• 검색 결과가 없습니다.

Refractive Index Changes of Polymer Film by Photochemical Reactions

N/A
N/A
Protected

Academic year: 2022

Share "Refractive Index Changes of Polymer Film by Photochemical Reactions "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

Polymer (Korea), Vol. 28, No. 6, pp 545-550 (2004)  /

žVâ, \28Ì \6x, 2004„, pp 545-550 

"™Ý

ÅØ L¼ä1 1 XA¸ ì œ ìéXô ”˜

ÄÐ ÌìÔ œ< DpQ™ °p, Qõ é Lœ ÌÐ 1 DÐð ‘é´ X´\ åA¸ - „ ˜Ô Ì ìœ\ € @,„ è| È$. QÌМ $ì´¼ ì é˜Ô à „˜, Äм ´é˜Ì X´ @ ô ééq´ 0ôØ° @5 5U´ (\˜ @@”@ é´

˜Ì X œ, ðXœ ÄÐ Ìì€ œA”\ ÌÐ \°

5U„ \\˜, @@˜ QÌм 4I˜Ô À QԜ

0¬ <\œ ,è È$.1-7 Äм ´éœ QLœ

ÌÐÔ ÄÐ U ô\ Q´ É˜Ô L A-˜

´H ´ < 4$ ÒÌ dXô¼ DXì ˜˜, Q

´ Lœ¼ p¼ É˜Ì \$. ÄÐ U ô\

´H „ °H˜, QLœ¼ \°˜Ô iÕ|œ Q”

™ X‘´ @åœ \ („ ,¨˜ ÈÔ ÄÐ 5Q

©ô¼ ìé˜, ùU A-\ QX‘„ `˜, Q D, A-< 8 < ˜ ´H „ ¸DA|œ °H˜Ô i Õ´ ´ ´éX È$.8-11

8 0¬\Ô Q”™ X‘„ ¼|äÔ \ (´ 4ì(”

8 ” ¬ôH´ø) PMMA <ìì ììœ Ùô ÈÔ 5Q©ô¼ ìé˜, 5Q©ô °q ” p¸ ´H 

Ž•ÎMÕÙ] ÁÕñ…Ý=Ñ

í’Õ¯]u~¯ñÕ¯½®•¯­ê%# ý¬@™# ˜ýZ‘é”™@™/# AU4Ììp`# 0¬|p#

+5337„# 44# 7¼# QX/#5337„# 44# 56¼# „,#

Refractive Index Changes of Polymer Film by Photochemical Reactions

Jung Hwan Cho, Mi Young Shin, Jong Ha Lee, Sung Soo Kim, and Kigook Song% Department of Chemical Engineering and Materials Research Center for Information Display,

Kyung Hee University, 1 Seochon-ri, Yongin, Gyunggi-do 449-701, Korea

e-mail : ksong@khu.ac.kr

(Received November 4, 2004;accepted November 23, 2004)

5¨¹Q°ì ˜˜, \ ( Ä´¼ `¨|œ¨ ÄИ ´H „ ”\ 5Q©ô U ˜ ´ H „ °H˜ , FTIR< UV/Vis ÄQ $|œ ´H  Aå„ 8˜Ô ¬°˜ ”¼ °ì˜@$.

Qœq p¼ 5Q©ô U ˜ ´H ´ ф Ô Ã€ QX‘ ˜˜, \ ( ô C¼C ´Qð

©´ Šôx ÄИ ø9 ´ ф p Œx´$. ÅìXÔ ›˜ Dpå iå ˜´˜Ô `

A¸ QX‘ ˜˜, „Ä ´ ɜ iå|œ ´ì˜Ô \ (´ |@ Ä´@ X´\ ÄÐ

„Ä ´ ɜ iå˜ ´H ´ Xœ iå\ 4$ ” Ié˜Ì P̘@$. ´€ Y€

ÄÐ U ô˜ ´H  h´¼ øQ ATR-FTIR $\ ûô Ô ÄÐ ùq |¬˜ ”¼ ° ì˜, ÝŘ@$.

