• 검색 결과가 없습니다.

Ôf ªÖWæ>¢ <º Òö2 gÊ~ B–O»

N/A
N/A
Protected

Academic year: 2022

Share "Ôf ªÖWæ>¢ <º Òö2 gÊ~ B–O»"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Ôf ªÖWæ>¢ <º Òö2 gÊ~ B–O»

‚ " ^

‚S&v z"

(2001j 1ú 10¢ 7>, 2001j 9ú 19¢ j)

A Method of Producing Polyethylene Wax Having a Low Polydispersity Index

Keun Ho Choi

Department of Chemical Engineering, Hanbat National University, Daejeon 305-719, Korea (Received 10 January 2001; accepted 19 September 2001)

º £

 ’öBº «¾ VF~ ^B6j šÖ~V *~ Ôf ªÖWæ>¢ <º Òö2 gÊ¢ Ö~V *‚ î‚

*êê¢ Ã&ÊV *~ >wNê(380-400oC) Ôf Nê(250-370oC)‚ öò¢ &~  NêöB ¢;‚ 

*ÿn Fæ~º ©j ~‚. Î"'ž *j *~ ß>~² JêB ªÆ& Ú¦ö J~>Ú ®º ž¦B~; 

*>wVf î‚Ú ªš»j ÒÏ~ ªÖWæ>(3.90š~)& Ôf Òö2 gÊ¢ 5.40*šÚö ֆ > ®î

Abstract−In this study, to solve the problems of previous techniques, a new thermal degradation method was used for pro- ducing polyethylene wax having a low polydispersity index. The thermal degradation method was characterized by putting the preheating stage before the reaction stage. At the preheating stage, to increase the thermal conductivity of raw material, the raw material was heated up to a certain temperature(250-370oC), which was lower than the reaction temperature(380-400oC), and was remained at that temperature for a certain time. Polyethylene wax with a low polydispersity index(less than 3.90) could be produced within 5.40 hr using both the thermal degradation method and an external-loop reactor in which specially designed impellers were installed for more effective heat transfer. The effect of the temperature of preheating stage on the polydispersity of product, the viscosity of medium and the manufacturing time was negligible. An increase in the number of preheating stage only marginally affected the polydispersity index of product. When the reaction temperature increased, the viscosity of medium was more rapidly decreased with time and, hence, the reaction time was decreased. The viscosity of medium was decreased with increasing the reaction time.

Key words: Polyethylene Wax, Thermal Degradation, Stepped Heating Method, Polydispersity Index

1. B †

gʦ ª~~ NêöB 2¢Ê" ?f Ú(plastic solid)šæò N ê& çß~š Ôf 6W ‡Ú& >º bîj Û ~‚. >^V ÿ n ²÷(¯, &³)f gÊ¢ ®Ò~ ¢>'ž bîš. W öò‚¦

V Ö>º >º &‚'ž Wgʂº Òö2 gÊ(PE gÊ)f

Ò*‚j2 gÊ(PP gÊ)& ®[1]. PE gʺ >ïª¶ïš &

Û 500-10,000 g/molž &ª¶ Òö2j ~‚. ¢>'b‚ ç ë'b‚ šÏš &˂ &¦ª~ ª¶ bîf B‚ ž ÒÒ^š

5 ª¶ïj <V r^ö 9f ª¶ï ª¢ <º–, ª¶ï ª&

’ ªÖWæ>& Ã&~² >š æB®b‚ B–† rö &Wš

Wæ>¢ Ôº² >š æB®b‚~ &š Ö>‚ ª¶ bîj á

² B.

PE gÊ¢ B–~º O»öº 7»" ªš»š ®. 7»f chain transfer agent(propane, butane Ò f F҂ bî) 6º >²

" jOËWž tertiary aminej –~B B–‚ /)¢ ÒÏ~ &

Òö2(PE)~ ªšº ª¶~ çÒÒ~V(chain branching) æ 6öB «W~² ¢ÚÂ. "~ p² *, Nê, v>j –.~š ö

To whom correspondence should be addressed.

