• 검색 결과가 없습니다.

 1.  Thermal Analysis Study on Kinetics and Heats of Carbonization Reaction for the Imported Coking Coals   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Thermal Analysis Study on Kinetics and Heats of Carbonization Reaction for the Imported Coking Coals    "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

        

*

 /

660-701    900

*(

545-090   ! 699 (2002" 8# 16$ %&, 2003" 4# 14$ '()

Thermal Analysis Study on Kinetics and Heats of Carbonization Reaction for the Imported Coking Coals

Young-Cheol Bak and Sung-Su Lee*

Department of Chemical Engineering/Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Korea

*Iron & Steel making Process team, RIST at Kwangyang, 699 Kumho-dong, Kwangyang 545-090, Korea (Received 16 August 2002; accepted 14 April 2003)

 

(TGA)  (DSC)     ,   kinetics 

.    !"# $% Clintwood(CW), & Goonyella(GY) % Tianchen(TH) '.

() *+ 100 mL/min ,-./ *01 1-10oC/min 2, 3./ 45./ 950oC67 895  . 

 TGA : ;.< $=> Kissinger, Freeman-Carroll, Chatterjee-Conrad= ?= ? , DSC : ;

.< Borchardt-Daniel= ? . TGA : ;="#< Chatterjee-Conrad= *@ AB,  CD E.F7< 61.2-65.9 kJ/g-mol, . G < 0.92-1.29 '. DSC   Borchardt-Daniel= H I  CDE.F7* 39.5-56.0 kJ/g-mol, < 0.98-1.05# JKL. 45./ 1,000oC67 . MN 

 CW 828 J/g, GY 823 J/g, TH 1,077 J/g"# JKL.

Abstract−Carbonization reactions were studied experimentally in thermogravimetric analyzer (TGA) and differential scan- ning calorimeter (DSC), and the reaction kinetics obtained by serveral analysis methods were compared. The sample coals were U.S.A. Clintwood (CW), Australia Goonyella (GY), and China Tianchen (TH) bituminous coal. About 10-15 mg sam- ples were nonisothermally heated from 30oC to 950oC in the flow of 100 mL/min He gas with various heating rates such as 1oC/min, 3oC/min, 5oC/min, and 10oC/min. TGA data were analyzed by using the differential methods of Kissinger, Free- man-Carroll, and Chatterjee-Conrad method, and integral method. DSC data were also analyzed by using the Borchardt-Daniel method. The Chatterjee-Conrad method was the most effective method for the analysis of TGA carbonization data in these experimental conditions. Activation energies of carbonization reaction were calculated as 61.2-65.9 kJ/g-mol, and the reaction orders were 0.92-1.29. For the DSC data, the activation energies of carbonization reaction by using the Borchardt-Daniel method were 39.5-56.0 kJ/g-mol, and the reaction orders were 0.98-1.05. The carbonization heat requirement from a room tem- perature to 1,000oC were 828 J/g(CW coal), 823 J/g(GY coal), and 1,077 J/g(TH coal).

Key words: Bituminous Coal, Carbonization, TGA, DSC, Carbonization Heat, Kinetics

1.  

     ,  

    ! !" #$ % &

'( )*+,-. . /0! 1234 /' 5 6  

7  89 1-3oC/min 8" : ;<="> ?&@

(A(carbonization reaction)) )*+&, 6 BC ) DE

6 oC/s )H flash heating 

 (devolatilization reaction)) )*+,-. IF JK 

 #$ LM  <"" N$,-. #$  O8 P QR O8S K8F ="R LM <"> ?& T

To whom correspondence should be addressed.

E-mail: ycbak@nongae.gsnu.ac.kr

(2)

 U2 VE-. W )T  , XYK Z U2 [ \] ^_`-.