,-897,.9¹The refractive index of thin copolymer film was controlled by photo-degradation of chromophores in the copolymer. FTIR and UV/Vis spectroscopy were employed to elucidate the effect of chemical structure on refractive index changes after photobleaching. The decrease of refractive index of the film by photobleaching can be ascribed to the decrease of polarizability of polymer molecules through breakage of C¼C bond in the chromophore. Due to the selective photoreaction of the chromophores which align along the film plane, refractive index of the copolymer film measured in TE mode decreases faster than that in TM mode. Polarized ATR-FTIR spectroscopy was used to verify such a difference in refractive index of the film.

Keywords¹refractive index, polymer film, waveguide, photobleaching, ATR-FTIR.

(2)

  Cho et al. Polymer (Korea), Vol. 28, No. 6, 2004/

  °U˜# 1# žVâ, \28Ì \6x, 2004„/

”€ \ (˜ Qœq ˜˜, \XÔ ´H ˜

”¼ „˜ , ÄÐ ´H  ” 8˜Ô ÄÐ ¬

°˜ Aå„ °ì˜@$. QLœ \° ìé˜Ô ,,

´H  °H iÕ Q Qœq iՀ ÄÐ ,¨\ \ ( ›„ °ì˜, \ (´ Q´q” 2Ô QÄ´

Xô $¸ ¬°˜ ”©|œ ”h|œ¨ ´H „ ”

äÔ iÕ|œ, D(œ 儼 ´é˜, ½Ì XÉ  X È|°, photo-mask¼ ´é˜, $ќ èј QLœ

\° Aé  X Èô @å ´ ìéXÔ iÕ´$. Q X‘q \ („ ,¨˜ ÈÔ 5Q©ô¼ ìé˜, ÄÐ U „  Qœq„ ´éœ ´H  $ ð

<€ ÄÐ 5Q©ô˜ °q ” p¸ ´H  ”

¼ „˜p D˜, prism coupling $ iՄ ´é˜

, ÄÐ U ˜ ´H „ aU˜@ , FTIR< UV/Vis spectroscopy¼ ´é˜, ´H  ” Aå„ 8˜Ô ÄÐ ¬°˜ ”¼ °ì˜@$.

#aU

8 0¬\ ìéœ 5Q©ôÔ 8­ Hoechst Celanese

Corp.\ ÄÐ Qõ ÌМ ‘é˜p D˜, \\

œ „`U Q™ ÄМ\4-6 („`U Q™) ”8 ”

¬ôH´ø (MMA)¼ X5 (Dœ ˜Ô <ìì \ (|œ 4,4'-T”8„8¸øœä8ä (DANS)„ ì ìœ @ ÈÔ MMA€ DANS˜ 5Q©ô´$ (Figure

1¹P2ANSœ Å­). 5Q©ô P2ANSÔ DANS€ MMA

˜ „h´ 50:50, 35:65, 25:75 8ì 10:90¸ 4 ؘ \

œ $¸ °q˜  ¼ ´é˜@$. UV/Vis ÄQ $„

D´\ P2ANS 5Q©ô¼ cyclohexanone ¹, 5 wt%

˜ 顄 , quartz pP D 3000 rpm|œ ä€

”E„ ˜,  ¼ @„˜@|°, Hitachi U-2000 UV/Vis ÄQp¼ ´é˜, $„ Xɘ@$. FTIR ÄQՄ ´ éœ $€ 20 wt%˜ P2ANS 顄 KBr pP D 1500 rpm|œ ä€ ”E˜, U  œ @„œ , Perkin- Elmer System 2000 FTIR„ ìé˜, 4 cm-1 Ä´å|œ 32 Èi äԘ, aU˜@$. FTIR˜ attenuated total reflec- tion (ATR) $„ ´éœ ÄÐ U  ˜ œ´ Ä]

€ PIKE Technologies\ \°œ variable angle horizontal ATR accessory¼ ìé˜@|° mercury cadmium telluride

(MCT) À p¼ ìé˜, 200È äԄ ˜, äÙ

ø<„ û$. øQ (polarized) FTIR $ aU€ Harrick ì\ \°œ KRS-5 wire grid U øQP„ ´é˜, X 2Ô É|œ øQ\ IR ”„ ìé¨|œ¨ AA øQ iå @œ äÙø<„ û$.

