• 검색 결과가 없습니다.

îšfö ~‚ ¾žV ’V~ PbS «¶~ W

N/A
N/A
Protected

Academic year: 2022

Share "îšfö ~‚ ¾žV ’V~ PbS «¶~ W"

Copied!
4
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000, pp. 43-46 (Journal of the Korean Institute of Chemical Engineers)

43

îšfö ~‚ ¾žV ’V~ PbS «¶~ W

šW>Á–W" W&&v "& z"

(1998j 8ú 11¢ 7>, 1999j 10ú 8¢ j)

Synthesis of Nanocrystalline PbS Particles in Reverse Micelles

Sungsoo Lee and Sung Min Cho

Department of Chemical Engineering, SungKyunKwan University, Suwon 440-746, Korea (Received 11 August 1998; accepted 8 October 1999)

º £

îšfj šÏ~ ¾žV ’V~ PbS ã¶& W>î. ꚂWB‚B AOT¢ Òς ‚öfböB

;WB îšff b>º b" AOT~ jö V¢ îšf~ ’V& ¢æ² >– š¢ šÏ~ W>º PbS ã

¶~ ’V& –.F > ®êƒ ~&. WB PbS ã¶~ ’Vº b" AOT~ jž w 8j 1öB 8ræ æzÚö V¢ ï ’V& £ 18 çöB 31 ç ;êræ æzF > ®rj &. ¾ w 8š 10 šçöBº îšfš n

;~æ pj z× – ’V~ PbS 㶢 áj > ìî. ;W>º PbS ã¶~ çã" w 8f F;'ž jf&ê¢

&b–  jfç>º 1.8‚ ’šr.

Abstract−Nanocrystalline PbS particles were synthesized in reverse micelles. The size of reverse micelles derived from a functional surfactant AOT was controlled by changing the water-surfactant molar ratio(w=[H2O]/[AOT]), and so the PbS syn- thesis reaction was allowed to occur only in the reverse micelles. The average sizes of PbS nanocrystals were in a range of 18ç-31ç in diameter, when the value of w changed from 1 to 8. At the higher values for w, the reverse micelles were not so stable that it was impossible to obtain the larger PbS nanocrystals controllably. The diameter of PbS nanocrystals was found to show a linear proportionality to the w value, of which the constant was 1.8.

Key words: Reverse Micelles, Nanocrystal, PbS, Microemulsion, Surfactant

1. B †

PbSº IV-VI— >êڂB ö.æ Zš Ö ·j "‚ 'ž

F ¦ÂV ~ ß>‚ Ïê~ 7²¶~ Òò‚ ÒÏ>Ú z[1, 2].

PbSº ö.æ Zš çNöB 0.41 eV‚B £ 3.0µm š~~ 2 Ëj &ê j Îv ‡>~V r^ö ¦;ïj jÚ ·*æf ? f 7*Vz ²¶~ Òò‚Bº ‚ÏWö B£š ®Ú z. 

¾ bî~ ’V& ¾žV ’V‚ ·j^B >êÚ ã¶~ ’V&

exciton~ Bohr çã" jÝšæš ¾æ¾º ·¶’³Î"(quantum confinement effect)‚ žš bî~ ö.æ Zš 6N æ² >

š ¾žV ’V~ PbS 㶢 W~ 7²¶‚~ ‚Ï &

ËWö &‚ ’& ‚B® ê¯> ®[4-9]. PbS~ ãÖö š

‚ ·¶’³Î"º 105B~ ö¶ ’Vž £ 18 nm ;ê~ ’VöB

¾æ¾º ©b‚ rJ^ ®[6].