E-mail: khchoi@hyunam.tnut.ac.kr

(2)

Ò~æ pº çöB 2¢Ê" ?f ª¶ï~ ö2 7Úf  7Ú¢ 300" 600oC Қ~ NêöB 30.öB 5*ræ~ ÚÒ

*(dwell time)ÿnö ¦ª'b‚ ªšB ö2 7Úf 7Ú~

&jB Ï[Ú ³b‚ "«~ ªšŽb‚Ž &ª¶ïj &æ– Ò

 [5]f 20 kg/cm2~ {K" 1,000 rpmb‚ jv' †š² v>

>º –šb‚ {>wVÚöB melt flow index& 10.0š &ê&

0.923š– žË;ê& 110 kg/cm2š– >ïª¶ïš 9,931ž PE 2 kgj 360-390oC~ >wNêöB 1-3*ÿn ªš~ >襁ïš

1,588-4,980 g/molš ªÖWæ>& 1.62-3.58ž PE gÊ¢ B–~&.

Nishimotof Chida[6]º static mixer& Ö>–¾ Ö>æ pf 2B

šç~ çR‚ ÖB &ç>wV(^š& 5-100 m)¢ ÒÏ~ 0.2-20 kg/

cm2~ {K" 5-100 m/hr~ F³ê Ò 300-450oC~ >wNêf ®

‚W VÚ ª*VöB PE¢ 0.5-10* ªš~ >ïª¶ïš 500- 10,000 g/molž PE gÊ¢ ³'b‚ B–~&.

ªšö ~š PE gÊ¢ Ö~º &¦ª~ ;f PEf ÖB PE gÊ~ Ôf *êê r^ö ªš>wš j*~æ p–¾ ÚÊ &

‚ ª¶ï 6º Ôf ªÖWæ>¢ <º PE gÊ~ ֚ Oš¢ A º[4]. ‚Þ, Ricef Kossiakoff[7]º radical~ ¶Ö {Öö Vž~º

“îË Î"(cage effect)”& “Z çÒÒ~V(chain branching)”¢ ¢V‚

1~ ֏ ªš>w ö.æ(bond dissociation energy)ö ~š &æ‚ 6 7öB &Ë "6‚ ©(¯, >æ Úö šÒ

~º allylic ֏)~ ê²-ê² Ö~ pÚöj .¾~º B ê (initiation step)šêö ª¶* >wö ~š radical~ Oš ª¶Ú~

radical

w(termination reaction)f 6W χ ÚöB~ radical~ {Öö ~š

š¾ phenylether[8]" ?š PE gÊ ¸f yº6j <º '.‚ 

Guyf Fixari[8]º >ïª¶ïš 2,000-6,000 g mol1ž gÊ B®j áV *~ HDPE~ ²ª ªš¢ ’C χ ³öB >¯~&.

f &æ& Ö gÊ Ö®j B~º *;'ž ¦b ªš>w (390oC, 6 hr)öB phenylether¢ Òς ’Cf Öb~ ßW(&ª¶

ï, §f ª, ¸f Ö;W, ³¦‚ α-olefins Ò 'f ·~ Z &æ ö 2¢Êj ' 6º /'ž ªš¢ Û~ gÊ¢ Ž~º

Uddin [9]f ö PE~ 'ž Ò /¢ šÏ‚ ªš¢ Û~ F ς zbî" Vªj Ö~V *~ 4B~ ž «~~ PE, ²*

&ê PE(HDPE), &&ê PE(LDPE), F; &&ê PE(LLDPE) Ò

&vB PE(XLPE)¢ ²ªb‚ 430oCöB Ú Ö/‚ silica-alumina

֚ &Ë~– ª¶ï~ –.š Ϛ~º Ë6š ®b¾ Ë~~ –

–>wV¾ &;>wV Úö Ú®º PE¢ ®ö ¢;‚ >wNê‚

&~ ªšŽb‚B PE gÊ¢ B–~º ©š ¢>'š. V¢

B, PEf PE gÊ~ *êê& ÔV r^ö «¾~ ªš»j ÒÏ

~ Ôf ªÖWæ>¢ <º PE gÊ¢ B–~Jš {j F暢

~–¾ †ž ³ê‚ v>V¢ ²*š¢ ~–¾ öò~ Nê¢ Ö ;

&~² –.š¢ ~–¾ B–*j ^² š¢ ~º ^B6š ®. ‚ Þ, &“ Ï ÚöB ªš>wj >¯~º O» 6‚ ÒÏ>º 

&“ Ïf ªš>w~ Ö®*~ z'ž FÒWb‚ ž~ ê

³'ž ÏB–ö ®ÚB~ ^B¢ .¾~–, J†ò‚ jϚ º’

>º ^B6š ®[4].

