• 검색 결과가 없습니다.

 1.  A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas   "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

     

*

  

*  

(2000 9 26 , 2000 12 29 )

A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas

Jang-sik Shin, Heon Jung* and Jong-Dae Lee

Dept. of Chem. Eng., Chungbuk National University, Cheongju 360-763, Korea

*Energy Conversion Research Team, Korea Institute of Energy Research, Taejon 305-343, Korea (Received 26 September 2000; accepted 29 December 2000)

 

$%    Methyl Formate(MF) &'( ) LPMEOH  *+ ,- . /  0 12 34  056 789:. /   ;<=) /  >? @ ABC DEF G# 'DE2 H MF &'(  I7J K,- LMN:. OJ MF &'(  50% %  ! ) 3.7%/  P QR DE6 SF T, LPMEOH# U 30%  ! ) H2/CO P 1 2H 24%/ 

% PQR DE6 S MF &'(  I6 S9:. OJ  012HE 150-180oC VEW 60X 

XY,- PZ VRJ  01 [F MF &'(  250oC\] VE6 [F LPMEOH S: I 7J K,- LMN:. MF &'(  U^,- _`a CO22 bJ cd e%E \ fghi 0.5% CO26 jk

F 2HE  a8hiH MF &'(   $%  2 J K,- lmhn:.

Abstract−Two liquid-phase methanol synthesis processes, the “Methyl Formate Intermediate” process(MF process) and the LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process.

The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF pro- cess is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small amounts of CO2, was able to be overcome from the experimental result that the reaction proceeded even with the syngas with 0.5% CO2. Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syn- gas is to be used for methanol synthesis.

Key words: Methanol Synthesis, Methyl Formate, Liquid-Phase, Coal-Derived Syngas, LPMEOH

E-mail: jangsiks@hanmail.net

1.  

   100%     !" #$

%& ' ( )*. +,- ./0 +, 12 3 4  5"   ' ( )*.

467/8 9:; <=>? @A B CDE F GH I JB> KJB> L  )6M, 4N O, P67 Q1R0

 (=7 SA> T U1 VW B CDE &X0 IJB

>  YZ[ $35 \]  &U )*. ^_ KJB

> 4N `> 0a Fischer-Tropsch(FT) ^b c4d eU^

bN f B CDE F GH67, *g" &h ijk FT^b l0a c4d eU^b mn o ,p )*. q" c4d

 IJ CD7 rs t0 uj, 2vwxyz, MTBE {  D7 =lk )6M, |}~s CD (= &X D7 /€k

 ‚ƒ „" (! …†k )*.

 c4d ‡C` (ˆ‰Š‹ " eU`(]j>4=

(= Œe)E s0a ICIr Lurgir Ž-j>C ‘+\

(2)

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001 ’ ‰\ ^b“A67 &Xk )6M, ”•[ ij 0.46-0.5$A

*(‡C` – $0.5-1/million BTU‰—)[1]. ‡C` (

ˆ‰Š‹ R ij? eU` XU H2/CO 3-7˜x lR 4 `> R iU? 4` XU H2/CO 2-0.57 \[

" ~ )*. ICIr Lurgir “A H2/CO l /1 10

˜ 4`E IJ rs0™_ (= XUN o (U` ^b

% CO2& “AN šR› 0œ7 &U ž*. Ÿ  ~¡

¢‰£˜ IGCC( 4`>¤e¢) C0a 4`E ]

¥ <" c4d7 90 ¦9 ` 8§ ’ C=0 G

¨N s0_ &U ‚\ …\?*.  ¡$67 CŽk

) c4d eU^b ©U eU` ]¥9ª o «*.

¬­® Haldor Topsoer ’ Š¢? “A Trickle bed ©(

" ^b‰E rs0a eU` ]¥9ª 92% , scale-up

 hydrodaynamics { ¯& °2k ), 9ªN o‰ ± 0a eU` ²N š ^b²  ³p )’ ´ª U * ' ( )*[2, 3].