¾žV ’V~ >êÚ 㶢 W~V *š  &æ O»š

;’>Ú ‚Ï> ®æò  ’öBº îšf(reverse micelles)

j ¾žV ’V~ z>wV‚ ‚Ï~ >êÚ ã¶~ ’V¢

êÏ® Bچ > ®º ‚öfb(microemulsion) O»j ÒÏ

~&[5, 7, 8]. š îšfj šÏ‚ ¾žV ’V~ 㶠W f "‚ z' Wš F҂ CdS ~ II-VI— >êÚ¾ .³ã

¶ ö “‚>Ú ’>îb¾ ‚"öº PbS ~ zb öê 'Ï>Ú ôf ’[1, 10]& >¯> ®. ¾ ‚"~ ’Ö"

ö Všš PbS~ ãÖöº îšfj šÏ~ ¾žV ’V~ «

¶~ ’V¢ –.~V ÚJÚ ©b‚ rJ^ ®b–  šFê «{

® C&ææ pf çš. PbS ã¶~ ’Vº >w*ö ~š

Bò –.š &Ë~– îšf~ ’Vö ~šB W>º PbS ã

¶~ ’V¢ B‚~æ á~º ©b‚ >Ú ®[1].

 ’öBº ꚂWBž AOT¢ Òς îšf~ ’V¢ w 8(w=[H2O]/[AOT])ö V¢ æzB W>º PbS ã¶~ ’V¢

–.† > ®rj ÚÚ¶ ~&. B :ö Všš b" êš

‚WB~ jž w 8ö V¢ îšf~ ’V& Ö;>–  ç&&

êº îšf~ >ã" w 8š ç7 jf&ê& ®º ©b‚ rJ

^ ®[7].  ’öB îšf ÚöB WB PbS~ ’Vº ç7 TEMj ۚ {ž~æº p~b¾ ¶žF/&7F ª7V¢ ۚ &

VB ‡>2Ë" š†'b‚ êÖB PbS ã¶~ ö.æ[4, 11]b

E-mail: smcho@yurim.skku.ac.kr

(2)

44 šW>Á–W"

z B38² B1^ 2000j 2ú

‚¦V ã¶~ ’V¢ Fº~&.

2. þ

¾žV ’V~ PbS ã¶~ Wj *š ꚂWBž AOT[Ae- rosol OT : sodium bis(2-ethylhexyl) sulfosuccinate]¢ ÒÏ~ îš

þöB AOT¢ ÒÏ~ îšfj ;W‚ šFº AOT ¶Ú& n;

B¢ ÒÏ~æ pjê jv' n;'š¢º ßûj &æ ®V r^

š. îšf~ ’Vº b" ꚂWB~ ³ê~ jž w 8j æz

ʚB –.~&. PbS ã¶~ Wö ÒÏB £f Pb(NO3)2f Na2SÁ9H2O&b– ''~ £j ö~º ³ê~ >χb‚ ò

AOT 0.1 mole" n-heptane 100 ml¢ b~ n-heptane ÚöB AOT

îšfš ;W>êƒ ~&. v B~ >wb~ jž x 8(x=[Pb2+]/

[S2]) 3)2f

Na2SÁ9H2O¢ '' 4.0Ü103M" 1.6Ü102M~ ³ê‚ ~(x=0.25)

£ 3* šç ÏR~² v>Î ê ~¾~ χj ž χö ‡' ç‚ ® b~šB v>j ê³~ š² Df ê ;WB  îšf Ú¦öB PbS~ W>wš ¢Ú¾êƒ ~&. šr PbS~  ö ~‚ 'Ëj VB~V *~ ž¦öB š –Ò>æ pêƒ z

² ~V *šB Î þf çN(25oC)öB >¯>î. w 8š 1‚

¦V ·~ 6N Ã&Žö V¢ R«~² šº öfb χf + f ž¦ ïöB¦V ÿf .ïb‚ 6N æz~– ß® w 8š 9šç

š >š îšf~ ’V& ^ öfb~ n;ê& 6²~– PbS 

8j 1öB¦V 40ræ æzʚB PbS 㶢 WV. >w

*j rjV *š v îšf~ χj b‚ ê 30ªš æ¾ B¦V 30ª *Ïb‚ ‡>Ê¿Þ"j G;~&b– ‡>Ê¿Þ"~

æz& ìÚæš >wj «ò~&.