V¢B  ’öBº š‚ Vš VF~ ^B6j šÖ~V *~

 Nz‚ –š(&V{" Ôf v>³ê)öB ;&~² Nê –.j

~æ pBê Ôf ªÖWæ>¢ <º PE gÊ¢ jv' f *ö

ֆ > ®º î‚Ú ªšO»" Ë~ö &~ ’~&.

2. þ

2-1. ªš>wV

¢‚ >w" »B >w*j áV *šBº b& &> ®º

>wV~ ãšb‚¦V öò‚~ *³ê& Ž¢¢ ~– öò~ b

š Î"'šÚ¢ ‚. *³êº j " Aº bî*~ Nê Nf *š'ö jf‚. V¢B, >wV ãš~ Nêf öò~ N ê& ¢;‚ ãÖö öò *¦b~ *š'j Ã&ʚ >w

*j »Ò >& ®. Všö ¢>'b‚ ÒÏ> ®º ªš

>wVº v>–>wVž–,  ãÖö >wV~ žãj &~ >w ö jº‚ ïj /~ ®bæ‚ *š'f &V& J~>Ú

®º ã~ š'š. ž¦B~; *>wV~ ãÖö >çb‚ J~B 2B~ >ç&(çß&" ~;&)~ žã" Žþ š >ç&j Ö~º ç¦f ~¦~ Ö¦*~ žãj Îv &šb‚ Òφ > ®ÚB Vš~ v>–>wVö j~ R – öò *îï~ *š' j B† > ®V r^ö B®~ B–*j ’² »Ò > ®bÒ

¢ V&B. V¢B,  ’öBº v>–>wV &ö ž¦B~;

*>wV¢ ªš>wV‚ ÒÏ~&.

 ’ö ÒÏB ž¦B~; *>wV¢ Ž~º þË~~ B Ûêº Fig. 1" ?. ²G >ç&(çß&)" ÖG >ç&(~;&) Ò

 ~¦ Ö&b‚º ç㚠70 mmš vþ& 5 mmž Êrž.Ê Ê &j ÒÏ~&b–, ç¦~ Ö¦ªf vþ& 5 mmž Êrž.

Ê Ê 6b‚ B·~&. >wV~ ¸šº 0.52 mš >wV~ Ú

¦ ¦bº 5 L&. öò~ Nêf žã~ Nê¢ G;~ –.~V *

~ 2B~ *&¢ ²G >ç&~ Ú¦(Úãb‚¦V 26 mm ÎÚê æ6)f žãö '' J~~&. ç¦ Ö¦ªö 200 V, 900 W Ïï

(3)

~ &V 1B¢, Ò >wV~ ~¦(²G >ç&, ÖG >ç&" ~

¦ Ö&j Ž~º ¦ª)öº 200 V, 2 kW Ïï~ &V 1B¢ ' ' J~~&. PID BÚV¢ ÒÏ~ &Vö />º *{j – .Žb‚Ž öò~ Nê¢ –.~&.

Fig. 1öB v~Vº >w 7ö B~º >BW bîj w»BB

>wV‚ >òJ Úº VËj ‚. Vڇ>–öº ¦b~ .>;ê ö š~º bj jÖ, Vڇ>–ö ®º 2B~ &7öB v~V ö Ö>º Z &f bö ÆV² J~~, VÂ&ö Ö>º f &

f bö %æ p² J~‚. š Vڇ>–º v~V¢ Û"š

B ¾Jº >BW bî 7öB bö Ÿº bîj VÂ&ʂ¦V ‡>

~ B–~º VË" v~VöB w»>æ p ¾Jº &ª¶ï~

gÊ¢ Îbº †j ~² B.

2-2. ªÆ

>wV~ ;f ãš~ Nê& ;>îj rö >wbî~ bj

Bº ž¦B~; *>wVÚö Ú ®º öò~ B~" bj ê Î~V *~ Fig. 2f ?f ªÆ¢ B·~ ÒÏ~&.  ’ö

B ÒÏB ªÆº B~~B ÆB(1)f ã'r ÆB(2) Ò >ã OË b ÆB(3)‚ ’W>î. B~~B ÆBº ²*»ö ç' O Ëb‚ ²Ö& B‚ í.Ò² jÊ~²(45o) J~>Ú ²*»~ ²*