  6 Va Xb) c dbKe )

f  g&$"  G #$ % &  h iH`-. #$ )   % &  jk) /l cm-.   kinetics> no  Vp

(Thermogravimetric Analyzer: TGA)> )!F % qh r[1,2] s

, )t  uv w #$ "  kinetics N$&_ ` -[3,4].

 zF     5{| pQ(Differential Scanning Calorimeter: DSC)> )!} F-[5]. DSC u  8

K no  6) !c s-. DSC> )!F  

 G2  V 5v ~_ X g+x )T  X>

} , IF € ‚ ƒ  8pKe ) „-…-. #

$ Mahajan ƒ[6] 5.6 MPa, JanikowskiR Stenberg[7] 2.07 MPa

 †DSC> )! ‡ˆ ‰-.  5v> !F DSC ‡ˆ

 ‡ˆ Š ‹ 1234> !F DSC‡ˆ  Œ8 w"

K!cm-[8-11]. ŽZK" M DSC   600oC )„

& ) F G2 6‘x, L’ 1,200oC„& )

"“ ”•c–— DSC> )!F (A LM<" ˜> ™z š

› s-.

œ qh ž /0! 1234 /'! ›Ÿ  ¡ ! DSC R TGA> )!F (A kineticsR (A  ‡ˆK h

 u F-.

2.  

2-1. TGA 

 (A % & w ) &¢ œ ‡ˆ

 Wen ƒ[12]) £¤ž    

/lF ¥g¦ (1) ’§ , ‡ˆ r>   PQ ƒ a¥¨ K!š › s"“ ‰-.

(1)

="H› <" © ¦ (2)R f Arrhenius¦ ª«`-.

(2)

#$ ¦ (1) (2) ¦ (3)) 7+&@, ¦ (3) Vp ¬•

­® hF (A ="Z­® ¯w Kw ƒ -°F 

w[3, 4] K!  ±Z> hš › s-.

(3)

 7 ‡ˆZ (A BC ¢ ² F r

³´$ 1234R q µ> ¶·F ¸ ² ="

Q¹` T)– º›F BC ² F ¸ »¹} F -. . ¼»½ X -¾ f) ›8 Q¹`-.

(4)

 Wo:  ¿  5vp, WH

2O:  ž ›p,

 Wc:  ž 1234 °, Wa :  ž À °,

 W : +Á g8 ºa 5v ~_

 (A LŠ Âp) WaR Wc> bF °) `-.

2-2. DSC 

DSC ‡ˆZ> !  kinetics> h w Borchardt- Danielsw, ASTM E-698w, ƒ<w ƒ) s-[13]. ASTMw G2  hF-. )T DSC ¬• =" Å›“ DSC Lz Æ3 ¸ ) Å& Æ3 ¸ x€ž <"" Å&– )> )! kinetics

> h w)-.

Borchardt-Danielsw ¥g =" Ç ‡ˆZ> ! kinetics

> h w)-. )T DSC ÃÄ  p ÈÉ F-

8 ="¦ (3)   ² F ¦ (5) ª5F T) -.

(5)

(6)

 : ÃÄ(W/g)

 HT: ÊC p(J/g)

 H: 5a t  ËK  (J/g)

¦ (6) 2” ÌÍ›> Î ·› z=a+bx+cy ¦ ª5 Ï

<"  ›R )Ç ËK  ÃÄ ¸ K! H› ¸

hš › s-.

3.  

3-1. 

 ›ŸÐv & K ± Ñ ¯ Clintwood, Ò| Goonyella, V Tianchen) ÏÏ •8cm-. W OÓZR ÐÔZ Table 1 f-.  ASTM A Õ Goonyella

 8Ô(dmmf basis) 73.5%, BC(dmmf basis) 26.5% Va BC ¡(medium volatile bituminous) A`-. Tianchen

8Ô(dmmf basis) 61.3%, BC(dmmf basis) 38.7%, C p(mmf basis) 8,259 kcal/kg BC ¡ A(high volatile A bituminous)

Ac Clintwood 8Ô(dmmf basis) 65%, BC(dmmf basis) 35%, C p(mmf basis) 8,540 kcal/kg  5 BC ¡

dX

---dt =k 1 X( – )n

k A –E

RT---

 

  exp

=

dX

---dt A 1 X( – )n –E RT---

 

 

= exp

X Wo–WH2O–W Wo WH

2O

– –Wc–Wa ---

=

1 HT ---dH

---dt k HT–H HT

--- n A (–E RT⁄ ) HT–H HT ---n

= = exp

dH ---dt

 

 

ln AHT

HTn ---

ln E

R----1

T--- n+ ln(HT–H) –

=

dH ---dt

Table 1. Chemical analysis of sample coals Coal name Abbrev. Calorific value

(kcal/kg)

Proximate analysis (%) Ultimate analysis (dmmf basis, %)

H2O ash V.M. F.C. V.M.dmmf C H O N S

Tianchen TH 7,567 2.03 8.38 34.64 54.95 38.67 85.13 5.13 7.56 1.51 0.67

Clintwood CW 7,904 1.32 7.44 31.93 59.31 35.0 86.64 5.07 5.90 1.56 0.84

Goonyella GY 7,852 1.31 8.70 23.84 66.15 26.49 89.14 4.80 3.62 1.92 0.52

(3)

A(high volatile A bituminous) Acm-.

