• 검색 결과가 없습니다.

Influence of Stoichiometry and Reaction Time in the Barium Hexaferrite Synthesis by Supercritical Water Crystallization Method

N/A
N/A
Protected

Academic year: 2022

Share "Influence of Stoichiometry and Reaction Time in the Barium Hexaferrite Synthesis by Supercritical Water Crystallization Method"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

.ªê> Ö;z»öB öò ³êj 5 >w*š :Ž Ò¾¢šÞ B– ßWö ~º 'Ë

BBÏ*Ážß×Á;çêÁ;²ê*

*ÏÎ&v z"

‚“ö.æVF’² ö.æ~ã’¦

(1999j 8ú 25¢ 7>, 1999j 9ú 14¢ j)

Influence of Stoichiometry and Reaction Time in the Barium Hexaferrite Synthesis by Supercritical Water Crystallization Method

Soon-Yong Seo*, Seung-Wook Rho, Sang-Do Park and So-Jin Park*

*Department of Chemical Engineering, Chungnam National University Energy and Environment Research Department, Korea Institute of Energy Research

(Received 25 August 1999; accepted 14 September 1999)

º £

&ê ¶VVƒ ڂ ÒÏ>º :Ž Ò¾¢šÞ~ .ªê> Ö;z B– ;öB «¶ ßWö 'Ëj ~º Fe/

Ba ³êjf >w*ö &‚ 'Ëj ²ª >wV¢ šÏ~ V~&. >wb‚º Fe(NO3)3Á9H2Of Ba(NO3)2 Ò KOH¢ ÒÏ~&b–, >wV‚º 35 cm3²ª >wV¢, & ڂº molten salt bath¢ šÏ~&b–, WB

«¶~ ç(phase)" ;çf XRD 5 SEMj ÒÏ~ &V~&. .ªê> Ö;z»b‚ BaOÁ6Fe2O3¢ W~º ãÖ, BaOÁ6Fe2O3~ W>wf j·†' z>w ア Všº ©š {ž>îb–, :Ž Ò¾¢šÞ~ '; W ³êj º 2ßFe/Baß7~ º*&. >w* GšöBº 5ª šÚ~ †ž * Úö ¢;‚ ’V~ Ö;š <ºÚæ–, >w

*š Ã&~ê z šç~ Ö; W˚ ¢Ú¾æ prj {ž† > ®î. šº .ªê> –šöB~ †ž &>ªš, z

֏ 5 î>>wö Vž>º ©b‚ Ö f >w*b‚ê BaOÁ6Fe2O3¢ W† > ®rš «Nb‚Ž,  .

Abstract−Barium hexaferrite, which have been used as the magnetic material for high density recording media, could be prepared from aqueous suspensions containing ferric nitrate, barium nitrate and potassium hydroxide by supercritical water crystallization method. In this process, the effect of the Fe/Ba and the reaction time on the size, morphology and phase of prod- uct were investigated with batch reactor of 35 cm3 heated in molten salt bath. The morphology and the phase of the fine par- ticle produced were observed by a scanning electron microscope(SEM) and X-ray diffraction(XRD). In this experiments, we could identify that BaOÁ6Fe2O3 is produced through the path of nonstoichiometric reaction and the optimum molar ratio of Fe/

Ba is from 2 to 7. The crystallinity of BaOÁ6Fe2O3 obtained at a short reaction time(<5 min) was very good and then the growth of particles were not observed in spite of the reaction time increase. These are due to the rapid hydrolysis, fast chem- ical bonding and dyhydration reaction under supercritical water condition. Also, it is thought that supercritical water crystal- lization process could be developed as a continuous process as the fact that barium hexaferrite could be successfully synthesized at a very short reaction time under supercritical water condition is identified.