OËö V¢B çß 6º ~;~º B~~¢ BÎ. ¯, ²*»š

>êOËb‚ ²*~š çV B~~B ÆBº çß~º vªj B

ʖ ²*»š êOËb‚ ²*~š ~;~º vªj BÊ

–, š-² BB vªš >wV Ú¦ö ®º öò~ »OË bj &

^J² B. B~~B ÆB~ ‚ã ƒö jÊ~²(45o) ¦OB ã 'r ÆBº ãšö "7š ®º öò¢ 'ÚB ²*» ãb‚ æçš

² ~º †j ~–, B~~B ÆB~ ž ã 7* ¦ªö ²*»

OËb‚ *~‚ >ãOËb ÆBº ²*» ¦"ö ®º öò¢ ã

š ãb‚ æ皲 ~º †j Žb‚Ž >ãOË~ bj Ëç

Î.

 ’öBº š‚ VËj ~º ªÆ 11B¢ Êrž.Ê Ê

6b‚ B·~ ²G ²*»ö 6B¢, Ò ÖG ²*»ö 5B¢ ' ' J~~&b–, çß&öBº çß vªš Vêƒ ²*»j >ê OËb‚ òJ"îb– ~;&öBº ~; vªš Vêƒ ²*»j

êOËb‚ òJ"î.

2-3. þO»

b& öòR«’¢ , &ê& 0.924 g/cm3š [6š 110oCš–

>ïª¶ïš &Û 23,000 g/molš ªÖWæ>& 7.44ž PE 2 kg

î²"« ^2(valve 2)¢ ÚB 2 atm~ î²¢ "«‚ êö î²"

« ^2¢  VV&Ê ^2¢ ÚB >wV Úö Ú ®º VÚ¢

VÂ~º O»j 8Nf >¯Žb‚Ž >wV Ú¦¢ ®‚W VÚ ª*

*{j 200 V‚ J;~ öò¢ &~V ·~&.

 ¢^öBº .j &êf >wê‚ ’WB &O»j ‘ê

 &O»’š¢ “~&. VB, .j&êº öò~ *ê ê¢ Ã&ÊV *~ ªš>wš /³® ¢Ú¾º >wNê Ô f ÚÊ Nê‚ &‚ êö öò¢  NêöB ¢;‚ V*ÿn Fæ

~º ©j ~~–, >wêº jv' /³® ªš>wš ¢Ú¾º Nê‚ öò¢ &~  NêöB ¢;‚ V*ÿn Fæ~º ©j

~‚. .j&ê& ìº ãÖöº BÚV~ J;Nê¢ ¾r¦

V >wNê(380-400oC)‚ J;~ öò~ Nê¢ çßÊ >wN êöB ¢;‚ *ÿn öò¢ ªš~&. ê &O»~ ãÖ öº .j&ê‚ BÚV~ J;Nê¢ 250-370oC‚ J;~B ö Fig. 1. Schematic diagram of the experimental apparatus.

1. Heat exchanger 9. Gas absorption tank 2. Raw material input cap 10. Valve 2

3. Top connection 11. N2 line

4. Riser 12. Motor

5. Bottom connection 13. Downcomer

6. Valve 4 14. Thermocouple

7. Valve 1 15. Impeller

8. Vent line 16. Valve 3

Fig. 2. Details of impeller.

(4)

b‚ ²*~&. öò~ Nê& 250 Cö ê~š v>V~ ²*³ê¢

40 rpmb‚ Ã&Vb–,  šêöº v>V~ ²*³ê& 120 rpmš

2-4. bW~ G;

>wb" B®~ 6êº 6êê(viscometer)(Brookfield, Model DV-II+)¢

ÒÏ~ 140oCöB G;~&. öòf PE gÊ~ >襁ï(Mn)

" îïï ª¶ï(Mw) Ò ªÖWæ>(polydispersity index, Mw/ Mn)º gel permeation chromatography(Waters, GPC2000)¢ ÒÏ~

G;~&. šrö "(column)b‚º ³~ ÖB 3B~ "

(column)(HT-2,4,5)j ÒÏ~&b–, 1,2,4-trichlorobenzenej ς Ò Ï~&. Ú*Nê, Fï Ò "«¦bº '' 140oC, 0.917 ml min1

Ò 200µl&. òº "«j *š 2*ÿn 140oCöB Ϛ>

b~ Nêf >wV žã~ Nêº *&¢ ÒϚB öò¢ &~

V ·‚ çê¦V 5ª *Ïb‚ G;~&.