3-2.   

‡ˆ !` Vp£¤ TA  TGA-2050)@ 5{| pQ

 TA  SDT 2960)-.   º" He !‰

@ 4 ž ¯p › /§>  ~› Ö¹×Ø trap PZ‰

, ¯p ¹Ô supelpure oxygen trap ! /§‰-.

TGA‡ˆ  5v Ù 15 mg 5v Ú5 ÛÑÜ,  ž

 © O >  e He Ý  8/` He 4

> 15a p Þьß-. )Ç He  balance sensor ­ 10

mL/min, S ­ 90 mL/min ?= ?Ÿcm-. 5v l8

XR   Ý àxÕ ¯ r8` < =" #$ 950oC

„& ȃ< <‰-. iÈ ‡ˆ r8` ŸG \]) á

 . ™¹ âÂ) á 120 mesh(0.117 mm)) ŸG &

5v> ! =" 1oC/min, 3oC/min, 5oC/min W 10oC/min

 ;<="> X5ãÕ ‡ˆ‰-. DSC‡ˆ ŸG 0.1 mm)

 5v Ù 10 mg 5v Ú5 ÛÑÜ 5v äå æ reference Ú5 ç Ú5 è,  ž © O >  e He

Ý  8/` He 4> 100 mL/min ?= 15a p Þьß-. 5v l8XR   Ý àxÕ ;< ="

10oC/min 1,000oC„& ȃ< <‰-. ‡ˆ) àé Š > & ê He 4> Q= ÞÕ ë 1234 s 5 vÚ5> H<„& ìÏ 5í-. H< -5 1234> ="

10oC/min 1,000oC„& 5ãÕ p X> î8‰-. ‡ˆ

) àé ï >  H<„& ìÏ Š, 1234> /§ ç 5vÚ5R 5v äå ! =" 10oC/min 1,000oC„&

 ²• ð‘-.

4. 

4-1. TGA 

4-1-1. =" #ñ (A=" X

òK œ  (A 3_ è ­ xó › s-. . 250oC„& › ôC «H 300oC ­®  ž BC

 «H õ › sö, œ ‡ˆ  BC  «H¢

 Ñu F-. Fig. 1 350-550oC ) BC  g +x ha  TH ~_ X> x€žm-.

)t ~_ XZ> 5a xËÕ (A =" h&ö, CW

 (A 350-550oCR 600-900oC ) -ñ =" ÷ø

> x€ž T ù › s-. GY TH G2" CW ? F ÷ø 350-550oC  ž­ BC  ú=F BC) g +x 600-900oC ) 2{Ke  «H) ¨ x€û-.

=" ô š›“ =" ô ‰-. )R f) =

" ô š›“  =" ô  T =" ô š›“

) ÿÔc Ç)-. W%x AnthonyR Howard[14] 180-1,000 oC/s

X á T r&m-. . 2{ ) g+xö DEF 8

5aŒ-  5a Î G2 =" \]) á T

 ocm-.

4-1-2. (A Z 

="¦ w ƒ<w ȃ<w xó › s-. ƒ<w

g8F 'Ó<"  ¿Z> hš › s+  qÔ, 4X ƒ K!c&¢, 6 ‡ˆ › DE (A G 2 g8F <"„&  ýl 5v ž ) g+x– ȃ

<w) gK K!`-. ȃ<w" ="> ! ¯w

 ¼»½ ! Kw A š › s-[3, 4].

4-1-2-1. ¯w

â Kissinger[15]w =" ô #$ Lz =">

& <" ô  T )! X &> h w) -. ¦ (3) Lz=" x€x <"(Tm)   0e ±

 Ñ ="(β) ¶·` ¦ (7) f ÷ø `-.

(7)

%  5v z ln(β/ ) z 1/Tm "5Õ Fig. 3 f,

 ¸ 7m-.

