• 검색 결과가 없습니다.

 1.  O Sorbent gggg -Al Effects of Heat Treatment Condition on Sulfur Removal Capacity of CuO/  gggg 

N/A
N/A
Protected

Academic year: 2022

Share " 1.  O Sorbent gggg -Al Effects of Heat Treatment Condition on Sulfur Removal Capacity of CuO/  gggg  "

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

 CuO/γγγγ -Al

2

O

3

   

* **

 

*   

** 

(2001 7 25 , 2001 11 14 )

Effects of Heat Treatment Condition on Sulfur Removal Capacity of CuO/γγγγ-Al

2

O

3

Sorbent

Kyung Seun Yoo, Sang Done Kim* and Soon Kook Kang**

Department of Environmental Engineering, Kwangwoon University, Seoul 139-701, Korea

*Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

**Department of Environmental Engineering, Sunmoon University, Asan 336-840, Korea (Received 25 July 2001; accepted 14 November 2001)

 

  CuO/γ-Al2O3     (300oC, 500oC)

! "# $%&'(. )! 500oC(bulk sulfation), CuO/γ-Al2O3   800oC*

+ ,-&'. / 0  12&'(. /34   300oC 56  700oC*+ 

7%&8 9+: ; < 12&'(. => ?@ )! > CuSO4A &B CDE SO3-F &B GHE +I JK )! > L+: CuO MNOP &B SO2 JKQ  &B GHE RS (. 800oC 

$\ ]^_ L+: Cu  JK`) +ab . / ; octahedral cdef tetrahedral c g

T CuAl2O4 CD   ,-Z [ ,-& RS (. CuAl2O4 ?@ )! > h)-F CuO/

γ-Al2O3  iT$jkd Y&B 7l4+ mkn CuAl2O4 o`p DRS XRDp P&B qY&'(.

Abstract−Effects of heat treatment temperature and time on sulfur removal capacity of CuO/γ-Al2O3 sorbent were deter- mined in a thermogravimetric analyzer with a variation of sulfation temperature (300oC, 500oC). At sulfation temperature of 500oC (bulk sulfation), sulfur removal capacity of CuO/γ-Al2O3 sorbent increases with increasing heat treatment temperature up to 800oC and then decreases. At sulfation temperature of 300oC (surface sulfation), however, sulfur removal capacity of the sorbent remains constant up to 700oC and then slightly decreases. This is because bulk sulfation advances by SO3 gas decom- posed from the CuSO4, whereas surface sulfation goes on by surface transfer of SO2 via catalytic function of CuO. Sulfur removal capacity of sorbent heated at 800oC shows a maximum value at the heat treatment time of 12 hr and then decreases with increasing heat treatment time. This is because redispersion of Cu ions is dominant at initial step and then formation of CuAl2O4 increases with increasing heat treatment time by the movement of impregnated copper ions from octahedral (Oh) to tetrahedral (Td) site. Bulk sulfation does not occur in CuAl2O4 due to the strong bonding of SO2 with CuO/γ-Al2O3 and the existence of CuAl2O4 has been confirmed using diffuse reflectance spectra (DRS) and x-ray diffractometer (XRD).

Key words: Sorbent, Calcination, SO2, Desulfurization, DRS

1.  

     SOx NOx  ! "#! $%&' ()*[1-5], CuO/γ-Al2O3

+,-/./ 01 234 ' ! 5,! 236   789 :"[6-9].

; CuO/γ-Al2O3+,-/./ '1! <=>? @ ABC 7DE F >? G H I"* F% JK)". 90LM &

NO Centi P[10-12]4 Q@R ./Q  STU SO3F 7DE VWX 'Y ABVW' >? G !" 0Z[ \ C]* Yoo P[13]4 Q@R AH^_ >?`a bc de 7D

To whom correspondence should be addressed.

E-mail: yooks@daisy.kwangwoon.ac.kr

(2)

E AB >?%aF surface sulfation, deep sulfation, bulk sulfation

 f FH @gh[ ijkXl 7DE AB >?mT[

" @B ]". 'n <=>?' JKU +,- oS>? mT[

*pkXl 7DE  qrg' Al2(SO4)3 sU t5a 1'

u oSN HvwC <=-oS x'y' zHh[ \C]"[6]. 'n Jeong_ Kim[8]4 CuO/γ-Al2O3+,- 7{R |[ }F -b kXl SO2-Al2O3>?[ ~4 `aOa JK , :€[ *

]".