Qœq (photo-bleaching) $€ 500 W • X€ 1„

ìé˜, ÄÐ U  X|œ Q°ì¼ Xɘ@|

°, ÄÐ U ˜ ´H € Figure 2 4´Ô 嘘

He-Ne H´@€ GGG DìØ (n¼1.965)|œ $$\

\ќ prism coupling 嘼 ´é˜, aU˜@$. Prism coupling iՄ ´éœ ÄÐ U ˜ ´H  aU $

\Ô P2ANS 20 wt%˜ 顄 1500 rpm|œ `ì pP D ä€ ”E˜,  2 ˜ „Ä|œ  150

\ 24D ´°œ  $ ´é˜@$. Prism coupling å˜Ô ÌDP D\ Dì؄ ÄÐ U < QI\

ùU ÅìA\ DìØ Åì\ H´@ ”´ ÄÐ U ôÀœ É  X ÈÌ ˜Ô, É Dð© (coupling)

´ ¼ôØÌ ˜Ô $ iÕ´$. H´@ ”˜ ÅìA„

ÌDP|œ 0.005°i U@˜Ì °H˜´\ ÅìA p¼ Dìؘ X@ø\ ÜìXÔ H´@ ”˜ xp¼ a U˜Ì X´, Dð©´ ¼ôØ Š€ ”€ DìØ\

DXìXô ]€ „ Uq˜Ì X° Dð© ˜˜,

Lè¼ Uqœ ”€ ›´ ÄÐ U ôÀœ D, X| œ U ” @ô° À€ `|œ Ø Ü$. ´,

œ Dð©´ ¼ôà Œ˜ Åì A¼ aU˜, U

˜ ´H „ ð˜@$.

$-yŒÝ

Q”™ X‘„ ¼|äÔ \ (´ ììœ ÙôÈÔ 5Q©ô¼ ìé˜, \°œ U ˜ ´H „ 5Q©ô

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P

joZ joZ

j joY ” j joY • j

v joY joY

u joZ

oj jo

uvY

j v

v

v joZ

O P O P



)LJXUH Chemical structure of MMA/DANS (P2ANS) copoly- mer./

(3)

Polymer (Korea), Vol. 28, No. 6, 2004 Refractive Index Changes ofPolymer Film  

žVâ, \28Ì \6x, 2004„ QX‘ ˜œ ´H  ”# #

˜ °q„ ”ä° °H˜@$. DANS€ MMA˜ ° q„@ \œ $¸ P2ANS 5Q©ô$˜ ´H „ aU

˜ , ´ ð<¼ FTIR< UV/Vis ÄQ™ $„ ´é˜, Ä]˜@$. DANS:MMA °q „h´ 50:50, 35:65, 25:75 8ì 10:90¸ 5Q©ô é¡$„ ä€ ”E˜, \°

œ  2  U ˜ ´H „ 633 nm He-Ne H´@¼ ìéœ prism coupling iÕ|œ aU˜, 5Q©ô °q

 p¼ Figure 3 Ø ô$. PMMA˜ <ìì @

œ ð©Xô ÈÔ \ ( DANS˜ ¨ ´ Ý@ X

´H ´  ´Ì Ý@¨„ Œ X È$. ´H € ÄИ

ø9  (polarizability) ¬p „€˜ œ, «-DÐ$´ 5

¡ ¬°œ 0ðXô Èô (Figure 1 x°) $$À ø9 

„ @ Ô DANS 89´ ììœ Ùô ÈÔ P2ANS 5 Q©ô˜ ýð DANS ¨  p¼ ÄÐ ´H ´ ¬ Ì Ý@˜Ô ô$. ´Ô FTIR äÙø<\ ûô

DANS 89˜ ùq |¬ 1335cm-1 (NO2 symmetric stretching)

˜ xp@ ´H ˜ ”€ °˜ ¼˜Ì DANS Ñ

p¼ Ý@˜Ô Ã|œÀp •¸  X È$. ´H ´ 1.49¸ PMMA¼ DANS€ 5Q©ôœ $ ýð DANS ј Ý@ p¼ ´H ´ Ý@˜, 50:50 5Q©ô¸

P2ANS50˜ ýð 0.22@ Ý@œ 1.71´ X œ, 5Q©ô

˜ °q„ °H ˜˜, ÄÐ U ˜ ´H „ 8x

°H  X ÈÔ Ã„ Œ X È$.