Key words: Barium Hexaferrite, Supercritical Water, Crystallization

1. B †

:Ž Ò¾¢šÞ(barium hexaferrite)º ª¶š BaFe12O19š,

’–š BaOÁ6Fe2O3š– G'~ Ö; ’–ž M;(magnetoplum-

bite)~ ¾¢šÞ‚Ž, z'b‚ Ö n;~– Ò¾ ¶W pigment

 R ¶zNš ¸, ¶Kš ’–, 6‚ &Ϛ &Z~æ‚ J Ñÿn '’¶Cb‚ ÒÏ>Úz. 6‚ :Ž Ò¾¢šÞº

SFD(Switching Field Distribution)8š Ö §, ÚÖzW, Ú¦

Wš Ö>‚ ßûj &æ ®j ö jî¢ ¶z Ϛ»š V6ö >

çšV r^ö «¶ ’V& 0.03-1µm ;ê‚ Ö ·b– 6çj (aspect ratio) 6‚ 3-10;ê~ Ïb‚ B– &Ë~š >ç¶WVƒ

Ajz[1].

:Ž Ò¾¢šÞ¢ B–~º ;b‚º '’¶C B–¢ *‚

Ò¾ ;ž melt coprecipitation ;j > ®b–, &ê V

ƒÒò B–¢ *‚ ;b‚º >»(hydrothermal method)[2, 3]"

E-mail: sdopark@sun330.kier.re.kr

(2)

z B38² B1^ 2000j 2ú

®º î‚Ú Bv~ .ªê> Ö;z(supercritical water crystallization)

;[4] BBö &š Îjæ ®. VB .ªê>¦ Nêf { Kš ªê6(Tc=374.3oC, Pc=221 bar) šçž ç~ bj ~~º

©b‚Ž š‚ .ªê>º Nêf {K~ 'f æzöê &êf 6 ê& ’² æ~, ZVb~ Ϛêf F*ç>(dielectric constant)&

V¢B  ’öBº ³ .ªê> Ö;z ; BBö „B

²ª >wV¢ šÏ‚ .ªê > –š~öB 7º >wæ>ž, Fe/

Ba ³êj 5 >w * ~ æzö V¢ W>º :Ž Ò¾¢

šÞ «¶~ ßWj V~¶ ~&.

2. þ

þË~º { >wV, &–(molten salt bath), ï'–(water bath)

‚ ’² ’ª† > ®.

{ >wVº SUS316 Òî‚ Ú¦ Ïïf 35 cm3š–, >wV Ú¦~ Nê¢ G;~V *~ K-; *&¢ J~~&, {Kf NOSHOK(Germany) {Kê 5 pressure transducer(9368612, XPRO Co.)

¢ šÏ, ç^ j~ G;~&. &–º >wV Ú¦~ Nê 5 {Kj /³® çßÊV *~ ÒÏ>º ©b‚, KNO3f

(2)

ꂦV êÖB ·~ öò >χj "«‚ ê >wV¢ &öÎ . &öB >wV¢ >wNê‚ Fæ> ®º &–ö IÚ ¢;

‚ *ÿn >wÎ. >wNêræ ê~º –º ï 3ª ò

~ *š ²º>–, *ö Vž >wV Ú~ ßN ³êº expo- nential

¢ molten salt bathö " 6¦V >wš «ÖF rræ~ *

b‚ ;~~&b– šº >wNêræ ê~º ßN*  f

>w*j V~V *ŽöB &. >w*š 1ª¢ r~ >wV Ú~ Nêº 330oC&. >w «Ö êöº ³® ï'–ö >wV

¢ "«~ z šç >wš ê¯>æ pêƒ ~&b– >wš «ò B ê >wV Ú~ WB «¶º Ã~>‚ 3² ^¿~, šÚB  öêR‚ 2² >^~ >w~ Ba¢ B–‚ ê š–VöB(100oC) 12* &ï š–‚. š–B «¶~ –Wf X-ray diffractometer (Rigaku, 30 kV-25 mA, CuKα radiation)¢ ÒÏ~ {ž~&b–, SEM(Philips, XL-30) G;f ï~ ò¢ ethanolö ªÖÎ ê glass holderö ê‚ ê ion coater¢ šÏ~ Au coating‚ ê 1-2 ò VN‚ «¶~ ’V 5 ;çj &V~&.

