• 검색 결과가 없습니다.

 1.  Influence of Reaction Temperature and Pressure in the Barium Ferrite Synthesis by Supercritical Water Crystallization     

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Influence of Reaction Temperature and Pressure in the Barium Ferrite Synthesis by Supercritical Water Crystallization      "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

     

   

*

  

* 

(2001 2 22 , 2001 5 30 )

Influence of Reaction Temperature and Pressure in the Barium Ferrite Synthesis by Supercritical Water Crystallization

Sung Chan Nam, Gun Joong Kim* and Sangdo Park

Korea Institute of Energy Research, Daejeon 305-600, Korea

*Department of Chemical Engineering, Inha University, Incheon 402-751, Korea (Received 22 February 2001; accepted 30 May 2001)

 

 Ba(NO3)2, Fe(NO3)3 9H2O KOH      

 !"# $%&  '()*+. , - ./ 01, 2345 67 89 : ;<= 

>? $%5@ ABC D  E*FG, H >? IJ@ 8KL E@ MFN OPQ+. RSO !"# $%

&  TU- <V 01, 2345 89 : >? IJ WX 2Y, 67 89 :Z@ [

>? IJ \% ]*+. :Z, TU- <VZ@ 2345 2367 ^ >? IJ_ '`K@ ab \

" cdKe+. fg, hi # 67 40 MPa, j(MP2) 45_ 200oC, 23kl 45@ 400oC, imno 100

!N Ke p ;<= >? qr@ stuB vwB cd)*FG, >?IJ@ 0.1-0.2µmN ^xy zw >?

{_ OPl*+.

Abstract−BaO 6Fe2O3 was produced by hydrothermal treatment of barium nitrite, ferric nitrite and potassium hydroxide under supercritical water conditions. The crystallinity and size of the barium hexaferrite particles were enhanced by increasing the reaction temperature and pressure in the batch system. In the continuous synthesis process, the particle size was decreased by increasing the reaction temperature but was not changed when the reaction pressure was increased. The reaction tempera- ture is a major operational variable for the control of particle size in this process. In particular, 0.1-0.2µm fine particles were synthesized at a pressure of 40 MPa, mixing point(MP2) temperature of 200oC, tubular reactor temperature of 400oC and residence time of 100 sec. The particle size distribution was very narrow.

Key words: Supercritical Water Crystallization, Hydrothermal Treatment, Barium Ferrite

E-mail: sdopark@kier.re.kr

1.  

(BaO 6Fe2O3)   , 

      !" #$%  "& '(

)*+ ,$-. ./, 01 23$), 45 6+ 7" 8 9 :"; <= '( >: ?@ AB CDE  F : G FH, IJK HDTV L# tapeM, NO@ =P >: QRST UV )*+ " "& WX . Y" "& WX Z[\) F-.

]^M, )*+ " "& WX #$" _`a b c d e

" ,// f), d e" gh ijk $, l"m K/ g

n+ ojk /- p, qr s-t" 89 uvw xyzT {

|/ z }  E  ~, 'a € q z x

‚!) F-[1-3]. )*+ ""&# ƒ } $ „ 3 „…zT l5 †3z ‡ ˆ } z p ‰Š!H F-.

„…zV 6+, ‹+, ŒŽ+, m‘ „’ z ‡ “Œ qr

' ”• e" –/ — \" 89, ”• e" ˜

 {|$ ™, ] e" gh ./ š-. l5 †3z ›œ, d e" gh |/ ”•ƒ } E  F- :GV FM,

ž" Œm‘ )6a #ŸQ k $, ¡ ¢ -Q ˆ£5 T3

 ¤¥k $" 89 ¦ D§¨ ©), n Jª p «1¬ £ nm‘  $" _$­ ²Ž³ #´ . µ^5ƒ mT ¶·

(2)

 39 4 2001 8

ˆ £5$­ g` / nm …¸Q¹ "º, „3

°»$) b m †3‘ ‡ |  œ/ ¼ ½¾¿ F-. ]

^M, ˆ} z ÀQ Œ Q; Á, ˆ £5T3 Âgw

Ã!" 89 bn  ÄV 9G ) F-.

