• 검색 결과가 없습니다.

Chapter 2. The Propagation of Rays and Beams

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 2. The Propagation of Rays and Beams"

Copied!
23
0
0

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 2. The Propagation of Rays and Beams

2.0 Introduction

Propagation of Ray through optical element : Ray (transfer) matrix

 Gaussian beam propagation

2.1 Lens Waveguide

A ray can be uniquely defined by its distance from the axis (r) and its slope (r’=dr/dz).

r

r’=dr/dz

z

) ('

) (

z r

z

r

 r

(2)

Nonlinear Optics Lab . Hanyang Univ.

Paraxial ray passing through a thin lens of focal length f

f r r

r

r r

in in

out in out

' '

'  

in in out

out

r r r f

r

1 ' 1

0 1

'  

: Ray matrix for a thin lens

Report) Derivation of ray matrices

in Table 2-1

(3)

Nonlinear Optics Lab . Hanyang Univ.

Table 2-1 Ray Matrices

(4)

Nonlinear Optics Lab . Hanyang Univ.

(5)

Nonlinear Optics Lab . Hanyang Univ.

Biperiodic lens sequence (f

1

, f

2

, d)

in in out

out

r r f d f

d r

r

) ' 1

1 ( 1

'   

s s s

s

r r f d f

d f

d f

d r

r

) ' 1

1 ( 1 ) 1

1 ( 1

' 1 1 1 2 2

1

s s

r r f d f

d f

d f

d f

f

f d d f d

d

) ' 1 )(

1 ( )

1 1 ( 1

) 1 ( 1

2 1

1 1

2 1

2 2

s s

s

s s

s

Dr Cr

r

Br Ar

r

' '

'

1 1

In equation form of

) 2

( 1

2 2

f d d

B

f A d

 

 

 

 

 

 

 

 

 

 

 

 

 

2 1

1

1 2

1

1 1

1 1 1

f d f

d f

D d

f d f

C f

(6)

Nonlinear Optics Lab . Hanyang Univ.

  ,

'

s

1 r

s 1

Ar

s

rB

'

s 1

1r

s 2

Ar

s 1

r B

(2.1-5) 

0

2

1

2

  

r

s

br

s

r

s 



2 1

2

1

2 2

1 ) 2(

1

where,

f f d f

d f D d

A b

1

AB CD (actually for all elements)

trial solution :

0 1

2iq

 2 be

iq

  e

isq s

r e r

0

i

iq

b i b e

e    

 1

2 where, cos

b

general solution :

)

max

sin(   

r s

r

s

(7)

Nonlinear Optics Lab . Hanyang Univ.

Stability condition

: The condition that the ray radius oscillates as a function of the cell number s between rmax and –rmax.

:  is real 

b  1 

2 1 2 1

1 0

2 1 1

1

2 1

2 1

2

1 2

 

 

 

 

 

 

f d f

d

f f d f

d f

d

Identical-lens waveguide (f, f, d)

f D d

C f d B

A  1 , 1 ,

, 1

f b d

1 2

cos

  

 Stability condition : 0  d  4 f

(8)

Nonlinear Optics Lab . Hanyang Univ.

2.2 Propagation of Rays Between Mirrors

! 2 / R f

) sin(

) sin(

max max

y n

x n

n y

y

n x

x

 2 l

2 

(, l : integers)

stability condition :

example)

2, l=1  =/2  cos = b = 1-d/2f = 0

f d 2

(symmetric confocal)

) 2

/

max

sin(   

r n

r

n

(9)

Nonlinear Optics Lab . Hanyang Univ.

2.3 Rays in Lenslike Media

Lenses : optical path across them is a quadratic function of the distance r from the z axis ;



 

 

f

y ik x

y x E y

x

ER L

exp 2 ) , ( )

, (

2 2

phase shift

Index of refraction of lenslike medium :

 

   

 ( )

1 2 )

,

(

0 2

x

2

y

2

k n k

y x n

<Differential equation for ray propagation>

0

r

s ray path

wave front :const

E ( r )  E ˆ ( r ) e

ik0(r)

) r sˆ n(

) r (

where,

 

 

: optical path

(10)

Nonlinear Optics Lab . Hanyang Univ.

i)

sˆ //   , | sˆ |  1

ii) Maxwell equations :

 

 

0 (r)

H ˆ

0 (r)

E ˆ

0 (r) H ˆ (r)- E ˆ

0 (r) E ˆ (r) H ˆ

1

(Eˆ(r)

)

Eˆ(r)(

)2

Eˆ(r)0

if =1, (

)2

n2 That is, |

|n

s

n ˆ

ds

s ˆ dr

So,

   ds

n dr

2 2

2 ] 1 ) 2 [(

) 1 1 (

) ( )

( )

( n

n n

n ds

dr ds

d ds

n dr ds

d                     

ds n n dr ds

d  

 ( )

: Differential equation for ray propagation, (2.3-3)

(11)

Nonlinear Optics Lab . Hanyang Univ.