Brookhaven National Laboratory ’ NaH/RONa/M(OAc)2 ‘+E r s0µ Š¢? “A[4, 5] ‰ heterogeneous ‘+ ¶ ‘+

 Triglyme%  s+ ·y ¸ B\ ^b*.  ^b ¹ O˜ 80-100oC ^b O 95%\ c4d mnE _’

90%\ eU` ]¥9ªN [6], ‘+˜ nickel º»$

˜ ¼UN ½ nickel carbonylN ij0a X¾\ ¿E ‰Àa›

"*. q" eU` 2Á? ¦- j>4= \[y ÂÃ" ‘ + ©U\ eU` ’ j>4= (ˆ‰ & =!k l s “A \¾> ,Ä!˜67 …\?*[7].

B\ c4d eU^b(Liquid-Phase Methanol synthesis, LPMEOH)

Chem systemsr ’ Š¢kÅ*[8].  “A ICI“A ’ rsk

‘+  lÆ" Ž/j>C ‘+E mineral oil%  B\

Ç >0a eU` B\N È%Á67’ ^b ¢i0 ^b Q ´%$67 1jk eU` ]¥9ªN o] ( ) “ A*. 1981É/8 ¦ U |Ê67 \s>E 0 ) 6M,  Air Productsr Eastman Kodakr 260 Ë/] ijÌÍ 7 demoÎ ÏÐlE Eastmanr Kingsport ÑÐN ­º ÏW

)*.  “A ICI“A% lÆ" XÑ lÒ$ o O ’ Wkœ7 QÓÔ$ ÕÖ9ª  B\ ’ Wk ‹¶

²  ³p )*.

Methyl Formate(MF) K “A B\ ’ methyl formateE K

7 0a eU`7/8 c4dN ij0 GH67 ×Øٟ ’

SkÅ*[9-11]. B\ ’ Wk ^bO lÒ$ ’ ]¥

9ª 90% Úµ X¾ t0M,  " o 9ª7 ˜R ‹

= Á? ÛÜ eU`E s' ( ) ,p )*. Ÿ  0.1%

\ % j>4= R ×¼kœ7 Ý " ×¼N ¹Ã' ( ) ‘+ Š¢ t0_ 4` $stU o*.

Þ’ ß CŽ ’ LPMEOH “A% MF K “A 4

` $s tU o* à³k, L “AN 4` ©U á

 ^bXÑ ’ lÒÁ67’ 4`s c4d eU “A $eU N Xr0â*.

2. 

ãÏ,º Ç >? ‘+ äž? P Ò^¨ ^b‰ ‹-

²(MFC, Model 5850, Brooks)7 H2/CO/CO2{ lª å -

Xæ? Ír 4` ¿çk, ^b‰E È%" ¦^b ` con- denser å ÓP5 XA‰(BPR, Tescom)E ÈR `¦8E f Yè kµ ŽUk )*(Fig. 1). B\ ^biU˜ c4d { condenser bék ¿‰$67 êë0a `®7­ìŸíî(GC; HP5890, Porapak Q, Carbosieve S column, TCD) å ‹-1 ‰(Mass Spectroscopy, Balzers)7 1 "*. 1¥ ãÏ <= 1¿] =!kœ7 ï (

ãÏN ±R 300 cc 500 ccs- Autoclave(Autoclave Engineersr) 2‰E к0â*. ©y MF“A ãÏ,º  P syringe pump (Iscor) ,ðk ãÏ wñ ‘+ { ¿ç t0µ Аk )*.

^b‰ ¿çk Ír 4` - å XU bypass lineN  f `¦8 å `®7­ìŸíî7 €€ 1 ?*. ^b‰E È%"

¦^b` -% ¿ç` -% ~ å € ` XUN òó67 ^b²E j0â*.