CuO/γ-Al2O3+,-O 7DE AB _wC <=>? G  AHU Q@R  ‚%ƒ AH Q@R „…R `a

 † de 7DE ‡ ‚%@bF ˆu U". deO ‰ 

@O CuO/γ-Al2O3 <=Š[ ‹M  „…R †_ `ab c[ a* CuO/γ-Al2O3+,- -bbc' <=Š EŒ Ž

 M *p* !".

2.  

2-1. 

‰ @ 01 +,- 3 mm pellet ‘ γ-Al2O3(Strem Chemical)

 '1 -b]". ’ Cu(NO3) · 3H2O  “ %a AH

^' a” •Q –—, ˜C n, ™ J$ – ‡ še›

œ γ-Al2O3 k ž". Ÿ 70oCO še›œ ‡ ,1 ' ¡

¢ –W  £¤O 24† Y¥ cb!". cbU +,-

$ g O „…R `a 500-1,000oC, „…R † 2-170†X

 ˆƒ T¦". TU CuO/γ-Al2O3+,- ball mill

g§! n sieving 1-1.41 mm ¨]Xƒ EDX '1 Q

@R © ! AH \C]* -bU +,- |Q ˜ 1 

‡ @Rªa A.A.(Atomic Absorption Spectrophotometer) «%

AHU Q@R#[ «%]". BET 01 -bU +,-

VWw_ $œ «%]".

2-2.  

‰ @ 01U TGA(TGDTA92 Setaram, France) Fig. 1 a

]". 10−6g %\T[ ¬ ­ ®[ 01ƒ, ¯TBF

>?° ± ² &N F ³[ ´ µ 15 mm ¶t[ FJ quartz ·[ '1]". >?B ,%zR· q¸X ¹º 

¸X ƒ >? ‡ /»¼ ½¾ basket ¿ÀU +,-

>?u U". „“4 ±F„ 2­X “Á graphite Â&NJ F„ÃF furnace 6Ä Œ `a PID -Nƒ Ås Æ

  ÇÈU".

TGAO =Q >?[ JK  ½¾ basket 30 mg

 +,- ¿À* 900 cc/min $ ²Rƒ “ >?`aÉ H `a –FÊ". “ >?`aO „6^ gF ¥%

W SO2ªaF 15,000 ppm' a” SO2 ¹º =Q>?[ , K!". ­ ® Ëuˆ PC ¿ +,- <=s Ì[ •Q]".

3. 

<=>? `aˆ de ,KU 8 wt% CuO/γ-Al2O3 +,- S/Cu Í ¸ Wwr -ÎU Ï=QF› Í, >?† de Fig. 2

 a]". S/Cu Í ÏÐ ­ (1)  •Q)".

(1)

 ­O W +,- >?† dÑ Ëu ҇ƒ, Wo +,- ;Ëu, Co +,-‡ Q@R Ó^gÌ, Mi iTg

 g^[ ÒÔ". +,- S/Cu Í >?†' –Fk

deO Ï=QF› CuO/γ-Al2O3+,- >?  –Fk[

Õ , :". Fig. 2 ÒÖ × Ø' ¡Ù >?`aO S/Cu Í S

Cu--- (W W– o)⁄MSO3 WoCo⁄MCuO ---

=

Fig. 1. Schematic diagram of thermal gravimetric analyzer

1. N2 7. Blower

2. Air 8. Sample basket

3. SO2 9. Balance

4. H2 10. Controller

5. Gas chromatograph 11. Buffering line

6. SO2 trap 12. Thermocouple

Fig. 2. Captured amount of SO2 and S/Cu mole ratio of CuO/γγγγ-Al2O3 sorbent as a function of reaction time with a variation of sulfa- tion temperature.

(3)

 40 1 2002 2

 1.0[ ;_* :Xƒ >?`aF –FÚ,” S/Cu ÍF – Fk[ \CÚ , :". ' ! ‚_ Table 1 a! × Ø' Centi P[10]' -! >?­(9-11)_ Yoo P[13]' -! >?­

(14) ! 7DE  >?G  C!".

>?`a 400oC 'O ÛÜO Õ , :Ý' CuO/γ-Al2O3 + ,- Ï=QF› -Î^' ‹ÞwX %! ß[ 'ƒ ނ*

:". '³4 Q@R +ÀU Ï=QF› surface transfer[10] 

! 7DE VW =Q >?' JK" 7DE >?VW Ï

=QF› -Î1^' àáW â 'q >?' HvH ã* ނ

 äå'". <=>? `a 500oCO >?† 180g' t_!

na %! ® ¬Xƒ HvwX Ï=QF› +,- >

?' JK* :€[ \CÚ , :".