¾žV ’V~ PbS χj ªö‚ áÚÚV *š Wš jòB PbS öfb χö zêRj BB® Î&~ š χj ¾ b~

š Zï~ R«‚ n-heptane [, ^‚ PbS¢ ŽF~º zêR [,

Ò  Қö WB PbS «¶& w÷B ^ B~ [b‚ ªÒB

 ® öªÒ¢ >~ PbS «¶¢ áî. š‚ ";j –

‚ PbS ªöf w 8ö V¢, ¯ «¶~ ’Vö V¢ ž¦ïb‚¦V J2æï, .ï, ¦fï   &æ ïj n.

3. Ö" 5 V

š‚ îšff bš šÒ~–¾ _f šÒ~æ pz¢ê ;W>

Vº ~æò bš ìº ãÖöº îšf~ ’V& Ö ·–¾ _

b‚ – îšfš ;W>– ꚂWB~ W¦& b" ֏~

²* “water pool”š¢ ®ÒÖº îšfš ;WB. š‚ î

šf~ ;Wö ®ÚB &Ë 7º‚ æ>º b" ꚂWB ³ê~

j(w=[H2O]/[ꚂWB])š.  ’~ &çêž b" ꚂWB

ž AOT~ jö V¢ χ Úö ;W>º îšf~ ’Vº r~

" ?š F;'b‚ æz~º ©b‚ rJ^ ®[7].

D = aÁw (1)

VöB Dº «¶~ çã, wº [H2O]/[AOT], Ò aº jfç>

š. bö '' ϚB >wbž Pb(NO3)2f Na2SÁ9H2Oº bB

îšf Ú¦öB B‚ >wš ¢Ú¾² >– îšf Ú¦öB ¢ Ú¾º PbS «¶~ W>wf *~ ã"ö V¢ ê³ ê¯>&

îšf Ú¦~ >wb~ 6²ö V¢ «òB. šr >wö ~š

;W>º PbS «¶~ ’Vº ;WB îšf~ ’V 5 .Vö  /š& >wb~ ³êö ~š B‚B. šº z>wš >wV~

’V 5 >wb~ ³êö J®º ©" îR&æš. Fig. 1öº x=0.25, w=7ž ãÖö W*ö Vž χ~ ¶žF/&7F '

~ ‡>Ê¿Þ"~ æz¢ &. ‡>Ê¿Þ"f Wj ·~š

B¦V 30ª *‚ W– Úö ®º öfb ç~ PbS ò¢

öB r > ®º :f ?š >w*š £ 3-4*šç ã"~š ; W>º PbS ã¶& îšf~ ’Vö B‚>Ú z šç ææ p

–¾ _f >wbš –~ ²Î>V r^ö ‡>Ê¿Þ"~ æz& / Ï® 6²~º ©j {ž† > ®. PbS W>wš *ö V¢

ê³ ê¯>Ú îšf Ú¦ö PbS «¶& ;W>V ·~šB ¶

žF '~ ~ ‡>¢ šº Ê¿Þ"š áÚæV ·~ 

*~ ã"ö V¢ 6N &7F '~ ‡>& Ã&~º Ö"¢ 

ž. „B J«‚ :f ?š ²’ç~ PbS ö.æf çNöB 0.41 eV‚ ‡>2Ëf 'žFö š~æò PbS «¶~ ’V& Ö

·j^B ¾žV ’V& >š ·¶’³Î"‚ žš ö.æf ’