žÅÆa } V | Çb T 7V Th+ƒ "ž

$) F, Th+ È& d e" fjÉ-. ÊË, žÅ Æ Ìa 6+Í ÎÏ ”J/ Ð `a+ ˆÀ01 ‘

‡ m‘¸Ñ Ò  #$Ó qÔE  F" 89 C1 qra T h+ Õ ' nm~ µme" dƒ Ö  F, 

#´ ‹+, X×Q; p qyÐ ` †3 : , †3

, d  ‡ d e" ghƒ ØÓ HE  F-. ./, X

×Q; Ù" 89 ڎw } „3 ,$­ bn ÛÜ 7|

 F, ÝÞ Œ"ƒ #$% Bß:àƒ ;†$Ó fE

 F-[4].

žÅÆ †3z /  ڎw } „3a d ÌM e" Ð K/ ¬V áâ!H F ™ã ' ä ڂ „3Ð _Z Ã!å, } qrV ˆ} z qr

 ' †3$æ-. œç Âgw Œ"ƒ #$­ žÅÆ qr

a Zx ŒÐ¬ Œ6+ ‡ ÎÏ ]5) ½è5 ‹+é p Ð

 ' b !  Ò  gê$æ), Âgw „3

a ÖV †Tƒ ëK ڎw } „3 €¸$­ 8 b c b m d, e"Í g p K$­ )ì$æ-.

2.   

2-1.    

QíV îï×(non-pulse) )Îðñ(PUS-11, GL SCIENCE Co.)ƒ 

#$­ Œ" ò ƒ #$Ó ó$" _` m K/ #`+

œ$) :à ôw + é“1 fV Qí¬ Ba(NO3)2(Junsei, 98.5%), Fe(NO3)3 9H2O(Showa, 98%), KOH(õn, 85%)ƒ ö6  #`

$­ #$æ,  #´V Fe(NO3)3 9H2O ‹+ƒ Âgw

›œ 0.05 M, ڎw ›œ 0.02 M )3$), Ba(NO3)2 ‡ KOH

$­ q$æ-[5].

Fe/Ba mole ratio = [Fe(NO3)3]/[Ba(NO3)2] (1)

Alkali mole ratio(R) = (2)

b c Q Õ× Jª/ ¢, rq"(60oC)a 24Q; rq

$­, XRD(Rigaku, CuKα radiation) g gê$æ, SEM(Philips, XL-30) gê ÷$­ b m  ‡ d e"ƒ ø3$æ-.

2-2. 

žÅƃ Œ WX $­ ƒ } $ Bß

Ã$" _/ Âgw Bß:à ‰ù+ƒ Fig. 1 +Q$æ-. Âg w Bß:à )Î Œ", ˆq(molten salt bath), ¡ q(water bath)

 eÓ ‚gE  F-.

2.57 cm, 7.6 cm òô #¨V 35 cm3-. Œ" òô 6+ƒ

ø3$" _$­ K- ˆ¸Kƒ #$æ), ÎÏV NOSHOK(Germany) ÎÏÆ ‡ pressure transducer(9368612, XPRO Co.)ƒ #, û <ü

$­ ø3$æ-.

Œ"ò ÎÏ 40 MPa $æ 8 ý6Q; '( 6+Ѓ

Fig. 2 +Q$æ-. Fig. 2a <Q Í U 400oCs ý6!

? Dx! Q;V 100ž”þ –ÿ ( ý6Ž+ƒ Mò)

F, ] ¢ |3/ 6+ƒ l$) F-. ]5), Œ ’

ÿ †Q¹" _` ¡ qa Œ"ƒ ’¡$æ 8 ¡ Q

;V 20g $æ-.

ˆq(molten salt bath) Œ" òô 6+ ‡ ÎÏ ’Žÿ  ýQ¹), ./ Œ6+ƒ |3$Ó l$" _$­ #! ¼,

 ‡ J Á 40 cm, 30 cm)  30 cm  ô 36 l-.

ˆ WX KNO3Í Ca(NO3)2 4H2Oƒ 1 : 1 éÜ }$­

#ŸQ , heater #¨V 5 kW), ˆq 6+ PID(/—, DX9) 6+ qÔ" qÔ$æ-.