3. Ö" 5 V

.j&ê~ Nê¢ J;~V *~ 7ï»(thermogravimetry) (Perkin-Elmer, Model 7 TGA)¢ ÒÏ~ öòž PE~ jN ªš

>wö &‚ ¶ò¢ áî. öò~ jN ªš>wö &‚ 7ï

»(thermogravimetry)~ ¶òº Fig. 3" ?. Fig. 3b‚¦V öò PEº V'b‚ 1 ê‚ ªšNj r > ®î. öòº &Û 288oCöB ªš¢ ·~ 50%f 90%~ Z²¶f 456oCf 478oCöB ''

&V>î. ¯, 370oCræº jv' ªš>wš ¶Ò² ¢ÚÎj r

> ®î. öòž PE bead& Ï[F rö beadҚ~ *ö ®~ V Ú7~ ¢¦& V‚ Ï[B öò Úö Ž>æ‚, V¢ Ž~º Ï[B öò~ *êêº PE ¶Úò~ *êêê J®J Ô² B. .j&ê~ Ï'f š-² öò& Ï[† rö ŽB V

7~ ¢¦¢ B–~ Ï[B öò~ *êê¢ ¸šº ©š. V¢

B, .j&ê~ Nêº 'Úê öò~ Ï[6(&Û 110oC)º

V¢B,  ’öBº Fig. 3~ Ö"¢ ^~ öò~ Ï[6º

¸bšB jv' ¶Ö ªš>wš ¢Ú¾º >wNêræ¢ Ž~º Nêº*ž 270-370oC‚ .j&ê~ Nê¢ æzV.

Fig. 4º >wNê(Tr)& 390oCš– .j&ê¢ <æ pº &

O»j ÒÏ~º ãÖö *~ Ã&ö Vž >wVÚö Ú®º ÚÏb

~ Nê(Tm)f >wV žã~ Nê(Tw)~ æz¢ ¾æÞ ©š. ‚Þ, Fig. 5ö 1B~ .j&ê¢ <º ê &O»(stepped heating method)j ÒÏ~º ãÖö *~ Ã&ö Vž ÚÏb~ Nêf >w V žã~ Nê~ æz¢ ¾æÚî. Fig. 5ž ãÖö .j&ê~

J;Nê(Tp)º 310oC&b– >wNêº 390oC&. öò~ Ï[6š

&Û 110oCšæ‚ ÖF v ãÖ Îv žã~ Nê& ê³ çß~º–ê

®’~ öò& Ï[>º ÿn(&Û 10ª)ö öò~ Nêº 130-140oC

&& >wV Úãb‚¦V 26 mm ÎÚê æ6ö J~>Ú ®îV r

^š. 6‚, öò~ *êê& ÔV r^ö PIDBÚ¢ ~ ®º–

ê ®’~ .j&ê~ .Vöº çV*(&Û 30-50ª) žã~

Fig. 3. Thermal gravimetric weight-loss analysis of raw material with a heating rate of 20oC min1 under nitrogen atmosphere.

Fig. 4. Variation of the medium and wall temperatures with time(opera- tion without preheating step).

Fig. 5. Variation of the medium and wall temperatures with time(oper- ation with preheating stage).

(5)

Nêf ÚÏb~ Nê Îv& J;Nê šçb‚ Fæ>î. .j&

ê çꂦV öò~ Nê& >wNêö š¢ rræ žã~ Nê f ÚÏb~ Nê*~ Nšº .j&ê¢ væ pº ãÖ~ ?f Nê ’*" jv† rö ç® ·~. šº .j&ê¢ –~š

B öò& j*® Ï[F öò jî¢ Ï[B öò Úö D ®~ V

7~ ¢¦& B–>šB öò~ *êê& ’² Ã&~V r^š¢

'B.