² Ã&~² B[3]. âöBê r > ®º :f ?š >w~ .V ö ;WB PbSº  ’V& Ö ·j – ö.æj &æV r^ö

¶žF '~ ‡> Ê¿Þ"j š² >æò *ã"ö V¢ «

¾ «¶~ ’Vº >wbš Ϫ® /B ãÖöº îšf~ ’ V š~‚ B‚>V r^ö Ϫ‚ >w*~ ã" êöê ‡>Ê¿

Þ"š z šç Ë2Ë ãb‚ æz~æ(red shift) p ;æ~² B . š‚ Ö"‚¦V îšfj šÏ~ ¢;‚ ’V¢ &æº ¾

žV ’V~ PbS ã¶~ Wš &ˎj r > ®.  ’ö Bº îšf Ú¦öB PbS ã¶~ Wj *‚ Ϫ‚ >w*

b‚B  &æ w –šöB ÿ¢~² £ 3-4*j F~&.

x 8j 0.25‚ ;~ '' w 8~ æzö Vž >w «ò ê~

‡>Ê¿Þ"~ æz¢ Fig. 2ö ¾æÚî. >wf >w· ê £ 3-4* êö «ò~&b– W–ö ®º öfb ç~ PbS «¶

îšf~ ’V&  (1)" ?š F;'b‚ Ã&~– šö V¢ ;W

>º PbS ã¶~ ’Vê Ã&† ©b‚ .GB :f îR&æ‚, w Fig. 1. Absorption spectra of PbS particles prepared from the solution

after different length of time.

(3)

îšfö ~‚ ¾žV ’V~ PbS «¶~ W 45

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000 8~ Ã&ö V¢ ‡>Ê¿Þ"f Ë2Ë ãb‚~ æz¢ ž. š

‚ Ö"º w 8~ Ã&ö V¢ z× – PbS ã¶& áÚæV r^ö Ë2Ë ãb‚~ æz¢ šº ©b‚ šš>– B‚ á Úê öfb χê w 8~ Ã&ö V¢ Ÿïb‚¦V ž¦ï, J2 æï, ¦;ïb‚ æz~º ©j Gnb‚ &V† > ®î. š Ö

"º îšf~ ’Vö V¢ W>º PbS ã¶~ ’V& –.F

> ®rj šº ©b‚B, PbS ã¶~ ãÖöº CdS ã¶~

W"º Ò îš’‚öfb»b‚ ã¶~ ’V& –.>V Ú[

㶢 ¢~² ;W~V *~ x 8j 0.25‚ ;Ê w 8

10šçb‚ ê ãÖöº &7 'öB š² ~ ‡>& ¢ Ú¾º ©b‚ j îšfš n;~æ p B‚ ž ’V~

PbS

>wš ·N" ÿö – çãj &æº ¦;ï~ «¶& ;W>º

©j Gnb‚ &V† > ®î. Fig. 2~ ‡>Ê¿Þ"öB  &

æ w 8ö &~ ~ ‡>& ·>º 2Ëj Ö;~ š‚¦V ''~ ãÖö &‚ ö.æ Zj ’~&. 6‚ š ö.æ Z

b‚¦V «¶~ çãj š†'b‚ êÖ~ Fig. 4ö ¾æÚî.

PbS ã¶~ ãÖö FÎîï"Ò»(effective mass approximation)j Òς particle in a box modelf 100 ç š~ ’V~ «¶ö &š

B ¾ æ pº ©b‚ rJ^ ®[4]. V¢B ¢>'b‚ š¢ æ

;‚ hyperbolic band modelj ÒÏ~² >º– š¢ šÏ~ «¶

~ çãj ’~š jv' ·f ’V~ PbSê ¾ º ©b‚ rJ^

®b–  Ö"º  (2)f ?š "Úê[11].

(2)

 (2)öB ∆Eº ¾žV ’V~ PbS ö.æ Zš, Egº

bulk ç~ PbS ö.æ Zš. Dº «¶~ 檚– m*º F

Îîïb‚B PbS~ ãÖ FÎîïf m* = 0.085 meš. Fig. 4öB

ž :f ?š .ç®~ &‚ «¶~ ’V& w 8ö V¢ F;'b

«¶~ ï ’Vº £ 18 çöB 31 çræ æz~&b– ï ö.