3. (MF)  

B\ ’ cô2cõE K 7 0a eU`7/8 c4dN i j0 GH c4d ]j>4= ^b0a cô2cõE iU

"[c4d ö÷> ^b; ^b (1)] ƒ cô2cõ (=>1R7 2 ø c4d iUkM[^b (2)], ù^b ]j>4= (=>7 c 4d iU[^b (3)]k «*.

Fig. 1. Schematic diagram of methanol synthesis unit.

(3)

 39 2 2001 4

CH3OH + CO



HCOOCH3 (1)

HCOOCH3+ 2H2



2CH3OH (2)

2H2+ CO



CH3OH (3)

 GH q" c4d K  k eU`7/8 cô2c

õE IJ ij' ( )6M[^b (1)ú2 + ^b (2) = ^b (4)], c4 d% cô2cõE } ij' ( )*.

2H2+ 2CO



HCOOCH3 (4)

c4d ö÷> ^b wñcûrz ‘+7 w™ü )

[12-14], cô2cõ (=>1R ^b copper chromite ´%

$˜ ‘+7 w™ü )*[15-17].  “A ’ ³] ^b‰° ’ c4d B\ ± L ‘+E Ç >0a eU`E È% ý_

c4d ö÷> ^b% cô2cõ (=>1R ^b } ]þ*. ^bXÑ 100-180oC å 40-100 ‰P*.  “A ³ p D` 2Á? j>4=  R ö÷> ^b ‘ +˜ wñcûrz ×¼67 ^bU ¹y ¹0?* «

*.

 “A 4` $s tU ÿìE ±R a  “A ((O, P5, eU` H2/CO lª, ², eU` j>4= ) ^ bU ¦º ‚% ]j>4=  o 4`s  

²UN Xr0â*.

3-1. 

^b 500 cc s- `˜``ô autoclave ’ ^¥1¨(semi- batch)67 ž?*. ^b u‰ 250 cc c4d $[- copper chromite(Ba-promoted; Aldrich) KOCH3(Aldrich)E  170oC, 60

‰P ’ 8 K}S copper chromiteE (=7 9 ƒ, -Xæ

(MFC)7 XU% - Xæ? eU` c4d-‘+ Ç E È%

0_’ ^b"*. ^b‰ P5 ÓP5 XA‰(BPR)7 Xæk 9 k  eU` `¦87 -N †A"*. ^b67 ij?

c4d% cô2cõ D 1 N ±" N &0 ^b

‰ ’ &k 6œ7 ^b‰ °/ ² é$?*. ^b B

 ‰  XU `®7­ìŸíî å ‹-1 ‰7 1 0â*.

3-2. 

3-2-1. O

^b (1), (2) ÍL ¢Q^bœ7 O ˆÁ Þ QÓÔ$ Õ Ö9ª Ã="*. ^_ ‘+^b ^bO ˆÁ Þ ^b

² ˆ …\?*. ^bO > Þ3  ^b² >

E w‰ ±R 100oC ’ 180oCV ^bOE > 6M Ÿ %E Fig. 2 °Å*. Ÿ ’  ò  100oC ’  U  *, O ˆÁ Þ  ^b² ˆÁN  â6, 180oC \ ^bO ’ ^b‰° ’ s+7 s0

 c4d ˆ¢0 k,  \ B\^b ] *. Ÿ 

œ7 ^b 180oC 0 O ’ (R› "*. 160oC \ ^ bO ’  ^b² ˆ >kÅx  ^bO

ˆ Þ ^b (1) QÓÔ$ ÕÖ †67 },  K ˜ cô2cõ  Ã=Á ‰˜"*. Þ’ ^b <$O

150-180oCN w ( )*.