5Q©ô °q„ °H˜, ´H „ ”è ž˜ ð

<¼ Q°ì iÕ|œ ÄÐ U ˜ ´H „ ”è ýð€ „˜@$. ÄÐ UV A-˜ ›„ °ì˜,

\ (˜ Ä´¼ `¨|œ¨ ÄИ ´H „ ”

äÔ Qœq i՘ åP€ D(œ 儼 ´é˜,

$„ XÉ  X Èô $ќ èј QLœ \°

Aé  X ÈÔ Ã´$. QœqXô Ô ÄИ ´H  € œ´|œÀp PA|œ Q°ì °´ p¼ ”

˜ œ ´¼ °H˜, ùUœ R„ @ Ô ÄÐ U

|œ ´é  X È$.12,13 Qœq iÕ|œ P2ANS 5Q©

ô U ˜ ´H „ °H˜p D˜, Q°ì D p

¸ ´H  ”¼„ aU˜ , FTIR< UV/Vis ÄQ $

|œ QX‘ p¸ ¬°˜ ”¼ Ä]˜@$. P2ANS50 (DANS:MMA °q´ 50:50¸ 5Q©ô) „Ä„ Q°ì˜

Slit

X- Y stage M otorized

Rotation Stage

Photo diode 2

com puter Lens

Rotation Stage Controller Polarizer

Photo diode 1 1/4 λ plate Laser

Lock-In Aplifier Chopper

Slit

X- Y stage M otorized

Rotation Stage

Photo diode 2

com puter Lens

Rotation Stage Controller Polarizer

Photo diode 1 1/4 λ plate Laser

Lock-In Aplifier Chopper

 )LJXUH Experimental setup for refractive index measurements using the prism coupling method./

)LJXUH Refractive index changes of P2ANS copolymer films  as functions of comonomer composition and photo-bleaching time./

83# 73# 63# 53# 43#

DANS Content

Refractive Index

41:5 41:3 419;

4199 4197 4195 4193 418;

4189

Exposure time (min)

3# 83# 433# 483# 533# 583# 633#

C opolym er ratio P hotobleaching

(4)

  Cho et al. Polymer (Korea), Vol. 28, No. 6, 2004/

  °U˜# 1# žVâ, \28Ì \6x, 2004„/

° @pœ Figure 4˜ UV/Vis äÙø<\ «-DÐ$´

5¡ ¬°œ 0ð\ DANSÔ ›˜ ¡X ˜œ œ¸A DÐ$˜ $l  D´@ «©* «˜ 430 nm |¬€

«© * n˜ 300 nm |¬\ Ø ØÔ Ã´ 4¸$. Q

°ì ˜˜, \ ( DANS˜ 430< 300 nm |¬$˜

xp@ PP Dô$ ” € Lå\ œô S€ |

¬@ Ø ØÔ Ã„ Figure 4\ < X È$. ´,œ

UV/Vis ¡X|¬˜ blue-shift D€ \ ( ,¨X ô ÈÔ 5¡¬°˜ Œ-ð© 0ð´ QX‘ ˜˜, Š ô p Œx´$. Q°ì p¸ ´€ Y€ ÄÐ ¬°˜