3. Ö" 5 V

3-1.Ë~ ßW þ þf 400oC

þ–šö º ³ê‚ B–B Ba(NO3)2>χ, Fe(NO3)3>χ 5 KOH >χj '' 8 mlO(total 24 ml) >wVö "«~ þNê ö ê~² ‚ ê, ¢;* >wÎ ê >wj «Ö~ Ë~ßW

60ª* 3² þ‚ Ö"ö &‚ SEM Òêb‚B Fig. 2öB " >

®š, (a), (b), (c)~ ãÖf ?š «¶ Wª, ’V 5 ; Gšö B Nš6j B҆ > ìÚ Ë~ßW 5 Ò*W þöBº ò—†

ò‚ Ö"¢ ¾æÚ ®î.

3-2. Fe/Ba ³êj 5 >w*ö Vž Wb~ æz

>W»š¾ .ªê> Ö;z»" ?f ‡ç ;öB Baf Fe

‚¦V BaOÁ6Fe2O3¢ W~º >wf ¢>'b‚  (3)" ?

š ¾æÞ.

(3)

¾, &¦ª~ ;öB Baf Fe¢ ·†j‚ "«~º ãÖ, BaOÁ

R [KOH]

2 Ba NO[ ( 3)2]+3 Fe NO[ ( 3)3] ---

=

Ba OH( )2+12Fe OH( )3↔BaO 6Fe⋅ 2O3+19H2O Fig. 1. Batch experimental apparatus.

1. Reactor 4. T, P indicator

2. Molten salt bath 5. Shaker

3. Water bath 6. Mover

(3)

6Fe2O3º W>æ p α-Fe2O3 ¢çš W>–, "ï~ Ba¢

"«~¢ BaOÁ6Fe2O3& W>º j·†' z >wb‚ rJ

^ ®. š‚ *çf ç&'b‚ †ž &>ªš 5 î> >w ³ ê¢ &æº Fe Wªš α-Fe2O3‚ WB ê, α-Fe2O3~ ‚šöB¦

V χ 7~ Ba Wª" >w~V r^b‚, >wNê, {K –šö B Ba Wª~ Ϛêf &7‚ &ê¢ &æ ®º ©b‚ rJ^

®. V¢B,  ’öBº Ba¢ "ï(excess)b‚ "«~ Fe/Ba

êj& 0.5ž ãÖ >w*š ã"Žö V¢ Wbf BaOÁ6Fe2O3

BaOÁ2Fe2O3BaOÁ6Fe2O3~ Wª æz& ¾æÒb–, Fe/Ba ³ êj& 12ž ãÖöº α-Fe2O3α-Fe2O3, BaOÁ2Fe2O3α-Fe2O3~ Wª æz& ¾æÎj {ž~&. ¾, Fe/Ba ³êj& 2f 7ž

ãÖöº *~ æzö &êìš BaOÁ6Fe2O3 ¢ç~ Wbj

>w *" Fe/Ba ³êj Îv~ 'Ëj Aº ©b‚ ¾æÒb–, þÖ" 7 ß® Fe/Ba ³êj& 0.5f 12ž ãÖ Â]‚ ç~ *

~j " > ®îbæ‚ ÖF Fe/Ba ³êj& 0.5 5 12¢ r *

ö Vž Wb~ æzö &~ V~¶ ~&.