3-2-2. j>4= å  ‚

B\  0_ ^b (1) ‘+˜ KOCH3 % ^b0a 2 cõ(HCOOK)E ݁ U ž* w™ü )*[11-13]. ^ bN 0‰  copper chromite KOCH3E c4d% Á ^b

‰ äž0 (=7 copper chromiteE 9 ý %A ’  ¢

ik KOCH3E ×¼0 ?*. Þ’ 9 ƒ H2/CO Œe˜ ^ b`E ¿ç0a ^b ò7 k  pž$67 žk

  20 K ƒ A\\ ^b² ¶"*(Fig. 3).

^b u‰ copper chromite 9 R ¢i?  ^b K

% Þ copper chromite (U`^b(Water-Gas Shift; CO + H2O



CO2+ H2) ‘+7 s0a N j>4=7 90

j>4= ¦^b` Á ^b‰ ’ Yè?*.   Ã

=0_’ HCOOK q" copper chromite R KOCH37 i?*.

Copper Chromite

HCOOK + 2H2→KOCH3+ H2O (5)

KOCH3 i Þ B\ ’ cô2cõ  pp ˆ0 M } ^b² ˆ0a  20 K ƒ A\\ ^b²

¶0 ?*. , copper chromite cô2cõ (=> 1R

^b ‘+   (U`^b å KOCH3 i^b ‘+7

s?*.

^b A\\ ¶" ƒ ˜±$67 ^b‰ N ¿ç0a B\  E 2.5 mol%7 ˆ  %, ^b² Ζy

 ^b  žk !6M, " B\ cô2cõ 

Fig. 2. Change of Methyl Formate(MF) concentration and rate of methanol synthesis at various reaction temperatures(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 60 atm).

Fig. 3. Effect of CO2 in inlet mixture gas(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 150oC, 60 atm).

(4)

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001 0 kÅ*.  L I# ^b ö÷> ^b žk $67

˜R  ^b Ak‰ "¯*. ­%7 ^b K %Á Þ KOCH3 ik B\ ’ cô2cõ  pp ˆ

0M } ^b² ˆ0a  40 K ƒ   A\\

 ^b² kÅ "   0.1 mol%7 ÝÅ*. 

 0.1 mol%(700 ppmv)˜ \[y o  ’ ^b ž?* «

 KOCH3 copper chromite R ² i?* «N ¦"*.

 q" \[- KOCH3 lU>? 2cõ \7 ÁN

&"*. Þ’  ·y &? \ ’  ^bN ž0_ 

g KOCH37  o U ‰?*.

4`  \[- j>4= 2Ák ), j>4=E ppm ³±V &0x \[" ls =!kœ7 ' A  j>4=E 2Á" 4` c4d7 9 (!0*. ö÷>

^b ‘+˜ KOCH3 j>4= ^b0a KOCOOCH37 9 k UN ) ?*[14]. ^b A\\ ¶0âN ", ^b‰

¿çk ` j>4=E 1% å 0.5%7 *’ ^bN ž

" %E Fig. 3 °Å*. j>4= 1% 2Á?  ^b²

 75% Ã=0, 0.5% 2Á?  52% Ã=kM, " K

˜ cô2cõ  €€ 54% å 45% Ã=0a j>4=

R ö÷> ^b ‘+˜ KOCH3 ×¼N ˜0â*. Ÿ  10,000 ppmv(1%) CO2 2Á? `E rs0 ö÷> ³¼^b

  + ^b žk x ^0a MF K “A 

copper chromite R KOCOOCH3 KOCH37 ik ^b  ' A ž?*(^b 6).

KOCOOCH3+ 3H2→KOCH3+ H2O + CH3OH (6)

j>4= 2Ák  eU`E * ,™° ^bN ž

" %, í ^b² 70%V ¥¤k ]/ lÓ$˜ l

U> ]-N w ( )Å*.

3-2-3. eU` ²

¿çk eU` ² > Þ3 ^b² å 9ª >E w‰ ±0a 150oC ’ ^b‰ ¿çk ` ²N >

 %E Fig. 4 °Å*. Ÿ ’ . ( )/ ² ˆ

Þ ^b² ˆ0 eU` ]¥ 9ª Ã="*. ©y

¿çk ` 50 Ncm3/min  ² ’ 80% \ + o

 9ªN ˜*.