Feeman-Carroll[16]w ¦ (3) ° z› , 5a z

(8) β

Tm2 ---

ln RA

---E E RTm --- ln –

=

Tm2

dX ---dt

 

 

∆ln 1 X–

( )

∆ln

--- n E R---- 1

T---

∆ 1 X–

( )

∆ln --- –

=

Fig. 1. Weight conversion of Tianchen coal in the TGA.

Fig. 2. The effect of heating rate on the conversion rate of carboniza- tion reaction for Clintwood coal.

(4)

š › s-. Fig. 4 =" 1oC/ming Ç GY zF r> x

¸ 79.1 kJ/g-mol), {› 0.92-1.25 x€û, CW G2

( ¸ 84.7 kJ/g-mol)Œ- -Ô  ¸ x€û-.

& Chatterjee-Conrad[17]w ) 1{$ 8 ln[(

dX/dt)/(1-X)]z 1/T> "5  ±Z> h T)-. TH

z Ï ="  ‡ˆZ> Fig. 5R f) x€žm, Q¹F

70.0 kJ/g-mol( ¸ 64.6 kJ/g-mol), CW 59.8-71.9 kJ/g-mol(

¸ 65.9 kJ/g-mol) ¸ -.

4-1-2-2. Kw

Kw G2 (A="¦ K 7+& 5a ¼»½

w) sx,   Kasaoka ƒ[18]) /lF w !‰-.

(A 1{¦ a|Õ g8F ="> Î ȃ< ( A¦ ¦ (9)R f) x€ › s-.

(9)

 ¼»½ ¦ (10) f) 3” H›> Î &›·› ÷ø

x€ › s- 8F-.

(10)

¦ (10) ln[−ln(1−X)]=ln a+b ln(T-c) ÷ø ÷c– 3” H›

oC/

min G2 Fig. 6  ‡ˆZR  gZ T õ › s-.

¦ (9), (10) ="H› -¾ f) ª5`-.

k=βab(T-c)(b-1) (11)

#$  hF ="H›> Arrhenius ÷ø ="H›¦ (2) K! X&R ç"eu> hš › s-.

Table 5 %  (A ‡ˆZ> !F Q¹ r> x€žm dX

---dt βdX

---dT k 1 X( – )

= =

X=1–exp[–a T c( – )b] Fig. 3. Application of Kissinger’s method for the TGA data of various

coals.

Table 2. Kinetic values by Kissinger's method for various coals Coal name Activation energy

(kJ/g-mol)

Frequency factor (min−1)

Correlation coefficient

TH 260.0 2.62×1018 0.998

GY 290.0 3.52×1019 0.998

CW 279.0 1.33×1019 0.998

Fig. 4. Application of Freeman-Carroll’s method for the TGA data of Goonyella coal.

Fig. 5. Application of Chatterjee-Conrad’s method for the TGA data of Tianchen coal.

Table 4. Kinetic values of tianchen coal by Chatterjee-Conard’s method Heating rate

(oC/min)

Activation energy (kJ/g-mol)

Frequency factor (min−1)

Correlation coefficient

1 68.7 5.97×104 0.986

3 64.7 7.58×104 0.969

5 59.1 3.30×104 0.976

10 53.7 2.29×104 0.973

Table 3. Kinetic values of Goonyella coal by Freeman-Carroll's method Heating rate

(oC/min)

Activation energy (kJ/g-mol)

Order of reaction

Correlation coefficient

1 72.9 1.25 0.866

3 72.3 0.99 0.899

5 89.5 1.26 0.915

10 97.0 1.06 0.928

(5)

¸) h& T ù › s-. )T  ¯w G2 300-550oC   ha ² kinetics¸) 7+x, Kw G 2 300-550oC ha¢ ³´$ 600-900oC„& ha kinetics ¸"

¶· 7+, ¸)– -Ô  ¸) h, T)-.

4-2. DSC 

4-2-1. (A 

 /lcm-[8-11]. W V Tromp ƒ[11]) /lF w) bK )-. )T  5v> ! DSC ¬• 7 Š -5 ‹©F 1234> ! DSC ‡ˆ  )T TGA uvR · K!

 ²• ð w)-.

)T ¦ x€žÕ ¦ (12)R f-.