æ ZSf 3.07 eVöB 1.79 eVræ æz~&. w 8š 10 šç

š >š îšf~ ;Wš ®n;~ ¢;‚ ’V~ PbS «¶&

;W>æ pV r^ö  šç~ 8öBº «¶~ ç㚾 ö.æ Zj ’† > ìî. Fig. 4f ?š «¶~ ’Vº w 8š Ã&

Žö V¢ Ã&~–  VÞV aº 1.8 ;ê‚B[7] ꚂWBž

AOT~ ’–¢ J‚ š†'ž model‚¦V êÖB 8ž 3.0

£ 60%;ê Ôf Ö"¢ &.

PbS ã¶~ Wö 'Ëj "º æ>º w 8 šžö >wb~ j

ž x 8 (x=[Pb2+]/[S2])

∆E Eg2 2h2Eg(2π⁄D)2 ---m∗

+

1 2

=

Fig. 2. Absorption spectra of PbS particles for different water/surfactant molar ratios.

Fig. 3. Absorption spectra of PbS particles for different water/surfactant molar ratios; (a) w=8, (b) w=10, (c) w=20, (d) w=40.

Fig. 5. Absorption spectra of PbS particles for different [Pb2+] / [S2−] molar ratios; (a) x=0.25, (b) x=1.0, (c) x=2.0.

Fig. 4. The dependence of PbS particle diameter on the water content and optical bandgap of the particles. The optical bandgap of the particles was calculated from the hyperbolic band model as a function of the particle diameter.

(4)

46 šW>Á–W"

z B38² B1^ 2000j 2ú

zö &‚ Ê¿Þ"~ æz¢ Fig. 5ö ¾æÚî. ò~ jº 30 ª *‚ ~&b– x 8š 1¢ rf 2¢ rº >w*š 2-3*

;ê ²º>î. x 8~ æz¢ *šB Pb2+~ ³êº ;Ê

S2−~ ³ê¢ 6²V. PbS ã¶~ W >wj *‚ ·†jž

x=1ž ãÖö 7‡>êº ¶žF 5 &7F 'öB *Ú'b‚

š‚ Ö"¢ ۚ x& ·†j šçb‚ š ãÖö îšfš n

;~æ pj W «¶š – w÷Ú¢ ;W~º ©b‚ 6† >

šF¢ rjV *šB ꚂWB¢ Iæ pf þ–šb‚ >Ï

‡ çöB PbS¢ Wš ~. x 8š 1 šçb‚ – ãÖöº >

wbj I¶î¶ «¶~ Ž* *çj &V† > ®î. >š, x 8

š 1 š~ž ãÖöº >wš BB® ê¯>šB «¶~ ’V& · j >χ Úö Ú¶ ;ê ªÖB ç¢ Fæ~º ©j &V~&.

V¢B x 8š 1 šçb‚ æº ãÖöº W>w~ ³ê& Ã&

~– «¶~ ’Vê æV r^ö öfb~ n;Wf 6²~º © b‚ º†š " > ®.

w 8š 5¢ r WB PbS 㶢 ªÒ‚ ê  .r2¢ Ò Ï~ zêRö š² ªÖ~ 7‡>Ê¿Þ"j áÚ 2Ëö V

ž «¶~ ‡>ª¢ –Ò~&. šö &‚ Ö"¢ Fig. 6ö ¾æÚ î. áÚê ªö «¶º ªÖB ç~ ªö jš z – «¶&

ôj z – 2Ë 'öB ¸f ‡>ê¢ &. š‚ šFº «

¶~ ªÒ";öB w÷>æ pf ç‚ zêRö ªÖ>Ú ®º Ö ^‚ «¶~ ªÒ& £æ p~V r^š.

 ’¢ ۚ ¾žV ’V~ PbS 㶢 ‚öfbj ۚ B–~&. B–B PbS «¶º  ï ’V& £ 18-31 ç

;ê‚ ¾æÒ  šç~ ’Vº Òς ꚂWBž AOTf n- heptaneê~ ‚öfbš n;~æ pV r^ö –.š ®&Ë

~&.  ’¢ ۚ ‚öfb Úö ;W>º îšf~

’Vö V¢ PbS~ 㶠’V& ¾žV ’V 'öB –.F

> ®rj &.