ß ãÏ ’ ^b‰ Ò^ ² 1,000 rpm67 + o’ 

/ ‹¶² &"(external mass transfer limitation)  0±

’ ^b žkœ7, ²ˆ Þ3 ^b² > …\0

 %*.  ^b žk \ ’ 700 ppmv  B\

)6œ7 (U`^b R ¢ik CO2  ² ’ ¦

^b` ² 6œ7 ´%$67 ^b‰ ’ &k 10‰

"¯67 i€?*.

3-2-4. eU` XU(H2/CO lª)

eU` &X0 GH% D Þ Ÿ XU **. ]^

$67 ï rsk ‡C` (ˆ‰Š‹  H2/COl 3- 7, /1j>(partial oxidation)  1.6-2, Ÿ 4 

`>  0.5-2*. *g" XU eU` s tUN w‰ ±R ^b‰ ˜ eU` XUN >  %E Fig. 5 °Å*. eU` H2/CO lE 4 ’ 17 Ã= 2 ,  77% pž$˜ ^b² ˆE â*.  ^b‰ °/ ] j>4= 1P ˆ Þ3 B\ cô2cõ  ˆ ‰˜"

*(Fig. 5). Ÿ  eU` H2/CO l 0.5˜ , ^b² Î

–y Ã=? ^_ cô2cõ  Ζy ˆkÅ*.   3 o ]j>4= 1P " copper chromite ×¼% 3

 (= 1P67 ˜0a ^b (2) (=>1R ² ¹0kÅ

* R ' ( )*. ©y 4` XU˜ H2/CO=1 /4 ’ o

 ^b²E a  “A 4` $stU o “A

N r"*.

3-2-5. ,‰K SAU

ß “A \¾>k‰ ±R’ ‘+ , K W  lU>

A ’ o UN R› "*. D` H2/CO l 2

˜  100 K W % lU> ² 0-0.4%/]7  

 !*. Ÿ  ß CŽ ’ \67 0 4` Ö$˜

XU˜ H2/CO=1 ’ lU> ] 3.7%/] lU> ²E

˜*. " B  XUN Xr" %, K ˜ cô2cõ 

  Ã=ÁN w ( )Å*(Fig. 6). cô2cõ  Ã=

^b (1) ‘+˜ KOCH3 UN ) «67 R ' ( )*. Ÿ 

 £" ò  KOCH3 ^b (2) ‘+˜ copper chromite

R ² ikœ7, ]j>4= 1P o \ ’ copper chromite pž$˜ ×¼ R KOCH3 i 0 žk

* R ' ( )*. ã&7 ^b (2)E copper chromite ‘+\

’ ž' ", ]j>4= Ó$67 copper chromite ‘+E ×

¼0 «67 ? ò )*[13].

Fig. 4. Change of conversion and rate of methanol synthesis at various flow rates of inlet gas(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, H2/CO=2, 150oC, 60 atm).

Fig. 5. Effect of H2/CO ratio of inlet gas mixture on methanol synthesis rate(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, 250 cm3/min, 150oC, 60 atm).

(5)

 39 2 2001 4

4. LPMEOH 

LPMEOH “A c4d eU ^b[^b (3)] o ^bQ (∆H298o =

−90.64 KJ/mol)7 ˜" Ž-j>C ‘+ = N „‰ ±0a 10- 12%7 &"k eU` ]¥9ªN o‰ ±0a ^bQN ´

%$67 1j &' ( ) mineral oil%  B\ ‘+E Ç 

>0a eU` B\N È%0_’ ^b0µ 0a ^b`

]¥9ªN 30%V o˜ “A*.

ICIr ‰\ ^b “A% r" X¾XÑ ’ Wk LPMEOH

“A ©567  \s“A ’ 6t" ]j>4= lª

 o 4` IJ rs t0M, } A/X¾ { X

¾ s0, ij? c4d 2Á? (1 ‰ “A(4-20%) lR $ Ák(1% ¦) c4d A& ls ¹Ãk ,pÝ

 )*. q" X¾  77W ‘+E ² ¿ç' ( )’ C²

$˜ W t0*.