(12)

Vc : corrected base line Vb : base line Vcoke: DSC of coke Mcoal: instant coal weight Mcoke: instant coke weight

)T CW K!Õ Fig. 7 f-.  LMKe ÃÄ

c) ÃÄ Œ8F T)  (A   ÃÄ) `-.

Fig. 8 oC„&

ÃÄ) ¯¯- 350oC­®  ) ú=¨ ,c T õ

› s, 700oC L  ) x€x T õ › s-. )T

 Fig. 2 ~_ ÿp ¬•  500oC L (A ="> x

€ž T ÈÝ`-. TH GY G2" 400oC ­® 

) g+x 700oC L   x€žm-. Lzp

Vc Vb (Vcoke–Vb) Mcoal Mcoke ---

 

 

+

=

Fig. 6. Application of integral method for the TGA data of Goonyella coal.

Table 5. Rate constant of the carbonization reaction obtained by nonisothermal integral method Coal name Heating rate

(oC/min)

Activation energy (kJ/g-mol)

Frequency factor (min−1)

x=1−exp[−a(T−c)b]

a b c(K)

TH 1 31.2 0.678 1.37×10−45 13.82 −879.0

3 22.8 0.325 2.39×10−16 5.25 −25.9

5 25.5 0.664 8.60×10−20 6.29 −99.5

10 23.2 1.114 1.60×10−16 5.30 −15.2

GY 1 35.5 1.781 1.34×10−153 41.71 −3,756.0

3 27.5 0.727 2.58×10−26 8.27 −313.4

5 27.4 1.199 1.85×10−22 7.15 −163.1

10 30.0 4.459 4.43×10−34 10.57 −521.5

CW 1 30.7 0.435 1.26×10−20 6.70 −17.9

3 23.0 0.252 1.51×10−13 4.37 123.6

5 23.2 0.440 6.27×10−14 4.49 110.4

10 24.3 1.182 1.14×10−15 5.06 52.6

Fig. 7. DSC curve of coal, coke, and base line for Clintwood coal.

Fig. 8. Corrected heat flow for Clintwood coal.

(6)

X=" x€x <"R Lz pX=" x€x <" {) x T p X G2 ) &¢ <" X G2 <

" ¼N âÂ) s Ç Po`-.

¼K g8F <"  5v ~_ ² ºa ÃÄ ¿ 5vp ² x€ž G2R (A <"  ‹© 5vp

ö  R f) BC) 6) ·?` Ðv G2 ) è ¸ ) {) jè 3_ x€û-.

žm-.  CW G2 H< 1,000oC„& (A DEF

1,077 J/g 5v jè  )m )> 8Õ Table 6 f-.

Hefta ƒ[9] ¯  !F 600oC„&  DSC ‡ˆ

70-110 J/g C ) g+x T -. Mahajan ƒ[6] 

 ~q„& % & ƒú  !F 580oC„&

PDSC(1.6 MPa)‡ˆ Ô ·p 75%(d.a.f. ²)„&  ²  ¡ G2 C ) g+x&¢ W )H  ¡ ~q G 2   x€žm-. C  G2 Lz 140 J/g)m, 

 G2 Lz 280 J/g)m-. Lospez-Peinado ƒ[10]  ­

® ~q„& 17MA  !F 780oC„& DSC ‡ˆ

¼K (A    )m, 200-500oC ha :

ƒú  G2 g­ C ) x€û-. ¼K  p

450-550 J/g(d.a.f., ¿ 5vp ²) x€žm-. Yun Suuberg[8]

¯  ¡ !F 500oC„& ‡ˆ 9.7-11.3 J/g  

 x€žm-.

#$ œ ‡ˆ r> ŒÕ ©  Z È -Ô ! ›Z>

Î T ù › s-. )T œ ‡ˆ G2 LM (A<" 1,000oC

 ! T) W )? Ï`-.

4-2-2. Kinetics 

 ¦ (5) {›> 1{ 8š G2, dH/dt=k(HT−H) ÷ø

 c+ ÊC p 5a t  ËK C p ‡ˆZR ºa ÃÄ

! x€žÕ Fig. 11 f-.  f BC  ¡ A Q e TH, CW G2  ? _ x€û-. ¦ (6) !

X&R {›> hŒÕ Table 7 f) x€û-.

4-3.  

TGA

-. W%x Fig. 2  Lz =" x€x # <" a$)

~ %– &{ Cš Ô& '-.