Fig. 6f 1B~ .j&ê¢ <º ãÖö >w*~ Ã&ö Vž

>wb~ 6ê~ æz¢ >wNê¢ æ>‚ ~ ¾æÞ ©š. V B, >w*š¦ J;‚ ÚÏb~ Nê& >wNêö ê‚ r¦V

·~ G;‚ *j ~‚. 襁ïf ªš>w~ .V ê öB /³~² 6²~– 6²~ ;êº ê> êöB /³~² ¶J

¢ 6²ʺ "‚ j>BW Þ(fragment)š Ö>–, Ìf êÿ nöº ÒÒ.š æV'šÚB >wVÚö Ú®º >wb~ îï j 6²ʾ 襁ïf –~ æ~æ p² ¹jvº >BW Þ

š ÖB[5]. V¢B,  ’öBê ªš>w~ .VöBº >wb

~ 6ê& /Ï® 6²~&b¾ >wb~ 6ê& 6²~º ;êº 

*š Ã&Žö V¢B 6N 6²~&. .j&ê¢ væ pº ã Ööê >wb~ 6ê æzº šf F҂ ãËj "î. PE~  ªš>wf ‡>wšæ‚ >wNê& Ã&~š ªš>w~ ³êº

6²~&.

Fig. 7ö .j&ê~ Nê& *~ Ã&ö Vž >wb~ 6ê~

* ÚöB~ .j&ê Nê~ æzº >wb~ 6êö ’² 'Ë j ~æ prj r > ®. š©f  º* ÚöB~ .j&ê Nê~ æzº ß;‚ 6ê¢ <º B®j òº– žÒº B–*

ö ’² 'Ëj ~æ pº ©j ~‚. š‚ Ö"f Table 1~ Ö

"¢ «~š,  ’öB þ‚ º*~ Nê¢ <º .j&ê

¢ vš öò~ *êê¢ Ã&ʺ Î"¢ áj > ®b–,  º

*öB .j&ê Nê¢ æzBê áj > ®º Î"~ ’Vº jݎj r > ®.

Fig. 8f .j&ê~ >& *~ Ã&ö Vž >wb~ 6ê~

æzö ~º 'Ëj " ®. 7B~ .j&ê¢ vº ãÖ öº .j&ê~ Nê¢ ‚.ö 250oC‚¦V ·~ 370o

š¢ rræ 20oCO Ã&ʚB Îv 7®~ .j&j >¯~&.

.j&ê~ Nê& ªš>wš ¢Ú¾V ·~º Nê(&Û 288oC

šç)šçž ãÖö .j&ê~ >& Ã&†>ƒ >wb~ 6êº

–. ŽÒ 6²~&. š©f .j&ê~ Nê& ªš>wš ¢Ú Fig. 6. Effect of reaction temperature on the viscosity. Fig. 7. Effect of preheating stage temperature on the viscosity.

Table 1. Operation conditions and physical properties of the products

L Co. A-C 6A Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

Tr(oC) 390 - 390 390 390 380 390 400 390 390

Ts(oC) - - - 310 250-370

(7 steps)

330 330 330 270 370

Viscosity(cP) 293 372 344 367 288 274 322 295 316 342

Mn(g mol−1) 2139 2548 2508 4481 4312 5941 4918 4983 5214 5243

Mw(g mol−1) 18683 11248 23138 9232 15773 21426 17821 15158 17814 18759

Mw/Mn(-) 8.74 4.41 9.23 3.83 3.66 3.61 3.62 3.04 3.42 3.58

Manufacturing time including the reaction step(hr) 8 - 2.17 3.15 9.33 5.36 3.10 2.28 3.28 3.17 Fig. 8. Effect of the number of preheating stage on the viscosity.

(6)

B–>Ú öò~ *êê& Ã&>V r^š. .j&ê¢ vš

öò~ *êê& Ã&~B >wêö ê~º ÿnö žã~ N ê& jv' †ž ªš>wš ¢Ú¾º Nêž 390oCšçb‚ Fæ>

º V*š .j&ê¢ væ pº ãÖö jšB R jr(Fig.

4, 5). öò~ *êê& Ôbš >wV~ >ãOËb‚~ Nê’V&

æ “¦'b‚ ß® 㚠"¾öB öò& "çö ¹šº 

*š ^Ú^B §f ª¶ïª 6º Ôf ªÖWæ>¢ <º B®

~ ֚ ÚJòê. >&‚ öò~ *êê& ¸bš >ãOËb‚

~ Nê’V& ·jæ 㚠"¾öB öò& "çö ¹šº 

¢ <º B®~ ֚ &Ë~. V¢B, >wêš*ö öò~ *

êê¢ ÔÖ"º .j&ê¢ <º ©j ßûb‚ ~º ê &

O»j ÒÏ~š .j&ê¢ <æ pº Vš~ &O»j ÒÏ

† rf jv~ Ôf ªÖWæ>¢ <º gÊ B®j ֆ > ® rj r > ®.