4-1. 

^b 300 cc `˜``ô autoclave ’ C²¨67 ž?*. ^ b u‰ 150 cc mineral oil(Aldrich) ‘+E  180oC, 60‰P ’ 10-13 K}S (=7 9 ƒ, -Xæ R XU% -

Xæ? eU` 250oC7 ? ‘+ Ç E È%"*. ¦^b

` -% ¿ç` -% ~7 ^b²E j0M, ^b6 7 ij? c4d condenser bé?*. ^b B  ‰  X U `®7­ìŸíî å ‹-1 ‰7 1 0â*.

^b  CuQ 489 \s‘+E rs0â*. Ý ‘+ :_

$(BET, ASAP2010, Micromeriticsr) Table 1 : 0â*.

4-2. 

4-2-1. € ‘+ ^bU

€ \s ‘+ " ^bU ㈠ãÏ %E Fig. 7 °Å*. €

‘+ ^bU ãÏ %, Ÿ ’  ò  Cu/ZnOQ A‘

+ ^b² , o, lU ² ,  «67 

LPMEOH “A ㈠‘+7 mn0â*. Ý ‘+ ÍL j>4

= 2Ák  eU`E ,™; % c4d7 9ª 

 0 V<’ j>4= = (!ÁN w ( )Å*. “A ãˆ

‘+7 mn? A‘+ , o :_$ o U% >? )*

 ' ( )6, A‘+ :_$ 1/4N @ C‘+ A‘+ u‰

^b² r0a ‘+ :_$  ‘+ XU { *3 !˜

 ‘+ U ‚N ¦AN š†' ( )*. B7 C‘+ Cu/

ZnO/Al2O3 ‘+*.

4-3-2. ^bO

<$ ^bOE Xr0‰ ±0a A‘+ 15 gN äž0 ^b O

E 210oC ’ 275oCV > ý_’ c4d eU ãÏN ("

%E Fig. 8 °Å*. Ÿ ’ þ ò  O ˆÁ Þ c4d ^b² ^b` ]¥9ª ˆ0 «N w ( )6M, 210oC ’ 30.0% ]¥9ªN , O ˆ

Á ‘+ U ˆ0a ^bO 250oC ’ 42.7% < ]¥

9ªN FN ( )Å*. 275oC ’ c4d eU² Ã=0â*.

Þ’ ^b <$O 250oC /467 à»kÅ*.

4-3-3. ^bP5 Fig. 6. Long-term change of methanol synthesis rate and methyl for-

mate concentration during the reaction with simulated coal gas (copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, 164 Ncm3/min, H2/CO=1, 150oC, 60 atm).

Table 1. BET surface areas of commercial catalysts tested

Catalyst A B C D

Surface area[m2/g] 67.79 72.27 15.97 49.26

Fig. 7. Change of initial rate of methanol synthesis of LPMEOH pro- cess over various commercial catalysts(2.68 g in 150 mineral oil, 260 Ncm3/min, 250oC, 60 atm, CO2=1.7-5.4%).

Fig. 8. Change of methanol synthesis rate of LPMEOH process and COx conversion at various reaction temperatures(catalyst A 15 g in 150 cc mineral oil, 260 Ncm3/min, H2/CO=2, 60 atm, CO2=3.2%).

(6)

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001

^bP5N 40‰P ’ 70‰PV > N " ^b² ¦º

‚N Fig. 9 °Å*. ^bP5 ˆ0_ c4d eU² ˆ

"*. 40‰P ’ 60‰PV ^bP5 10‰P ˆ Þ ^b

² 10%\ ˆE , 60‰P ’ 70‰PV ^b²

ˆ 6.3%7 60‰P \ P5ˆ ´sU $N w ( )*.