8 wt% Q@RF AHU 7DE +,- t5 7DE  V Ww[ æ! Q@R AH^4 5µmol/m2' * Nam_ Gavalas [14]  *U Å,! 7DE Â Ï=QF› -Ί 2µmol/

m2[ æW ‹M -Î^4 7µmol/m2' H Fig. 2 a! 500oC

<=>?‚_ Ï=QF› -Î^ 15µmol/m2 'ç* :Xƒ è!

HvwC >?' éqU". Koballa Dudukovic[17]4 CuSO4 t5

>?­ (6)  SO3F STê , :€[ -! × :Xƒ Kocaefe P[18]4 SO3  ¾vQÆ Ï=QF› -Ί' œu Žq ê , :€[ *! × :". Yoo P[13]4 >?`a 500oC O >?

­ (16)  SO3 F›F ST* 7DE AB >?' >?

­ (17)  JKN ëœ=Q >?' JKU"* *]*

' ! ìíîïX 7DE ABF HvwX =Q >? G

 ³[ ëœ=Q(bulk sulfation) >?X %]"[13].

Fig. 3A 3B „…R `a ˆð T! CuO/γ-Al2O3+, - >?`a 500oC(A) 300oC(B)O =Q >?[ JKð 

† dÑ S/Cu Í a]". Fig. 3AO Õ , : × Ø'

„…R `a –F,” +,- <=Š4 „…R `a 800oCÉ H –F]* 900oCO ñòó ]". Û =Q>? ` a 300oCO „…R `a 800oCÉH ô õ' 'H IöXƒ

900oCO Ÿ† <=Š F Ò÷". „…R `a 800oCÉH

 „w‚  ST CuO islandO ëœ =Q >? ¹ U øTù°Ú[  CuSO4 ST' 1'u JKN ëœ =Q

 >?T' –F ³X 0U". Û „…R `a 900oC t 5 AHU Q@R 7DE  >?  ú ûü ‘

ýþQÆC CuAl2O4 T' JK ³X 0U". Friedman_

Freeman[15] W 7DE VW AHU Q@R „…R `

aF –FÚ,” distorted octahedral siteO tetrahedral site 'Y ' –F* „…R`a 900oCO CuAl2O4 T' ÿçu JK

 ³X *U × :". deO „…R `a 800oCO ‹M ë

œ=Q >?' JK ³X 0U".

=Q>? 300oC ‚_ W, „…R `a dÑ ˆF œu Ò H I* :X „…R `a 800oCÉH Ÿ† <=Š 

F Ò * 900oCO <=Š F " –Fk[ \CÚ , :". ' „…R `aF –Fk de „w‚ ! Q@R . /øT  VWw F Y>) äåX 0U". VW=

Q >? :NO ./øT  Q@R øTùO JK

VW =Q >?va  Ò * VWw  STU SO3

-Î1^  Ò  äå'".

„…R `a ˆ dÑ CuO/γ-Al2O3 +,- X-ray ™g 

‚_ Fig. 4 a]". AHU Q@R t5 7DE AB

 VWw 100 m2/g[ æX @Rk^ 4 wt%'qO XRD  ' 2θ ß[ æX 35.6, 36.7, 38.8O Ò u U". Fig. 4 a!

× Ø' „…R `a 700oC ‚_" „…R `a 800oCO AH U Q@R „w‚  35.6_ 38.8 Q@R  ' –F

 ³[ \CÚ , :". è! „…R `a 900oCO CuAl2O4 mT  ' 36.9O íu –F ³X \C)".

„…R `a dÑ CuO/γ-Al2O3+,- diffuse reflectance spectra

‚_ Fig. 5 a]". Q ‚þ! ¾v'` t5 ¾v'`

[   Q @b deO '°' O "çu Ò u U

". ¾v'`[   Q'`' 4(C tetrahedral R t5 ' Table 1. Sulfation reaction mechanism of CuO/γγγγ-Al2O3 sorbent

Reaction mechanism Reference

MeO+SO2(g)↔MeSO3*(ads) O2(g)↔2O*(ads)

MeSO3*(ads)+O*(ads) ↔MeSO4(s) MeSO3*(ads)↔MeSO3(s) MeSO3*(ads)↔Me*(s)+SO3(s) MeSO4(s)↔MeO(s)+SO3(g) 2Me*(s)+O2(g)↔2MeO(s)

(1) (2) (3) (4) (5) (6) (7)

Koballa and Dudukovic [17]