Table 2

x€x -ñ w È F {› ! ¸) x€û-.

I Fig. 4  Freeman-Carrollw K!Õ {›> · h

#ñ \]) 3_ x€û-. #$ ¼K correlation coefficient

¸" 0.767-0.928 -Ô :_ x€û-. Chatterjee-Conradw G2  Fig. 9. Corrected heat flow based to unit weight for Clintwood coal.

Fig. 10. Accumulated carbonization heat for Clintwood coal.

Table 6. Accumulated carbonization heat from 30oC to 1,000oC Coal name Accumulated carbonization heat (J/g)

Initial weight-based Instant weight-based

CW 828 1,062

GY 823 987

TH 1,077 1,424

Fig. 11. Arrhenius plot for the DSC data of various coals.

Table 7. Kinetic values of sample coals by Borchardt-Daniels’s method Coal

name

Activation energy (kJ/g-mol)

Order of reaction

Correlation coefficient

TH 56.0 1.05 0.980

GY 39.5 0.98 0.975

CW 50.4 1.03 0.967

(7)

) 1{e G2 8 ‡ˆZ w) Íc@ ) 1{

 {› 0.92-1.29¸ x€ž, Wen ƒ[12] G2" 1{

x€û– (A=" ‡ˆZ Chatterjee-Conradw K!5)

› s-. X& 61.2-65.9 kJ/g-mol 7+* (A w

 Ž ?+‰-. Kw G2 300-900oC ha 7+, ¸ )– X& 25.3-30.1 kJ/g-mol -Ô : ¸) h

-. ;<=" #$ " kinetics ¸t) {) x€ûx g8F G ] Œ)& ê³ ä,F )?> Poš › á Q=Ke Ñ Â )-.

DSC ‡ˆ G2   kinetics> · hš › s- Ž#

& sx,  Q¹ ²• P8ö -Ô &{> ? C š › s- ¥#" s-. 300-900oC ha 7+, DSC uv

56.0 kJ/g-mol TGA ‡ˆZ Kw È -Ô [ ¸ x€

û-. Kissingerw ? F ASTM E-698w G2  (A DSC ‡

oC/min =" X #

$  LzZ ¸) ä,_ h-c& ê³ K!) +Ñ.-.

Bak

‡ˆ r 20.0-129.2 kJ/g-mol ˜ X& ¸ h‰-.

Fig. 12

&> ÈÝ compensation effect> "5‰-. ) W/  ( ) •÷ X0 ù › s-.

5.  

(AZ> ‰-. TGA ‡ˆ  450-550oC ha Lz (A=" x€ûx, DSC ‡ˆ  650-700oC ha L

" (A ±Z N$-. Chatterjee-Conradw)  (A

 w Ž °Ò‰@, X& TH 61.2 kJ/g-mol, GY 64.6 kJ/g-mol, CW 65.9kJ/g-mol h-. p zF

{› TH 0.92-1.25, GY 0.99-1.26, CW 0.98-1.29 x€

û-. < DSC ‡ˆ ‹© 1234> )!F ²Z Œ8w K

! (A   kinetics> · hš › sm-. H<

1,000oC„&  (A DEF p TH 1,077J/g, GY 823J/g, CW 828 J/g x€û-. DSC   )!F Borchardt-Danielw

 G2 (A X& TH 56.0 kJ/g-mol, GY 39.5 kJ/

g-mol, CW 50.4 kJ/g-mol x€û-. {› 0.98-1.05 ¸

-.



1. Bak, Y. C. and Son, J. E., “Nonisothermal Coal Pyrolysis and Char- CO2 Gasification Reactivity,” HWAHAK KONGHAK, 25(6), 546-554(1987).

2. Bak, Y. C., Yang, H. S. and Son, J. E., “Coal Pyrolysis and Isother- mal Char-CO2 Gasification Reactivity,” Energy R&D, 13(1), 85-103 (1991).

3. Lee, G. L. and Bak, Y. C., “Calcination and Sulfation Reactivity of Oyster Shell for Dry, High-Temperature Desulfurization,” HWAHAK KONGHAK, 38(4), 541-549(2000).

4. Bak, Y. C., Yang, H. S. and Son, J. E., “Isothermal Coal Char Com- bustion and Char-Steam Gasification Reactivity,” HWAHAK KONG- HAK, 29(3), 323-335(1991).