/, Œ" ò 6+ ‡ ˆq ò 6+ƒ |3$Ó l$" _

$­ Œ"ƒ 250 rpm “Œ$æ, ¡  6 m(25oC)

 #$æ-. Œ" ‡ “Œ" Âgw :à ñ Å )3!H F, ˆq ‡ ¡ q lÎw B Ê ` $ ), Œ

 †c ¢ Œ"ƒ ˆqa òH ¡ q {V mover

ƒ #$­ { f{$Ó Æ!H F-.

2-3.  

BßB ᧠ڎw Bß:à ‰ù+ Fig. 3 Mòå-. B ß:à  #´ Zd _/ ðñÍ ˆ", Œ" ‡ b m [KOH]

3 Fe NO[ ( 3)3]+2 Ba NO[ ( 3)2]

( )

---

Fig. 1. Schematic diagram of the batch apparatus.

1. Reactor 4. T, P indicator

2. Molten salt bath 5. Shaker

3. Water bath 6. Mover

Fig. 2. Reactor temperature as a function of time at pressure of 44.01 MPa.

(3)

 Â :à ‚ !H F-.

ðñ  #´ 23/ Zd _$­ îï× )Îðñƒ #

$æ, =V 1/4" SUS 316 tubeÍ )Î# tube fitting(Swagelok)

#$æ-. ˆ #/ Õ×Í ö6 K" „" h¶

!H F nD m #$) F% ƒ ¤$" _` 4- channel degasser(Jour Research, X-ActTM)ƒ #$æ, ¼

ô@ Œ ŠbE  F ôŒm b  $æ-.

ˆ" ˆT Œ" <6 _$­ PID 6+ H"(Propor- tional Integral Differential, /—, DX9)ƒ :/ = ¸"(electric furnace, |H, 15 kW)Í IR heating chamber(E4-10(SS),  A$e, 8 kW)ƒ #$æ, ôg 6+ K- ˆ¸K

ø3$æ-.

ڎw } „3 €¸$" ¸ Bß6+ ‡ ÎÏ K/ 3/

<3 _` pressure transducerÍ ˆ¸K ‡ 6+ qÔ"(Model Hy- P100)ƒ signal generator(Model 6500, GLA Elettronica)ƒ #$­ zero

pointƒ  #$æ-. 8 ¸"ƒ ¤¥ M6 ˆ 6+ 

36+Í 6+I ±1oCò 3$æ-.

žÅÆ̃ l$) F Œ"a öŒ ÉÃc ¢ Œ

" ‚ b m Œ ’Ž$Ó Q¹" _$­ 2 =

ˆ“ "ƒ ô$­ Ž$Ó ¡ $æ-. Œ" ”5 ˆc ˆ

Í  #´ }Gaô@ ˆ“ " d‚s, Œ" Á

ƒ qÔ¶! X× Q; H$æ-. Œ"  =(vertical tube reactor) SUS316 tube(103 MPa, Á 600 cm, ò› 0.32 cm, ô 48.2 cm3) f!å-.

Œ"òa }´ X×Q;(τ)V w (3)T U "Qc-.

(3)

­"a, V: reactor volume, F: mass flow rate

­"a, ρ: density of the reaction mixture

Œ´V ¡ ¢, in-line filter(Swagelok, SS-8F-K4-05)ƒ ¤àa, d e" # b m ­T/ ¢, ŒÆ òô ÎÏ qÔ _ / $Î%Þ(back pressure regulator, Tescom, 26-1722-24)ƒ ÷$­ &

'´ Â$æ-. ¸X ڎw } „3 ÎÏV pressure trans- ducer(XPRO, 9368612)Í Heise gauge(CMM-010485)ƒ #$­ ø3

$æ-.

3. 