SO2(g)↔A+SO2(ads) CuO+SO2(ads)↔CuO-SO2(ads) CuO+CuO-SO2(ads)↔CuSO4(s)+Cu Al2O3+CuO-SO2(ads)↔Al2O3-SO3(s)+Cu Cu+O2→CuO

(8) (8) (10) (11) (12)

Centi et al. [10]

CuO+SO2+1/2O2→CuSO4 Al2O3+CuO-SO2→Al2O3-SO3+Cu Cu+O2→CuO

CuSO4→CuO+SO3 Al2O3+SO3→Al2O3-SO3

(13) (14) (15) (16) (17)

Yoo et al. [13]

Fig. 3. S/Cu mole ratio of CuO/γγγγ-Al2O3 sorbent as a function of reac- tion time with a variation of heat treatment temperature: (A) bulk sulfation(Ts=500oC), (B) surface sulfation(Ts=300oC).

(4)

°4 1,300-1,600 nm'ƒ Q'`' 6(C octahedral R t5 600-800 nmO Ò u U"[16]. γ-Al2O3 AHU Q@R t5 tetralhedral R 1,415 nmO \Cƒ, octahedral site 740 nm

O \CU". Fig. 5 a! ‚_ Ø' AHU Q@R „…R

`a –F,” 1,415 nmO  a –F* 740 nm

O  a k[ \CÚ , :". „…R `a 1,000oC‚_

 W tetrahedral R  4 ¡¢ 0eH* octahedral R   shoulder Â' u ƒ ' CuO CuAlO2þÆ  _ /5 z0!

‚_ ¹* :". ' ! ‚_ „…R `aF –Fk de „…R

`a 900oCÉH Q@R ŒF octahedral RO tetrahedral

R 'Y CuAl2O4 › @bF STƒ 1,000oCO * q>?  CuAlO2 þÆ' STh[ E!".

„…R `a 800oCO „…R † dÑ CuO/γ-Al2O3 +,-

Ï=QF› -Ί[ <=>?`a 300oC 500oC M Fig. 6

a]". <=>?`a 500oC t5 W „…R † 12†[

æX +,- <=Š4 ‹Mß[ C n Û 'qO „…R

† de Âu ]". Û <=>?`a 300oC t5

 „…R † de /5 Efu  ‚_ ҇)". <

=>? `a 500oC t5 „…R † 12†O ‹M <=Š[

C 'z AHU Q@R „w‚_ Q@R octahedral  RO tetrahedral R R'Y' k N  äåC ³X

0U". „w‚ ! CuO island T4 ëœ=Q >?

" zRH octahedral RO tetrahedral R 'Y 

CuAl2O4F ST ³4 CuSO4 Al2(SO4)3 ST ¡¢ 2µu   Ru 1u U". deO 800oC ‚_O Õ , : ×

 Ø' +,- ‹w „…R †4 12†C ³X 0U".

Fig. 74 CuO/γ-Al2O3 +,- „…R † dÑ ¸ Wwr Ï=

QF› -Ί[ VW =Q>?_ ëœ =Q>?X @g „ …R `aˆ de a! ‚_'". ëœ =Q >?' JK

Fig. 4. XRD spectra of heat treated CuO/γγγγ-Al2O3 sorbent.

Fig. 5. Diffuse reflectance spectra of heat treated CuO/γγγγ-Al2O3 sorbent.

Fig. 5. Diffuse reflectance spectra of heat treated CuO/γγγγ-Al2O3 sorbent.

Fig. 6. Sulfur removal capacity of CuO/γγγγ-Al2O3 sorbent heat treated at 800oC as a fuction of heat treatment time with a variation of sulfation temperature.

(5)

 40 1 2002 2

<=>? `a 500oC ‚_ „…R `a –F,” +,- Ï

=QF› -Ί' Žq)Xƒ 700oCÉH „…R †' –F

a +,- <=Š' Î %u zH)". Û „…R `a 800oCO „…R†' –Fk de AHU Q@R ocathedral

RO tetrahedral R R'Y ! CuAl2O4 ST' J KN +,- <=Š4 OOó ]". VW =Q >?' J K <=>? `a 300oC ‚_ „…R `a 700oCÉH +,-

 <=Š' Î ˆ 'H IöXƒ „…R `a 800oCO <

=Š –FF Ò÷". Fig. 7O Õ , :Ý' VW =Q >?