5. Elving, P. J. and Kolthoff, I. M., Thermal Methods of Analysis, 2nd ed., John Wiley & Sons, N.Y(1974).

6. Mahajan, O. P., Tomita, A. and Walker, P. L. Jr., “Differential Scan- ning Calorimetry Studies on Coal. 1.Pyrolysis in an Inert Atmo- sphere,” Fuel, 55, 63-69(1976).

7. Janikowski, S. and Stenberg, V. I., “Thermal Analysis of Coals Using Differential Scanning Calorimetry and Thermogravimetry,” Fuel, 68, 95- 99(1989).

8. Yun, Y. and Suuberg, E. M., “New Application of Differential Scan- ning Calorimetry and Solvent Swelling for Studies of Coal Struc- ture: Prepyrolysis Structural Relaxation,” Fuel, 72, 1245-1254(1993).

9. Hefta, R. S., Schobert, H. H. and Kube, W. R., “Calorimetric Pyrol- ysis of a North Dakota Lignite,” Fuel, 65, 1196-1202(1986).

10. Lopez-Peinado, A. J., Tromp, P. J. J. and Moulijn, J. A., “Quantitative Heat Effects Associated with Pyrolysis of Coals, Ranging from Anthracite to Lignite,” Fuel, 68, 999-1004(1989).

11. Tromp, P. J. J., Kapteijn, F. and Moulijn, J. A., “Characterization of Coal Pyrolysis by Means of Differential Scanning Calorimetry. 1.

Quantitative Heat Effects in an Inert Atmosphere,” Fuel Processing Technology, 15, 45-57(1987).

12. Wen, C. Y., Bailie, R. C., Lin, C. Y. and O’Brien, W. S., “Coal Gas- ification,” Adv. in Chemistry Series 131, Ame. Chem. Socie., Wash- ington, 9(1974).

13. TA Instruments, A Review of DSC Kinetics Methods, TA-073, in Thermal Analysis Technical Literature(1994).

14. Anthony, D. B. and Howard, J. B., “Coal Devolatilization and Hydrogas- ification,” AIChE J., 22, 625-656(1976).

15. Kissinger, H. E., “Reaction Kinetics in Differential Thermal Analy- sis,” Anal. Chem., 21, 1702-1706(1987).

16. Freeman, E. S. and Carroll, B., “The application of Thermoanalytical Techniques to Reaction Kinetics. The Thermogravimetric Evalua- tion of the Kinetics of the Decomposition of Calcium Oxalate Mono- hydrate,” J. Phys. Chem., 62, 394-397(1958).

17. Chatterjee, P. K. and Conrad, C. M., “Thermogravimetric Analysis of Cellulose,” J. Polym. Sci., Part A-1, 6, 3217-3233(1968).

18. Kasaoka, S., Sakata, Y. and Tong, C., “Kinetic Evaluation of the Reactivity of Various Coal Char for Gasification with Carbon Diox- ide in Comparision with Steam,” Int. Chem. Eng., 25, 160-169(1985).

Fig. 12. Compensation effect for various coals.

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

Heats of reaction for the fragmentations and proton transfer reactions were calculated using the heats of formations of ions, neutral molecules, and radicals.. The

After the reaction mixture was stirred for 3 h at room temperature, the Glpc analysis of the reaction mixture on column HP-FFAP showed the corresponding saturated alco­. hol

In addition, SERS spectroscopy has been utilized to study the surface chemical reaction induced by the surface and/or the laser beam because the reaction provides

With alkyloxiranes the rate of product formation was slow under same reaction conditions and the reaction was performed using 5 mol% of copper triflate for longer reaction times

The catalytic activities of NiSO 4 /ZrO 2 for the reaction of ethylene dimerization were examined and the results are shown as a function of NiSO 4 content in Figure

Cyclic diene을 dienophile과 Diels-Alder 반응시키면 bicyclic 형태의 생성물이 얻어지며, dienophile의 electron withdrawing 치환기는 주로 endo에 위치한다.. The

클라우드 매니지드 DDI는 기업이 클라우드를 통해 모든 위치의 통합 DDI 서비스를 중앙 집중식으로 관리하여 지사에 향상된 성능을 제공하고, 클라우드 기반 애플리케이션에 대 한 보다