 } „3 #$­ Œ6+Í ÎÏ ‡ ½è5 ‹+

é Ð '( žÅÆ †3Œ Ò  ()<*-. ‚X1¬

BßV i) Fig. 1 Âgw :àƒ #$­ Œ6+, ÎÏT ½è5 ‹ +éƒ ÐQ  8, } c b m g ‡  Ѓ )ì$æ ), ii) Fig. 3 ڎw } „3 #$­ }G MP2a b c 1

°Æ ;b m žÅÆ Ì Œ6+Í ÎÏÐ ' }G MP3Í Œ"ò #´ ÷TQ  8,  c C 2°Æ † 3b m gT d Ì p )ì$­ 13 b qr +

$) $æ-. iii) Âgw :àƒ #/ B߆Tô@ žÅÆ † 3 Œ Œ,-. áâ$æ), ڎw } „3 #$­

}G MP3Í Œ"a 6+Í ÎÏÐ '( 2°Æ †3b m Œ,-. + é“$æ-.

3-1. 

|Œ1¬ ˆ} zM žÅÆ †3z #/ ”• q

„3a BaO 6Fe2O3ƒ b $ ŒV -ã w (4)Í UV 0

Œw "&c-.

Ba(OH)2+12Fe(OH)3 BaO 6Fe2O3+19H2O (4) ]^M, T / 001é Zd$ ›œ α-Fe2O3°|

b !, T¨  Zd$­k BaO 6Fe2O3 b ! é01 1 0 Œ ½¾¿ F-. ]5) |Œ1 ˆ} za

Fe/Ba ‹+é Õ¶ ' d e" $D¶ 2  F-. 

^/ &V [OH] 6T [Fe3+] ‡ [Ba2+] 6 Œ Ž+ "¬

$ ¼ °!, |Œ1¬ ˆ} „3a [OH] 6 ‹ + Õ¶ ' d e" fj, b m 0 Õ/- &T |à$) F-[6].

'a, ä ڂa žÅÆÌa Œ6+ Ð ' b c d Ò  ”à — K` +$" _` Fe/Ba ‹+éƒ 2

 ŒQ; 60g R3 4 )3$) Bß Ã$æ-. Œ

6+ƒ 300, 350, 400oC ÐQ4 ' } c d q ‡  Ì K/ gê†Tƒ Fig. 4Í 5 XRD 56T SEM É + Q$æ-. b c d Ò  ()< Fig. 4a < Í U

τ Vρ ---F

=

Fig. 3. Schematic diagram of the continuous synthesis apparatus.

(4)

 39 4 2001 8

§7 —Àa °|   b !åM, Fig. 5

SEM Éa ÄV 6+a b c d e" fã 2  F

M †3 V 8H ¼ M9-. ]5), 300oCa b c d j  :;$Ó ±«H ™*ã 2  F, j ü

¸/ †3°Æ +Ñ$ ™V ¼ b c-.

350oCa b c d ./ 300oCa b c d<- e"

Õ$æM j ¼ ./ ü¸/ †3 ±«) F ™, 400oC

a b c d+ †3‘ œ$ <$M ¸Œ1 6+ Õ

¶ ' d †3  Õ$ ¼ ¬E  Få-. ^/

` uê Ž+ =¾" 89 > †3 : ?$" 89

†3‘ œ/ dƒ Ö" _`a Ê ©V ŒQ; @x/ ¼

 °c-.

Fig. 6V Œ6+ƒ 400oC Fe/Ba ‹+é ‡ R3 2Í 4

|3$Ó )3$) Œ"ò ÎÏÐ ' b c d q  MA XRD 56-. Fig. 6a < Í U ŒQ; 60g

 $æ 8, ŒÎÏ 28.27 MPa a 231 °|

 b B ¬E  FåM, 22.06T 27.03 MPa

a JCPDS CD "&! ™V EB/ e MF ¬

E  Få-. ^/ l 3$Ó GH ™*þ Œ ;

b m øc-. ]5), Fig. 7V Fig. 6T IJ Œ6+ƒ

400oC $) ÎÏÐ ' b c d SEM

É +Q/ ¼-. ŒÎÏ Õ¶ ' d e" Õ

$) F), †3‘V !) Fã ¬E  Få, ÎÏ

28.27 MPaa d e"Í †3+ : 0û/ 

 d b !åã ¬E  Få-. ^/ ÎÏÐ K/ 

 d Ò Ð žÅÆ  m Ð ' > ž ÅÆ 7V l¸ÜT l{  ²Žnm K` H= 3+ #

+ . ÎÏ qÔ¶! eÓ ÐQL  F-. 'a, ^/

Ò Kô@  #´ò /M  #`+M nÆ I Fig. 4. XRD patterns of products at reaction time of 60 min with var-

ious reaction temperature(44.01 MPa, Fe/Ba ratio 2, R ratio 4).