:NO ¸ Wwr Ï=QF› -Î^4 Å,! 7DE Â -Î^

2µmol/m2[ H I* :Xƒ è! 800oC „…R  STU CuAl2O4 ! +,- <=Š F Ò H I* :€[ Õ , :". ' ! ‚_ VW =Q >?_ ëœ =Q >? ìíîï õ' C ³X ëœ =Q >?O CuAl2O4ST 

ëœ =Q >?[ za CuSO4 ST' 2µN HvwC A B >?' -!H VW =Q >?O Ï=QF› >?' CuO, CuAl2O4@' JK äå'"[9].

4.  

CuO/γ-Al2O3+,- „…R `a † dÑ Ï=QF› -Î

Š EŒ Ž[ „6^g '1 *p]". +,- „ …R `a –FW AHU Q@R ogQ_ k ‚>?' JKƒ ëœ =Q >?T' –F]". „…R `a 800oCO

‹M ëœ =Q >?T' Ò÷Xƒ 900oC'q *`O Q

@R 7DE  *q>?  ST CuAlO2  ë

œ =Q >?T' ñòu ]". ‹w „…R `a 800oC O „…R †[ –FW „…R † 12†ÉH „w‚ 

! >?T –FF Ò * Û 'q †O OOó ST

CuAl2O4  >?T' u U". VW =Q >?4 „… R † Ž[ Î H IöXƒ ' SO2 >?' CuO, CuAl2O4

@' JK äåX 0U". „…R `a 800oC 'O

CuAl2O4 STvaF `a  de ñòu  äå „ …R †[ –Fða ëœ =Q >?_ VW =Q >? ¡¢ >

?T ˆF Ò H Iö".

' å4 2000La üM ‡@  @) Xƒ ' 0î".



1. Kohl, A. L. and Nielsen, R. B.: “Gas Purification,” 5th ed., Gulf, Houston, Texas(1997).

2. Chu, K. J., Yoo, K. S. and Kim, K. T.: Materials Research Bulletin, 32, 197(1997).

3. Lancia, A., Musmarra, D. and Pepe, F.: Ind. Eng. Chem. Res., 36, 197(1997).

4. Lee, J. B. and Kim, S. D.: Chem. Eng. J., 69, 99(1998).

5. Wallin, M. and Bjerle, I.: Chem. Eng. Sci., 44, 61(1989).

6. Yoo, K. S., Jeong, S. M., Kim, S. D. and Park, S. B.: Ind. Eng.

Chem. Res., 35, 1543(1996).

7. Jeong, S. M., Yoo, K. S. and Kim, S. D.: HWAHAK KONGHAK, 35, 116(1997).

8. Jeong, S. M. and Kim, S. D.: Ind. Eng. Chem. Res., 36, 5425(1997).

9. Waqif, M., Saur, O., Lavelley, L. C., Perathoner, S. and Centi, G.: J.

Phys. Chem., 95, 4051(1991).

10. Centi, G., Riva, A., Passarini, N., Brambilla, G., Hodnett, B. K., Del- mon, B. and Ruwet, M.: Chem. Eng. Sci., 45, 2679(1990).

11. Centi, G., Passarini, N., Perathoner, S. and Riva, A.: Ind. Eng. Chem.

Res., 31, 1947(1992).

12. Centi, G. and Perathoner, S.: Ind. Eng. Chem. Res., 36, 2945(1997).

13. Yoo, K. S., Kim, S. D. and Park, S. B.: Ind. Eng. Chem. Res., 33, 1786(1994).

14. Nam, S. W. and Gavalas, G. R.: Appl. Catal., 55, 193(1989).

15. Friedman, R. M. and Freeman, J. J.: J. Catal., 55, 10(1978).

16. Hierl, R., Knozinger, H. and Urbach, H.: J of Catal., 69, 475(1981).

17. Koballa, T. E. and Dudukovic, M. P.: AIChE Symposium Series, 73, 199(1978).

18. Kocaefe, D., Karman, D. and Steward, F. R.: AIChE J., 33, 1835 (1987).

Fig. 7. Sulfur removal capacity and sulfate on alumina as a function of heat treatment time with a variation of heating temperature(,: 600oC, ,: 700oC, ,: 800oC.

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

Ultimately, we believe that our efforts to install pad  machines and increase community understanding of menstrual health will promote global gender  equity and ensure that

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

Levi’s ® jeans were work pants.. Male workers wore them

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

Yeh et aL reported the detection of acetone in Cu colloidal suspension after the laser ablation of CuO powder in 2-propanol and suggested the possibility of reduction from CuO

Thermal Decomposition of Hydrated Copper Nitrate [Cu(NO 3 ) 2 ·3H 2 O] on Activated Carbon Fibers 181.. impregnated