4-3-4. j>4= ‚

^b‰ äž? 15.0 g A‘+\ ’ eU` 2Á? CO2

> Þ3 c4d eU² >E Fig. 10 °Å*. CO2

 0%]   ^b + ] !6M, 3%˜  , o c4d eU²E °Å*.  Klier { & " % ] º"*[18]. CO2 1.0% Á? eU` lR 3% Á? eU

` 1±‰ ’ 21% UˆE â*. Ÿ  CO2  5%7 ˆ

0_ c4d eU² Ã=0â K - Þ ‘+  U Ã=0 lU> >CkÅ*. , Ž ‘+E rs0

LPMEOH“A 1-3% D 0± CO2 Á? D`

R’ c4d eU tÁN w ( )*.

4-3-5. ^b` ²

A‘+ 6 gN ^b‰ äž0 eU`(H2/CO=2, CO2=3.7%) 

²N 262 Ncm3/min(GHSV=2620 l/kgEhr) ’ 512 Ncm3/min67 ˆ

 ý_’ F %E Fig. 11 °Å*. ² 2Y7 ˆÁ Þ iU²  50% ˆ0 eU` ]¥9ª 35.3%

’ 26.5%7 Ã=0â*. ©" p ² 262 Ncm3/min ’ l

U>  Å6 ²N 512 Ncm3/min7 ˆ ý_ ‘+ l

U> ]þ* «*.

4-3-6. ^b` XU å ,‰K SAU `õ

eU` XU(H2/CO)N 2 ’ 4` :$˜ XU˜ 1 

>  %E Fig. 11  °Å*. " lU> ² 24.2%/

]Å*. ‘+ äž-N 15 g67 F eU` XU(H2/CO) 1

˜ eU` ²N 260 Ncm3/min7 ˜  ãÏ %E Fig. 12 °Å6M,    lU>ª 24.4%/]7 lU> \

 Šm G !*. L HI7 (" \s‘+˜ C‘+ 

 eU` XU(H2/CO) 1% 2 ÍL ’ 20%/] Ú o l

U>ªN â*. Þ’ LPMEOH “A 4`E JD7 0

c4d eU rsK  ï g ‘+ =!K «67 …\?*.

5.  

LPMEOH “A% MF K “A ㈠ãÏ %E Table 2 l

Fig. 9. Change of methanol synthesis rate of LPMEOH process at var- ious reaction pressures(catalyst A 15.0 g in 150 cc mineral oil, 260 Ncm3/min, 250oC, CO2=3.2%).

Fig. 10. Change of methanol synthesis rate at various CO2 concentra- tion of syngas with 15.0 g A catalyst in LPMEOH process(150 cc mineral oil, 260 Ncm3/min, H2/CO=2, 250oC, 60 atm).

Fig. 11. Change of methanol synthesis rate at various inlet flow rates over 6.0 g of A catalyst in LPMEOH process(150 cc mineral oil, 250oC, 60 atm, CO2=3.7).

Fig. 12. Deactivation behavior of A catalyst when simulated coal gas (H2/CO=1) was fed(15 g A catalyst in 150 cc mineral oil, 260 Ncm3/min, 250oC, 60 atm, CO2=3.0%).

(7)

 39 2 2001 4

Ò0â*.

“K ²   Ó ’ ‘+ ³± 3[ ^b² MF K “A (0*. 4`s c4d eU“A (( Xј

o eU` ]¥9ª _ ’ MF K “A LPMEOH “A lR L{y (0*. 4`E D7 rs"  \s> X ј ‘+ SAU_ ’ MF K “A ‘+ lU>ª

LPMEOH “A lR ’ ^$67 MF K “A 4

`s c4d eU“A67 $e" «67 à»?*. MF K “A

³p˜ =- CO2 " ×¼\ 0.5% CO2 2Á? eU`

 ^b ž Þ Šm a ) 4` rs t U o*.