Fe/Ba ³êj& 0.5ž ãÖ, *ö Vž >w Wb~ Wª æz

¢ ¾æÚ ®º Fig. 3öB " > ®š, >w *š 1ªž ãÖ,

Wbf BaOÁ6Fe2O3~ peak¢ ¾æÚ ®b¾, j*‚ Ö;š <

ºÚæV š*~ Z;; çf F҂ ç‚ šÒ~–, *š Ã

&Žö V¢ ϚÁÒÖ;~ ";j –~º ÿn BaOÁ2Fe2O3f BaOÁ xFe2O3(2<x<6)~ bb‚ šÒ~–, Ϫ‚ *š ã"‚ êöº

 n;‚ ç~ BaOÁ6Fe2O3¢ W~– ï;ö ê~² B.

š‚ Ö"º Fe/Ba ³êj& 0.5ž ãÖ Ba Wªf z ·†jö j~ &® – ³ê¢ <V r^ö Fe Wª" FÒ~–¾ 6º z× – ‚ÿê¢ ¾æÚV r^ö, >w .V n;‚ ç~ BaOÁ 6Fe2O3¢ ;W~&&, Ba Wªj z× ôš ŽF~º & n;ç

~ BaOÁ2Fe2O3f BaOÁxFe2O3(2<x<6)~ ç¢ –~–, ‚«'b

‚ &Ë n;‚ çž BaOÁ6Fe2O3¢ W~º ©b‚ 6B.

Fig. 4º Fe/Ba ³êj& 12ž, z ·†j(stochiometric)‚ "«

‚ ãÖ~ >w Wb æz¢ ¾æÚ ®. Fe/Ba ³êj& 12ž

ãÖº Fe/Ba ³êj& 0.5ž ãÖfº çš~², Fe~ >wWš z

× Ö>~² ¾æ¾V r^ö, >w *š f 1ª~ ãÖöº †

ž Fe Wª~ >wö ~~ ž7š ®º Ba Wªš Ž>Ú ®º BaOÁyFe2O3(y<2)f α-Fe2O3¢ W~æò, *š ã"Žö V¢, Fig. 2. SEM micrographs of products at Fe/Ba molar ratio of 2 and

reaction time of 60 min.

Fig. 3. XRD patterns of products at Fe/Ba molar ratio of 0.5 with var- ious reaction time.

Fig. 4. XRD patterns of products at Fe/Ba molar ratio of 12 with var- ious reaction time.

(4)

z B38² B1^ 2000j 2ú

>wb‚ šC~&.

(4)

¾, šf Fe/Ba~ ³êj& 8ž, 220oCöB~ þòj >¯

4.5Fe2O3, 5BaOÁ4Fe2O3  7* Wb~ šÒ ¦ö &‚ ¢~

& –†>î[2, 6]. š‚ 7*Wb~ ;Wf Fe/Ba~ ³êjö Vž Fe 5 Ba Wª~ ‚ÿêf þ Nêö Vž α-Fe2O3f Ba Wª~ ֏ 5 î>>w ³ê Nšö Vž~º ©b‚ 6>–, BaOÁxFe2O3(x<6)~ 7*Wbj –ö BaOÁ6Fe2O3¢ W~º

(5)

3-3.:Ž Ò¾¢šÞ~ ;çö &‚ Fe/Ba ³êj 5 >w*

~ 'Ë

Fig. 5º Fe/Ba ³êjö Vž WB BaOÁ6Fe2O3~ SEM Òê

š–, Fe/Ba ³êj& 0.5ž ãÖ WB BaOÁ6Fe2O3~ ãÖ¢ 

Ž~ jv~V *~ 360ª~ >w *ö WB Ö"¢ >ƒ~

&. Fig. 5öB " > ®š WB BaOÁ6Fe2O3~ «¶ ’Vº Fe/Ba ³êj& '' 0.5, 2, 7ž ãÖ £ 0.5µm, 1µm, 5µm‚, Ba