4. Ö †

‚öfbj ÒÏ~ IV-VI— >êڞ PbS¢ ¾žV ’ V~ 㶂 W~&. ‚öfb Úö ;WB îšf~

’Vº b" ꚂWB AOT~ jž w 8ö V¢ F;'b‚ Ã&

~– îšf Ú¦öB ¢Ú¾º PbS W>wf š îšf~ ’ V‚ B‚>º ©j {ž~&. îšf Ú¦öB ¢Ú¾º PbS  W>wf *~ ã"ö V¢ ê³ ê¯>Ú PbS ã¶~ ’V&

j {ž~&. WB PbS 㶺 w 8j 1öB¦V 8ræ æz

~  ï ’V¢ 18 çöB 31 çræ –.† > ®îb–  ’ V šç~ 㶺 z ¸f w 8öB îšfš n;~æ pV r

^ö áj > ìî. WB PbS ã¶~ çã" w 8f F;'ž

jf&ê¢ &b– jfç>º 1.8‚ ¾æÒ.

^^ò

1. Ogawa, S., Hu, K., Fan, F.-R. F. and Bard, A. J.: J. Phys. Chem. B, 101, 5707(1997).

2. Chaudhuri, T. K.: Int. J. Energy Res., 16, 481(1992).

3. Nozik, A. J., Williams, F., Nenadovic, M. T., Rajh, T. and Micic, O. I.: J. Phys. Chem., 89, 397(1985).

4. Nosaka, Y.: J. Phys. Chem., 95, 5054(1991).

5. Petit, C. and Pileni, M. P.: J. Phys. Chem., 92, 2282(1988).

6. Wang, Y. and Herron, N.: J. Phys. Chem., 95, 525(1991).

7. Pileni, M. P.: J. Phys. Chem., 97, 6961(1993).

8. Petit, C., Lixon, P. and Pileni, M. P.: J. Phys. Chem., 94, 1598(1990).

9. Murray, C. B., Norris, D. J. and Bawendi, M. G.: J. Am. Chem. Soc., 115, 8706(1993).

10. Torimoto, T., Sakata, T., Mori, H. and Yoneyama, H.: J. Phys. Chem., 98, 3036(1994).

11. Wang, Y., Suna, A., Mahler, W. and Kasowski, R.: J. Chem. Phys., 87, 7315(1987).

Fig. 6. Comparison of the normalized absorption spectra of (a) PbS particles in microemulsion with (b) PbS particles extracted from the microemulsion.

참조

관련 문서

In the present study, porcine skin was treated with Super-H 2 O or Sub-H 2 O and the hydrolyzing activity of Super-H 2 O and Sub-H 2 O was compared by determining

The size and the shape of Co nanoparticles could be easily controlled by changing the water contents and micelle concentrations, and the solubility of Co

W가 매우 작고 energy band structure도 급격히 변하므로 작은 reverse bias에서도 W 내에 큰 electric field가 걸리게 되어 p-영역의 V B 에 있는 많은 electron이.. W 내에

The DPH-THF photoadducts 11-14 were isolated by a normal phase HPLC using a Lichrosorb Si-60 column and w-hexane/diethyl ether (7/1, v/v) as an

PRD-66, known as a good filter element at high temperature, pre- sented good properties for SCR catalyst carrier since it contains a great deal of active surface material such as Al

In this paper, it was carried out with the methods of com- parison: (i) Changing the L/V (liquid-gas flow ratio) and F (gas phase loading factor) respectively, and illuminating by SO

Under the optimum condition (reaction temperature (80 o C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additives (0.10%, v/v)), DESs as additives

Abstract−The performance of V 2 O 5 /TiO 2 -based commercial SCR catalyst for the oxidation of gaseous elemental mercury (Hg 0 ) with respect to reaction conditions was