For paraxial rays,

dz d ds

d

2

0

2

2

 

 

  r k k dz

r d

0 2

0 2 2

0 2

2 0

2

' cos

sin )

( '

' sin

cos )

(

r k z r k

k z k k

z k r

r k z k k

r k k z z k

r





 





 





 





 

Focusing distance from the exit plane for the parallel rays : 



  l

k k k

k

h n 2

2 0

1 cot

Report) Proof

(12)

Nonlinear Optics Lab . Hanyang Univ.

2.4 Wave Equation in Quadratic Index Media

Gaussian beam ?

t

t

 

 

 

H

E E

H  , 

Maxwell’s curl equations (isotrpic, charge free medium)

: Scalar wave equation

2 0

2

2

 

t

E  E

Put, E(x,y,z,t)E(x,y,z)eit (monochromatic wave)

=> Helmholtz equation :

2

Ek

2

( r ) E  0

=>

where,



 

 

 

 1 ( ) )

( 2

2 i r

r

k 

medium gain

medium

loss

: 0

: 0

We limit our derivation to the case in which k2(r) is given by

where,

(0)

) 0 1 (

) 0 ( )

0

( 2

2 2





i

k k

2 2 2

2

( r , , z ) k kk r k   

2 2 2

2 2

2 2

2 1

z r r r

t z

 

 

 

 

(13)

Nonlinear Optics Lab . Hanyang Univ.

Assume, E0  (x, y,z)eikz

=> 2 2 2 2 0

2 2

2  

 



 

 

kk r

ik z y

x

Put, 2 2 1/2

2

) (

, )]}

( ) 2

( [

exp{ r x y

z q z kr

p

i   

=>

q i dz

dp k

k q dz

d

q  1 )   0 ,  

1 (

2

2

& slow varying approximation

(14)

Nonlinear Optics Lab . Hanyang Univ.

0 1 ) 1 (

2

 

dz q d

q

=>

qzq

0

is must be a complex ! =>

q

Assume,

q

0 is pure imaginary.

=> put,

qziz

0 ( : real)

z

0

At z = z0,

)}

0 ( exp{

2 ) exp(

) 0 (

0 2

z ip

z    kr

Beam radius at z=0, 0

2

0

)

1/2

( k

wz

: Beam Waist

2.5 Gaussian Beams in a Homogeneous Medium

In a homogeneous medium,

k

2

 0

Otherwise, field cannot be a form of beam.

(15)

Nonlinear Optics Lab . Hanyang Univ.

w

02

i

z q  

at arbitrary z,

q

=> 2 2

0 2

0 2

0 2

0

1 1

1

i w z R

z i z z

z z iz

z

q

 

 

 

 

: Complex beam radius

q i dz

dp  

=>

ip ( z )  ln[ 1  ( z / z

0

)

2

]

1/2

i tan

1

( z / z

0

)

=>

exp[ tan ( / )]

] ) / ( 1 [ )] 1 (

exp[

2 1/2 1 0

0

z z z i

z z

ip

 

(16)

Nonlinear Optics Lab . Hanyang Univ.

Wave field

 

 

 

 

 

 

 

 

 

) ( exp 2

) / ( tan [

) exp exp (

) ( )

, ,

(

2

0 1

2 2 0

0

z R i kr z

z kz

z i w

r z

w w E

z y x E

A

where,







 



 









2

0 2

0 2

2 0 2

0

2( ) 1 1

z w z

nw w z

z

w

 : Beam radius





 

 



 









2 0 2 2

0 1

1 )

( z

z z z

z nw z

R

 : Radius of curvature of the wave front

02

0

znw : Confocal parameter(2z0) or Rayleigh range

(17)

Nonlinear Optics Lab . Hanyang Univ.

Gaussian beam

z

0

w0

I

Gaussian profile

2w

0

/

0

2

/   nw

 

spread angle :

 0 z

Near field (~ plane wave)

Far field

(~ spherical wave)

z

(18)

Nonlinear Optics Lab . Hanyang Univ.

2.6 Fundamental Gaussian beam in a Lenslike Medium - ABCD law

q P i

k k q

q 







1 2 1 ' 2 0 '

For lenslike medium,

Introduce s as,

s s q

'

1   " 20 k sk s

k z k k

b k k z

k k

a k z s

k z b k

k z a k

z s

2 2

2 2

2 2

sin cos

) ( '

cos sin

) (

 

     

 

k k k k z zq k k k q k   k k k k zz

z q

/ cos

/ /

sin

/ sin

/ /

cos )

(

2 0

2 2

2 2

0 2

 

Table 2-1 (6) 

D Cq

B q Aq

 

1 1 2

(19)

Nonlinear Optics Lab . Hanyang Univ.

Matrix method (Ray optics)

y

i

y

o

i

o

optical elements

 

 

 

 

 

 

 

i i o

o

y

D C

B y A

C D

B

A : ray-transfer matrix

Transformation of the Gaussian beam – the ABCD law

(20)

Nonlinear Optics Lab . Hanyang Univ.