 ¢^öB B–*f ß;‚ º*~ 6ê(320±47 cP)¢ <º B®

j Ö~º– žÒº >wêræ¢ Ž~º *j ~‚. ¢>

'b‚ B–*f öò~ ·" >wV~ ;f ’V, &š'~ ’ V, &V~ Ïï 6º žã~ Nê Ò v>³ê ö ~š‚.

V¢B, >wV~ ;f ’V, &V~ Ïï Ò žã~ Nê&

ž LÒ~ ãÖf B jv~º ©f ~& 'j >ê ®. ¾, 1B~ .j&êòj <º ê &O»~ ãÖö >wêræ

¢ Ž‚ B–*f 5* 40ªb‚ LÒ B®j òº– žÒº 

š  ’¢ Û~ &V{öB Ôf v>³ê‚ ;&~² Nê–.

j ~æ pBê Ôf ªÖWæ>¢ <º gÊ¢ ֆ > ®º î

‚Ú &O»ž ê &O»" š¢ >¯~º– '.‚ >wV¢

BB~&rj r > ®.

4. Ö †

 ’öBº Vš VF~ ^B6j šÖ~V *~  Nz‚

–š(&V{" Ôf v>³ê)öB ;&~² Nê –.j ~æ pB ê Ôf ªÖWæ>¢ <º PE gÊ¢ ֆ > ®º î‚Ú ªš

O»" Ë~¢ BB~V *~, ªš>wV‚ ž¦B~; *>w V¢ ÒÏ~º ‚Þ, ªš>w~ "º Ú*æ>ž .j&ê~ >

f .j&ê~ Nê, >wNê Ò >w*š >wb~ 6êf

>襁ï, îï襁ï Ò ªÖWæ>ö ~º 'Ëö

(5) >wb~ 6êº >w*š Ã&Žö V¢B >w.Vöº /Ï

® 6²~¾  šêöº BB® 6²~&.

6 Ò

 ’º B7N ÖÁÁ ÿVFBB æ²ê~ "B‚ >

¯>îb–, ’j¢ æöš " &N V&ö² pf 6Ò¢ ã î.

ÒÏV^

Mn : number average of molecular weight [g/mol]

Mw : weight average of molecular weight [g/mol]

T : temperature [oC]

t : time [min]

Tm : medium temperature [oC]

Tp : preheating stage temperature [oC]

Tr : reaction temperature [oC]

tr : reaction time [min]

Tw : wall temperature [oC]

^^ò

1. Erkron, D.: “Encyclopedia of Chemical Technology,” 3rd ed., John Wiley & Sons, New York, 24, 466(1984).

2. Buechner, O. and Immel, W.: U.S. Pat. 3, 557, 074(1971).

3. Eberhardt, G. G.: U.S. Pat. 3, 567, 703(1971).

4. Ratzch, M. and Grundmann, H.: U. S. Pat. 3441628(1969).

5. Shin, D. K., Kim, Y. C., Shim, S. M. and Choi, J. W.: “A Study on the Preparation of Medium Molecular Polyethylene Wax,” MOST(1983).

6. Nishimoto, H. and Chida, A. E.: Japan Open Patent Notice, 3-62804 (1991).

7. Rice, F. O. and Kossiakoff, A.: J. Am. Chem. Soc., 65, 590(1943).

8. Guy, L. and Fixari, B.: Polymer, 40, 2845(1999).

9. Uddin, M. A., Koizumi, K., Murata, K. and Sakata, Y.: Polymer Degra- dation & Stability, 56, 37(1997).

10. Murty, M. V. S., Grulke, E. A. and Bhattacharyya, D.: Polymer De- gradation & Stability, 61, 421(1998).

참조

관련 문서

Silicon tetrachloride (43 mmol in excess, 5 mL) was added dropwise to the mixture at liquid nitrogen freezing temperature (-196 o C) and allowed to warm up and stirred for 12

Manual Handle Interrupt AI-Nano Contouring Control Data Server.

Upon thermal contact between two objects at different temperature, thermal energy transfers from the object at higher temperature to the other object at lower temperature

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&amp;P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

The dipole alignment exhibits a greater thermal stability even at 10 o C higher than T g , and there is no SHG decay below 125 o C due to the partial main- chain character

The best sorbent with high sulfur removing capacity and resistance to the deactivation at high and middle temperature was the alumina supported sorbent pretreated at 800 o