³ê& Ã&Žö V¢ 6²Žj ¾æÚ ®. š‚ *çf Ba ³ ê& Ã&Žö V¢ Ba Wª~ ‚ÿê& Ã&~V r^ö, Fe Wª

š α-Fe2O3~ j*‚ Ö;j W~V *, 6º Ö;š WË~V * ö Ba Wª"~ b 5 î> ";j –öB j" ^‚ BaOÁ 6Fe2O3¢ W~V r^ž ©b‚ 6B. 6‚, Arai [4]~ "Ë ö ~~š BaOÁ6Fe2O3º Fe(OH)3 6º α-Fe2O3f (BaOH+)~ >

wö ~~ WB ~&bæ‚, Fe~ jNš ·jæš Fe(OH)3

6º α-Fe2O3¢ W~º– ²Î>º (OH) šN~ ·š ·jöö V¢, χ7ö Îj®º (OH) šN~ ³ê& ç&'b‚ Ã&>–, V¢B (BaOH+)f~ šÒ ï;š (BaOH+)~ ;W >w ãb‚ š ÿŽö V¢  ôf >~ BaOÁ6Fe2O3¢ W~V r^ö, ç&

'b‚ «¶~ ’V& ·jæº ©b‚ šC† >ê ®. š‚

Arai [4]~ "Ëf ¢>'b‚ C* ršN ³êj R8š Ã&~š

«¶~ ’V& ·jæ–, Wb~ ·š Ã&‚º *ç" ¢~~

®.

Fig. 6f Fe/Ba ³êj& 2ž ãÖ, *~ ã"ö Vž «¶ ’V

¢ jv~V *‚ SEM Òêj š ®. >w *š 1ªž ã Ö, G' 6;~ Ö;š j*® <ºÚææ pf ç~ «¶ ;¢

š ®b–, 5ªš ã"† rræ Ö;f /Ï® W˂. 

¾, šêöº >w *š Ã&~z¢ê Ö;f z šç WË~æ p b–, Ö;~ Wçf Ëç> ®rj " > ®. š‚ *çf Fe/

Ba~ ³êj& 7ž ãÖöê ÿ¢~² ¾æ¾ ®b–, ¢>'b‚

>W»öBº >~ ¸f {Ö ê>f &ê æzö ~‚ «¶

~ ϚÁÒC r^(Ostwald ripening)š¢ J«~ ®. 

¾V r^ö &ê& ·f .ªê 'öBº ¢Ú¾V Ú[º š F‚ š‚ J«ö ¦;'ž «Ëj ‚«~ ®b–, ßN ";ö

®Ú, jv' Ôf NêöB WB ·f Ö;*& w÷† > ®º

‚² *‚ W˂ ê, .ªê> –šöB w÷~ Ö; «¶¢  W~–, z šç~ Ö;WËf šÚææ p >Nj Ã&Ò >

Ëê, ³ Ë~¢ Û~ öò bî" >~ ç7 bö ~‚

2Fe OH( )3→α-Fe2O3+3H2O

α-Fe2O3+xBa OH( )2→BaO xFe⋅ 2O3+H2O BaO xFe⋅ 2O3+(6 x– )α-Fe2O3→BaO 6Fe⋅ 2O3

2Fe OH( )3→α-Fe2O3+3H2O

α-Fe2O3+xBa OH( )2→BaO xFe⋅ 2O3+H2O BaO xFe⋅ 2O3+(6 x– )α-Fe2O3→BaO 6Fe⋅ 2O3

Fig. 5. SEM micrographs products at reaction time of 360 min with various Fe/Ba molar ratio.

(a) Fe/Ba=0.5, (b) Fe/Ba=2, (c) Fe/Ba=7

(5)

4. Ö †

Molten salt bath¢ šÏ‚ ²ª >wV¢ šÏ~ .ªê> Ö

;z»ö ~‚ BaOÁ6Fe2O3 W ";öB, öò bî~ ³ê 5 >

w *~ æzö Vž Wb~ Wª 5 ;ç~ æzö &~ 

2O3~  W >wf j·†' z>w ア Všº ©j {ž~&b–, ö ò >χj ·†j‚ "«~º ãÖöº α-Fe2O3& W>, Ba~

³ê& Ö Ôf ãÖ, ¯ Fe/Ba ³êj& 0.5¢ rº barium hexaferrite¢ W~º – J *(6* šç)š ²º>î. V¢

B barium hexaferrite¢ W~º ‚'~ öò >χ~ ³êjº 2 ßFe/Baß7~ º*& 'Žj r > ®î. 6‚ .ªê> Ö;z