ABCD law for Gaussian beam

 

 

 

 

 

 

 

i i o

o

y

D C

B A

y

o i i

i i

o

D Cy

B Ay

y

i i

i i

o o

o

Cy D

B Ay

R y

 

 

) (

)

( ray optics q Gaussian optics

R

o

D Cy

B Ay

i i

i i

 

 /

/

D Cq

B q Aq

 

1 1 2

q

2

q

1

optical system

 

 

D C

B A

ABCD law for Gaussian beam : iz

0

z q  

02

0

znw

(21)

Nonlinear Optics Lab . Hanyang Univ.

example) Gaussian beam focusing

1

w

01

w

02

z

1

z

2

?

?



 

 



 



 

 

 

 



 

f z

f z z z z f z

z f

z D

C B A

/ 1

0

/ /

1

1 0 1 1 /

1

0 1

1 0 1

1 2 1 2 1 2

1 2

) / 1

( /

) / (

) / 1

(

1 1

2 1 2

1 1

2

2

q f z f

f z z z

z q

f q z

 

(22)

Nonlinear Optics Lab . Hanyang Univ.

2 01 2

2 1 2

01 2

02

1 1 1

1 

 

 

 

 

 

 

w f

f z w

w

) ) (

/ (

) (

) (

2 2 01 2

1

1 2

2

f

w f

z

f z f f

z

 

  

02

01 w

w 

- If a strong positive lens is used ; => 1

01

02

f

w

wf

2 1

2

01

/ ( z f )

w   

- If =>

z

2

f

=>

f f f d

w

w f 2

N

,

N

/

) 2 (

2

01

02

  

: f-number

; The smaller the f# of the lens, the smaller the beam waist at the focused spot.

Note) To satisfy this condition, the beam is expanded before being focused.

(23)

Nonlinear Optics Lab . Hanyang Univ.

2.7 A Gaussian Beam in Lens Waveguide

Matrix for sequence of thin lenses relating a ray in plane s+1 to the plane s=1 :

s

T T

T t

D C

B A

D C

B

A

 

 

 

sin

) 1 ( sin ) sin(

sin ) sin(

sin ) sin(

sin

) 1 ( sin ) sin(

 

 

s s

D D

s C C

s B B

s s

A A

T T T T

 





2 1

2

1

2 2

2 1 cos 1

f f d f

d f D d

A where,

 

 

) 1 ( sin )

sin(

) sin(

) sin(

) 1 ( sin )

sin(

1

1

1

  

 

s s

D q

s C

s B

q s

s q

s

A

Stability condition for the Gaussian beam :

2 1 2 1

1 0

2 1

 

 

 



 

 

f

d f

d

: Same as condition for stable-ray propagation

참조

관련 문서

Photons and electrons may appear to be quite different as described by classical physics, which defines photons as electromagnetic waves transporting energy and electrons

This 10x8 inch two-step full color reflection holographic stereogram of an Acura NSX was made using a single laser wavelength (647 nm), and a single high-resolution

- 조직에서 발생하는 편광성분의 변화를 추가적으로 감지 (콜라겐, 케라틴, 망막조직 등 많은 생체조직이 비등방성을 가지며, 비등방성에 의한 복굴절은 단백질 변성에

z The refractive index, and consequently the speed of light in an optical medium, does change with the light intensity.. z The principle of

Shifting in the time -domain leads to phase delay in the frequency –domain (no shift in frequency -domain), so FT amplitude is unaltered.... Properties of 1D FT

: temporal pulse spread (psec) per unit spectral width (nm) per

: temporal pulse spread (psec) per unit spectral width (nm) per unit length (km)... High-bit-rate

Æ two beams of light in the same region of a linear optical medium can have no effect on each other.. Æ Thus light

Absorption and scattering within the gain medium is quite small compared with the loss occurring at the mirrors of the laser.. Nonlinear Optics Lab.. Nonlinear Optics

A change from one orbit to another can occur if an external time-dependent force F ext acts on the quantum system...

If the acoustic beam divergence is greater than the optical

 Manipulations of polarization state and transmittance of light.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field.. 4) Saturated absorption

In certain optical materials containing magnetic atoms or ions, the two counter-rotating, circularly-polarized modes have different indices of refraction when an

(8.8-1) describe traveling-wave parametric interaction, it is still valid if we Think of propagation inside a cavity as a folded optical path...

If we assume n 1 -n 2 &lt;&lt;1 (reasonable in most fibers) a good approximation of the field components and mode condition can be obtained. Gloge, 1971)..  Cartesian

In such case, energy transfer occurs as a result of a spatial phase shift between the nonlinear index grating and the optical intensity distribution....

17.5 Optical Resonator with Phase Conjugate Reflectors (A.. Nonlinear Optics Lab.. Nonlinear Optics Lab.. Nonlinear Optics Lab. Hanyang Univ... 17.7 Dynamic Distortion

Nonlinear Optics Lab...

Conversely, if the optimal objective value of the phase I problem is 0, each artificial variable should be 0 and the values of the remaining variables form a feasible solution

Qualitative understanding of Second order nonlinear effect.. in

Laser action is precluded even if the upper level population N 2 is pumped to a very high value (nearly small signal value).. Suddenly we lower the loss to

A change from one orbit to another can occur if an external time-dependent force F ext acts on the quantum system...