Fig. 5. SEM micrographs of products at reaction time of 60 min with various reaction temperature.

Fig. 6. XRD patterns of products at reaction time of 60 min with var- ious pressure(400oC, Fe/Ba ratio 2, R ratio 4).

Fig. 7. SEM micrographs of barium ferrite at reaction time of 60 min with various pressure.

(5)

 / ŒŽ+ I 89¬ ¼ °c-[4, 11].

-ãV ½è5 ‹+é¬ R3 — K$­ b c gM  ‡

 )ì$" _$­ Bß6+ 400oC, ÎÏV 44.01 MPa(24 ml charge)a Bß Ã$æ-. Fig. 8 XRD gê†Tƒ ()< R

 b B ½  Få-. |Œ1 Fe(OH)3 pH 7

a …¸ NH, Ba(OH)2 13a …¸ Šb$Ó c -[7]. 'a, R3 0.5a  b ! ™V ¼V

 #´ R3 ÄV †T ¬$­ Ba(OH)2 …¸ Šb$

<$%, Fe(OH)3 Ba(OH)2Í Œ$ <$) hematite O

¸  NHPã ½  F-.

Sada p[8] †T $ R3 ÕE& d e" $D/

å), R3 Ä& d †3‘V B 2  Få, 

K/ B߆Tƒ Fig. 9 SEMÉ Mòå-.

ä Âgw :àƒ #/ ڂa Ataie p[9] Q9 Š"c BaO Fe2O3M Kiyama[10] BaO 4.5Fe2O3p ; b mV R

! ™*-. ^/ l ¸ ڂK Ã/ Âgw(autoclave)

 #/ ˆ} za 4-5oC/nib ý6!" 89 Œ"ò

 m‘¬ Fe(NO3)3 . Fe(OH)3 #´ = ý6Ž+ `

;b m α-Fe2O3Í UV 23/ m‘K ¸ c S 

m‘ »;1 ý6Q¹" 89 α-Fe2O3Í UV 23/ n

m b !" ¸ FeOOHÍ U 6T Œ  œ/ m

‘ ¸ c S T gM b !" 89¬ ¼

°c-.

3-2.  

Micro reactorƒ #/ Âgw :à Ãc Bß ÷$­ žÅÆ

 †3z #/ ˆ} zV " ˆ} z é` Wœ Ù V Œ Q; ƒ } E  Fã ¬$æ,

^/ †Tƒ ëK ڎw } „3 1#$­ Bß Ã$æ -. ڎw } „3 ›œ, m‘ ”5 Uéc ˆÍ O

} ` žÅÆ Ì ’$Ó ý6B ', " Âgw :à α-Fe2O3Í UV ôb m

 Šb E  FH ŒQ; ’$Ó °QL  F-[5, 11].

|Œ1¬ nm} a #´ ž" ‹+ — b m Ò  # — Zþ, Œ žÅÆÌa Œ6+Í Î Ï — -( qÔ Ð é` d e" ‡ gh+ --V

— ”W-. 'a, ä ڂa }G MP2a b c 1°Æ

g` b m }G MP3Í Œ"òa X×Q;(τ2) 100

ž )3Q¹), Œ6+ 300, 350, 400, 450oC, ¸X Æ

ÎÏV 35, 40, 45 MPa qÔ$a C 2°Æ öŒ b m Ö V d g ‡ Ì Ðƒ )ì$æ-.

}G MP2 6+ƒ 200oC, Œ" ÎÏ 40 MPa ]5) X×Q

; 100ž )3$), }G MP3Í Œ" 6+ƒ 300, 350,

400, 450oC ÐQ¹a } c b m q V ÂgwT IJ

 §7 —Àa BaO 6Fe2O3°| b !å-. ]^M, Fig. 10 Fig. 8. XRD patterns of products at reaction time of 60 min with vari-

ous alkali molar ratio(R)(400oC, 44.01 MPa, Fe/Ba ratio 2).