1. Brown, D. P., Brown, D. M., Jones, W. C. and Kornosky, R. M.: “The Liquid Phase Methanol(LPMEOH) Process Demonstration at King- sport,” presented at Fifth Annual DOE Clean Coal Technology Con- ference, Tampa, Florida(1997).

2. Westerturp, K. R. and Kuczinski, M.: Hydrocarbon Processing, 65(11), 80(1986).

3. Wainwright, M. S.: in “Methane Conversion,” ed. by D. M. Bibby, C. D.

Chang, R. F. Howe and S. Yurchak, Elsevior, B. V., Amsterdam, 95 (1988).

4. Sleigeir, W. A., Sapienza, R., O’Hare, T., Mahajan, D., Foran, M.

and Skaperdas, G.: 9th EPRI Contractors Meeting, Palo Alto, CA, May(1984).

5. Sapienza, R. S., Sleigeir, W. A., O’Hare, T. E. and Mahajan, D.: U.S.

Patent No. 4,619,946(1986).

6. Muhajan, D. and Mattas, L.: Proceedings of the 16th Annual EPRI Conference on Fuel Science, Palo Alto, CA, April(1992).

7. Trimm, D. L. and Wainwright, M. S.: Catal. Today, 6, 261(1990).

8. Sherwin, M. S. and Frank, M. E.: Hydrocarbon Processing, 55(11), 122(1976).

9. Chemical Week, October 25, 41(1995).

10. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing Technol., 23, 149(1989).

11. Palekar, V. M., Jung, H., Tierney, J. W. and Wender, I.: Appl. Catal. A, 102, 14(1993).

12. Tonner, S. P., Trimm, D. L., Wainwright, M. S. and Cant, N. W.: J. Mol.

Catal., 18, 215(1983).

13. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing Technol., 18, 185(1988).

14. Choi, S. J., Lee, J. S. and Kim, Y. G.: HWAHAK KONGHAK, 32, 317 (1994).

15. Evans, J. W., Casey, P. S., Wainwright, M. S., Trimm, D. L. and Cant, N. W.: Appl. Catal., 7, 31(1983).

16. Monti, D. M., Kohler, M. A., Wainwright, M. S., Trimm, D. L. and Cant, N. W.: Appl. Catal., 22, 123(1986).

17. Kim, Y. G., Lee, J. S., Kim, J. C., Lee, S. H., Kim, K. M.: HWAHAK KONGHAK, 27, 396(1989).

18. Klier, K., Chatikavanij, V., Herman, R. G. and Simmons, G. W.: J.

Catal., 74, 343(1982).

Table 2. Results of reaction for LPMEOH & MF process

MF process LPMEOH process Synthesis rate(mole/kg · hr) at

GHSV of 2,600 l/kg · hr

24.9 13.9

Maximum conversion per pass 80% 43%

Optimum temperature(oC) 180 250

Pressure(atm) 60 60

Effect of CO2 tolerant up to 0.5% Limited to 1-3%

Deactivation rate(H2/CO)=1 3.7%/day 24%/day

참조

관련 문서

특히 화상 환자들의 경우 피부 기증을 통한 동종피부이식 수술을 통해 생존율이 높 아졌다고 하는데 아직까지는 피부조직의 대부분을 해외로부터의 수입에 의존하는 , 것이 현실

 The Dutch physicist Pieter Zeeman showed the spectral lines emitted by atoms in a magnetic field split into multiple energy levels...  With no magnetic field to align them,

Modern Physics for Scientists and Engineers International Edition,

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Home delivery of newspapers will end. with so many people getting their information online, there may not be a need for traditional newspapers at all.

클라우드 매니지드 DDI는 기업이 클라우드를 통해 모든 위치의 통합 DDI 서비스를 중앙 집중식으로 관리하여 지사에 향상된 성능을 제공하고, 클라우드 기반 애플리케이션에 대 한 보다

웹 표준을 지원하는 플랫폼에서 큰 수정없이 실행 가능함 패키징을 통해 다양한 기기를 위한 앱을 작성할 수 있음 네이티브 앱과