»b‚ BaOÁ6Fe2O3¢ W~º ãÖ, 5ª šÚ~ †ž * Úö

¢;‚ ’V~ Ö;š <ºÚæ–, >w *š Ã&~ê z šç

~ Ö; W˚ ¢Ú¾æ pº ©ê {ž† > ®î.

ֆ'b‚  þj Û~ .ªê> –šöB~ †ž &>ªš

5 z ֏, Ò î> >wö ~~ Ö f >w *b‚

ê BaOÁ6Fe2O3¢ W† > ®rš «Nb‚Ž,  ; BBö

6 Ò

 ’º "V¦& æö~º ö.æ .£ öÂVF Òë~ ¢~b

‚ >¯>îÛî.

^^ò

1. Fujiwara, T.: IEEE. Trans. on Magn., MAG-21, 5, 1480(1985).

2. Kiyama, M.: Bull. Chem. Soc. Jpn., 49(7), 1855(1976).

3. Kumazawa, H., Cho, H. and Sada, M. E.: J. Mat. Sci., 28, 5247 (1993).

4. Hakuda, Y., Adschiri, T., Suzuki, T., Chida, T., Seino, K. and Arai, K.:

J. Am. Ceram. Soc., 81(9), 2461(1998).

5. Ataie, A., Piramoon, M. R., Harris, I. R. and Ponton, C. B.: J. Mag.

Mag. Mater., 30, 5600(1995).

6. Wang, M.-L., Shih, Z.-W. and Lin, C.-H.: J. Crystal Growth, 139, 47 (1994).

7. Sada, E., Kumazawa H. and Cho, H.-M.: Ind. Eng. Chem. Res., 30, 1319(1991).

8. Sakai, H., Hanawa, K. and Aoyagi, K.: IEEE. Trans. on Magn., 28(6), 3355(1992).

9. van der Gissen, A. A.: J. Inorg. Nucl. Chem., 28, 2155(1996).

10. Wefers, K.: Ber. deut. Keram. Ges., 43, 677(1966).

11. Schwerman, U. and Anorg, Z.: Allgem. Chem., 23, 298(1959).

12. Arkins, R. J., Posner, A. M. and Quirk J. P.: J. Inorg. Nucl. Chem., 30, 3271(1968).

Fig. 6. SEM micrographs of products at Fe/Ba molar ratio of 2 with various reaction time.

(a) 1 min, (b) 5 min, (c) 60 min, (d) 360 min

참조

관련 문서

From the purification tests and the membrane analysis, we could conclude that the developed Pd-composite membrane can be used as a hydrogen purifier for the fuel supply system

As revealed by the data listed in table 1[7], it could be concluded that the main electrochemical products i n this reaction were oxidized azobenzene, not hydrogenised

As a conclusion, an Schiff-base (complex 1 ) is thought as an important intermediate complex in the aminomutation reaction process because complex 1 fragmentation pattern

Also, we consider cancer knowledge in this conditional process due to the fact that cancer knowledge co-varies with worry as well as certain social determinants

실험은 물과 산화제로서 과산화수소를 실험 조건에 맞게 일정 비율로 혼합하여 p-xylene과 같이 반응기 내로 milton roy mini pump duplex model과 metering

The SNP of porcine PIK3C3 that was discovered in this study could be utilized as a possible genetic marker for the selection of pigs that possess a low BF and

North Korea is not the country which deserves to be invested, but it could play a crucial role in the process of propelling the South Korea's new

In the reduction crystallization, which can use hypophosphite ion as a reducing agent for nickel ion in the wastewater, nickel ion could be recovered as a form of nickel