Fig. 9. SEM micrographs of products at reaction time of 60 min with various alkali molar ratio(R).

Fig. 10. SEM micrograph of the products obtained with various tem- perature at 40 MPa(Fe/Ba ratio 2, R ratio 4).

(6)

 39 4 2001 8

 SEM Éa < Í U 300oCa } c  

 ›œ Âgw :àƒ #/ Œ6+ Ð ' } c 

   300oC ¼T l/ ̃ ±) F ¼ ¬E

 Få, 350oCô@ d †3‘ GG !) F ¼ = ìE  Få-. b c d e" }G MP3Í Œ" 6+

400oCa b c d 0.1-0.2µm3+ fÓ } !å d

+ œ$æ-. ]^M, 450oC

6+ ý ` ( ŒŽ+ b !åX 0.1-0.2µm e"

”• -Q #` ‡ uê ÉÃ!" 89 °c-.

}G MP3Í Œ"a ˆÍ } $­ žÅÆ q r¬ 400oC +Ñ$, α-FeOOHÍ Ba(OH)2 0 †} ‡ ö Œ

 / °¨X b T3T °¨X inclusion / †3 : T

 ˆ} a<- K°ÿ e" 89 0 †} V ö Œ

V ¤ {Q |HMÓ !, #WÏ $D¶ ' #`+ $D

¶!, h+ ’ÿ Õ$Ó c-. 'a, žÅÆ †3

|/ Ç b T Th+ Õ & "ž $) F" 89 b

M, Œ6+ ¦î ý$Ó ! b c dK; Z[\+ ’

ÿ Õ$Ó !H ]ÿ¾ -Q #` u†3T3 Šb$Ó !H d gh+ šÓ MM & Šb/-. 'a, 1–/ Œ

6+ 3 } c d e"M gh+ — ”à ZxÐ

 c-.

-ã }G MP2a 6+ƒ 200oC, }G MP3a 6 +ƒ 400oC, Œ"ò X×Q;(τ2) 100ž Bßqr ) 3Q^ S ÎÏ 35, 40, 45 MPa ÐQ¹a žÅÆ Ìa ÎÏÐ b c d e"M d  H_/ — ”à

 =`a Rë$æ-.

ŒÎÏ ÕM $D / b m gÐ |HM ™V

Œ, Fig. 11a < Í U ÎÏ Õ¶ ' } c 

å-.

ŒÎÏ '( de" $D žÅÆ m5 01 Ò  Œ

ÎÏ Õ¶ ' [Ba2+]+[OH] [BaOH+] Œ #` +

{ ' [BaOH+] ‹+ Õ$) >, Ç 0 Õ$­  ¬

` [BaOH+] E23/ Fe(OH)3 …` ‡ n / öT3T † 3Œ /   b  #$Ó !H, f) |/

 É  ƒ Ö  F" 89¬ ¼ `êc-[4].

^/ žÅÆ †3 Œ,-. ,/ ¼V Âgw Œ"

òô = ý6Ž+Í Ñ5 ”5 Uéc ˆÍ O }

(MP3) ` žÅÆÌ ’$Ó ý6B ', Wœ ( ö

Œ ` b d Ì eÓ Ð$), ²Ž6 Œ Ž+

²Ž6‹+ 1I Ž+w 'a" 89 ÙV X×Q;+ d

  #$" 89-[12]. †T1 jÅÆô@ žÅƗÀ

 Œ ÉÃB ' b ŒŽ+ cd! Âg w :àa b ! ôb m Šb ‡ d e"ƒ CDE  Få-. 'a " Âgw :àƒ #/ ˆ} a 

 gM } $" _` 30g-48Q; Dx! ¼T é“E 8 ä ڂ ڎw } „3a 1°Æ g` b mT 2°Æ ö

Œ b m } Q; CD¶! 2gò Œ †!

ŒÒ  Mòå-.

ä ڂ †Ta }G MP2 Œ6+ 200oCæ 8, }G MP3Í Œ" ›œ 400oC, 40 MPaæ 8, 2°Æ †3b m

0.1-0.2µm  °| ÖHd ¬E  Få-.

