

2  

 



 

 

kk r

ik z y

x

Put, 2 2 1/2

2

) (

, )]}

( ) 2

( [

exp{ r x y

z q z kr

p

i   

=>

q i dz

dp k

k q dz

d

q  1 )   0 ,  

1 (

2

2

& slow varying approximation

(14)

Nonlinear Optics Lab . Hanyang Univ.

0 1 ) 1 (

2

 

dz q d

q

=>

qzq

0

is must be a complex ! =>

q

Assume,

q

0 is pure imaginary.

=> put,

qziz

0 ( : real)

z

0

At z = z0,

)}

0 ( exp{

2 ) exp(

) 0 (

0 2

z ip

z    kr

Beam radius at z=0, 0

2

0

)

1/2

( k

wz

: Beam Waist

2.5 Gaussian Beams in a Homogeneous Medium

In a homogeneous medium,

k

2

 0

Otherwise, field cannot be a form of beam.

(15)

Nonlinear Optics Lab . Hanyang Univ.

w

02

i

z q  

at arbitrary z,

q

=> 2 2

0 2

0 2

0 2

0

1 1

1

i w z R

z i z z

z z iz

z

q

 

 

 

 

: Complex beam radius

q i dz

dp  

=>

ip ( z )  ln[ 1  ( z / z

0

)

2

]

1/2

i tan

1

( z / z

0

)

=>

exp[ tan ( / )]

] ) / ( 1 [ )] 1 (

exp[

2 1/2 1 0

0

z z z i

z z

ip

 

(16)

Nonlinear Optics Lab . Hanyang Univ.

Wave field

 

 

 

 

 

 

 

 

 

) ( exp 2

) / ( tan [

) exp exp (

) ( )

, ,

(

2

0 1

2 2 0

0

z R i kr z

z kz

z i w

r z

w w E

z y x E

A

where,







 



 









2

0 2

0 2

2 0 2

0

2( ) 1 1

z w z

nw w z

z

w

 : Beam radius





 

 



 









2 0 2 2

0 1

1 )

( z

z z z

z nw z

R

 : Radius of curvature of the wave front

02

0

znw : Confocal parameter(2z0) or Rayleigh range

(17)

Nonlinear Optics Lab . Hanyang Univ.

Gaussian beam

z

0

w0

I

Gaussian profile

2w

0

/

0

2

/   nw

 

spread angle :

 0 z

Near field (~ plane wave)

Far field

(~ spherical wave)

z

(18)

Nonlinear Optics Lab . Hanyang Univ.

2.6 Fundamental Gaussian beam in a Lenslike Medium - ABCD law

q P i

k k q

q 







1 2 1 ' 2 0 '

For lenslike medium,

Introduce s as,

s s q

'

1   " 20 k sk s

k z k k

b k k z

k k

a k z s

k z b k

k z a k

z s

2 2

2 2

2 2

sin cos

) ( '

cos sin

) (

 

     

 

k k k k z zq k k k q k   k k k k zz

z q

/ cos

/ /

sin

/ sin

/ /

cos )

(

2 0

2 2

2 2

0 2

 

Table 2-1 (6) 

D Cq

B q Aq

 

1 1 2

(19)

Nonlinear Optics Lab . Hanyang Univ.

Matrix method (Ray optics)

y

i

y

o

i

o

optical elements

 

 

 

 

 

 

 

i i o

o

y

D C

B y A

C D

B

A : ray-transfer matrix

Transformation of the Gaussian beam – the ABCD law

(20)

Nonlinear Optics Lab . Hanyang Univ.

ABCD law for Gaussian beam

 

 

 

 

 

 

 

i i o

o

y

D C

B A

y

o i i

i i

o

D Cy

B Ay

y

i i

i i

o o

o

Cy D

B Ay

R y

 

 

) (

)

( ray optics q Gaussian optics

R

o

D Cy

B Ay

i i

i i

 

 /

/

D Cq

B q Aq

 

1 1 2

q

2

q

1

optical system

 

 

D C

B A

ABCD law for Gaussian beam : iz

0

z q  

02

0

znw

(21)

Nonlinear Optics Lab . Hanyang Univ.

example) Gaussian beam focusing

1

w

01

w

02

z

1

z

2

?

?



 

 



 



 

 

 

 



 

f z

f z z z z f z

z f

z D

C B A

/ 1

0

/ /

1

1 0 1 1 /

1

0 1

1 0 1

1 2 1 2 1 2

1 2

) / 1

( /

) / (

) / 1

(

1 1

2 1 2

1 1

2

2

q f z f

f z z z

z q

f q z

 

(22)

Nonlinear Optics Lab . Hanyang Univ.

2 01 2

2 1 2

01 2

02

1 1 1

1 

 

 

 

 

 

 

w f

f z w

w

) ) (

/ (

) (

) (

2 2 01 2

1

1 2

2

f

w f

z

f z f f

z

 

  

02

01 w

w 

- If a strong positive lens is used ; => 1

01

02

f

w

wf

2 1

2

01

/ ( z f )

w   

- If =>

z

2

f

=>

f f f d

w

w f 2

N

,

N

/

) 2 (

2

01

02

  

: f-number

; The smaller the f# of the lens, the smaller the beam waist at the focused spot.

Note) To satisfy this condition, the beam is expanded before being focused.

(23)

Nonlinear Optics Lab . Hanyang Univ.

2.7 A Gaussian Beam in Lens Waveguide

Matrix for sequence of thin lenses relating a ray in plane s+1 to the plane s=1 :

s

T T

T t

D C

B A

D C

B

A

 

 

 

sin

) 1 ( sin ) sin(

sin ) sin(

sin ) sin(

sin

) 1 ( sin ) sin(

 

 

s s

D D

s C C

s B B

s s

A A

T T T T

 





2 1

2

1

2 2

2 1 cos 1

f f d f

d f D d

A where,

 

 

) 1 ( sin )

sin(

) sin(

) sin(

) 1 ( sin )

sin(

1

1

1

  

 

s s

D q

s C

s B

q s

s q

s

A

Stability condition for the Gaussian beam :

2 1 2 1

1 0

2 1

 

 

 



 

 

f

d f

d

: Same as condition for stable-ray propagation

참조

관련 문서

In nonlinear optics, the properties of nonlinear optical responses such as polarization and nonlinear analysis of the nonlinear surfaces were investigated using the jellium

polarizer electrooptic crystal quarter wave plate polarizer V...

Week-10: *Efficient light emission from LED, OLED, and nanolasers via surface-plasmon resonance (pdf) Week-11: Chapter 20.

If we assume n 1 -n 2 &lt;&lt;1 (reasonable in most fibers) a good approximation of the field components and mode condition can be obtained. Gloge, 1971)..  Cartesian

Jeong, &#34;Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: application to actual damages in composite wing,&#34; Optics &amp;

- Highest classification score인 class에 assign Example 3: Medical dispatch to accident scene. Hanyang

When we study the sources of UHECRs, we should consider that the trajectories of UHECRs would be in- fluenced by the intervening magnetic fields while they propagate

the volume in space from which scattered neutrons reach the detector needs to be carefully selected for residual stress analysis by means of beam defining optics in the incident