]5), &u  gM "1 Ò qÔ ‡ + d

e"ƒ 0.1µm$ q$" _` Co2+Í Ti4+Í UV m‘ à Q   } Q¹ ڂƒ à  F, ¢ js áâ! ™V :à ôga Šb$ Œ,-. K/ ڂ+ Ž1

ÃE Æe-.

4. 

žÅÆ qra  b ŒV Wœ aÓ É Ãc- Âgw B߆Tô@ žÅÆ †3z #/ ڎw } „3+ °| BaO 6Fe2O3ƒ b E  Få-. ]5), b c d Ò  žÅÆ qr$a Œ6+Í ÎÏ ”J/ Ð

 'a eÓ fœg  Fã ¬$æ-.

Òÿ, žÅÆ †3z / ڎw } „3 ›œ Fe/Ba ‹+

éƒ 2 R3 4 )3/ S }GT Œ"ò Œ6+Í ÎÏ

 400oC, 40 MPaæ 8, C †3b m 0.1-0.2µm d

ghƒ ± œ/  °| ÖHP-.

ä Bß ÷$­ žÅÆ qra ( g` ‡ 0 Œ, ]5) ö Œ $­ 2g ò ÙV Œ Q; BaO 6Fe2O3

ƒ ڎ1 b E  Fã ', " Âgw q „3 é

$­ bn  eÓ QL  Fã ½  Få-.

 

1. Kojima, H.: Ferromagnetic Materials, 3, 189(1982).

2. Ram, Sh: J. Mag. Mag. Mat., 82, 129(1989).

3. Gerard, P., Lacroix, E., Marest, G., Blanchard, B., Roll, G. and Bechevet, B.: Solid State Commu., 71(1), 57(1989).

4. Arai, K. and Ajiri, T.: U. S. Patent, 5,433,878(1995).

5. Hakuta, Y., Adschiri T., Suzuki, T., Chida, T., Seino, K. and Arai K.:

J. Am. Ceram. Soc., 81(9), 2461(1998).

6. Seo, S. Y., Rho, S. W. and Park, S. D.: HWAHAK KONGHAK, 38, 75(2000).

Fig. 11. SEM micrograph of the products obtained with various pres- sure at 400oC(Fe/Ba ratio 2, R ratio 4).

(7)

7. Lee, K. H., Lee, B. H. and Yoon, K. J.: J. Korean Ceram. Soc., 22(5), 61(1985).

8. Sada, E., Kumazawa, H. and Cho, H.-M.: Ind. Eng. Chem. Res., 30, 1319(1991).

9. Ataie, A., Piramoon, M. R., Harries, I. R. and Ponton, C. B.: J. Mater.

Sci., 30, 5600(1995).

10. Kiyama M.: Bull. Chem. Soc. Jpn., 49(7), 1855(1976)

11. Nam, S. C., Park, S. D. and Kim, G. J.: J. Ind. Eng. Chem., 7(1), 38 (2001).

12. Arai, K.: Science and Technology of Supercritical Fluids, Japan, 1996

참조

관련 문서

The reaction mixture was cooled to room temperature and the precipitates were filtered, washed with cold ethyl ether, and then dried in air to afford the ester 6 (or 7)

Current Tokyo is rich in green compared to other metro cities. In some parts, the greenery has been contributed by the many inherited gardens from the Edo era to today which

Thus the TS in the DMA reaction has a looser structure than that in the aniline reaction, i.e., bond formation is substantially less but bond breaking is slightly greater in

The weakness of the MF process, which is the severe poisoning by small amounts of CO 2 , was able to be overcome from the experimental result that the reaction proceeded even

was heated in a boiling water bath to stop the reaction for 10 min, and then the amount of liberated glucose was measured by the glucose oxidase method. The inhibitory

The reaction mixture was heated at reflux until TLC showed the completion of reaction (4 hr). After cooling, the reaction was washed with water and extracted with

For the DSC data, the activation energies of carbonization reaction by using the Borchardt-Daniel method were 39.5-56.0 kJ/g-mol, and the reaction orders were

Also, it is thought that supercritical water crystal- lization process could be developed as a continuous process as the fact that barium hexaferrite could be