”Ô FTIR„ ´éœ $\ DANS 89 ô ä8ä

´Q ð©´ Šô Ô Ã|œÀp •¸  X È$.14 5Q©ô P2ANS50 U ˜ Qœq p¸ ´H 

”¼ Figure 3 5Q©ô˜ °q ”€ „˜, Ø ô$. Q°ì D´ xôX U ˜ ´H ´ ф

Ô Ã€ QX‘ ˜˜, DANS 89 ô ä8ä C¼C

´Q ð©´ Šô p Œx´$.14 QX‘|œ DANS ô

Œ-ð© 5¡ ¬°@ ì¼ Ô ÄÐ ¬°˜ ” Œx ø 9 ´ фx ´H ´ î„ Ô Ã´$. Q°ì p

¼ DANS ô ä8ä C¼C ´Q ð©´ Šôx DANS ¬

°@ ”˜Ô À UV/Vis ÄQ $\ DANS ùq |

¬¸ 430 nm xp@ DôÔ Ã´ 4´Ô Figure 4€

P2ANS 5Q©ô¼ Qœq˜° °ìœ FTIR $ ð<

\ DANS 89˜ ùq |¬ xp@ PÌ˜Ô Ã|œ

Àp •¸  X È$.14 5Q©ô °q p¼ ÍA

|œ ´H ´ ”˜Ô ýð€ $´Ì Qœq˜ ýð

Ô ´H ´ HpÔ  ´Ì PÌ˜Ø Q°ì D´ x ô ´ ¼U R ,˜, ˜ ŠÔ Ä 4,<

$. P2ANS50 5Q©ô ýð Qœq iÕ|œ Hp 1.71

¸ ´H „ 1.62Œ ”ì X È$. Q°ì Ñ

p¼ ´H ´ ”˜Ô U¼ FTIR $\ ûô

DANS 89 ùq |¬ (1335 cm-1)˜ PÌh, É DANS 8 9˜ 5¡ ¬°@ ô Ô U „œ ð<¼ Figure 5 œ˜@$. Qœq p¸ ´H  PÌ@ DANS ô 5¡ ¬° ј ”h „€˜, PÌ˜Ô ´€ Y€

$ ð<\ Q°ì ˜˜, Ø ØÔ P2ANS50 U

˜ ´H  PÌ @ÀĀ DANS 89˜ ¬° ” ˜

œ p,¼Ô Ä Œ X È$.

›´ ÄÐ „Ä ô QLœ¼ É  Œ, P2ANS50

„Ę ´H „ ›˜ Dpå qÄ´ „Ä ´< ɜ

TE (transverse electric) è€ „Ä ´ Xœ TM (tran- sverse magnetic) èœ ØDô Qœq D p¼ aU

˜, Figure 6 œ˜@$. Q°ì ˜˜, „Ę ´ H € TE€ TM è\ è P̘԰ ´Ô ž\

dŘ@/´ DANS \ (´ QX‘ ˜˜, Ä´X p Œx´$. Q°ì D aUœ P2ANS50 „Ę ´H



)LJXUH UV/Vis spectra changes of P2ANS50 film with photo- bleaching time./

# 583# 633# 683# 733# 783# 833# 883# 933# 983 Wavelength (nm)

Absorbance

31<

319

316

313

/ / / / / / / / /



)LJXUH  Plot of IR absorbance ratio against refractive index ratio of P2ANS50 films after photo-bleaching./



)LJXUH  Refractive index (TE and TM mode) changes in P2ANS50 film with photo-bleaching time./

4133# 31<;# 31<9# 31<7 n/n0

I (1335 cm-1 )/I (1335 cm-1 )0 415 413 31;

319

317 315 313

3# 83# 433# 483# 533

Exposure time (min)

Refractive Index

41:5 41:3 419;

4199 4197 4195

(5)

Polymer (Korea), Vol. 28, No. 6, 2004 Refractive Index Changes ofPolymer Film  

žVâ, \28Ì \6x, 2004„ QX‘ ˜œ ´H  ”# #

 € „Ä ´ É˜Ì QLœ¼ p¼ ›˜ Dpå

´ É˜Ô TE è\ aUœ ´H  R´ Dpå q Ä´ „Ä´ Xœ \ É˜Ô TM èœ û

€ R4$ ½D ¬Ì @pX$. ´,œ ´H ˜ h´

Ô ä€ ”E„ ´é˜, ÄÐ U „ \°  ýð, ÄÐ ìì ô ä` 89$´ 5¡ ¬°œ 0ð\ ÀÄ´

((˜ Xô Š„ ä€ ”E ,e ˜˜, „ Ä ´ ɸ iå|œ D \ ´ì˜Ô • ´ „Ä

´ X|œ \ ÈÔ 4$ ¬p Œx´$. P2ANS 5 Q©ô ìì Q ((œ ÀÄ, É DANS 89€ ø9 ´

$\ ´H  R´ ìì˜ $¸ ÀÄ4$ ¬ œ TE è

˜ ´H  R´ ¬Ì ØdÔ Ã´$. ,e´ ´ „Ä

„ Ô bar ”E iՄ ´é˜Ì X´ ÄÐ ìì

$´ pP ´ D\ ʜ p4˜Ì X œ bar ”E Õ|œ U „ \°˜, ä€ ”E|œ ûô  € „

˜@$. Prism coupling|œ aUœ bar ”E P2ANS50 „ Ę 5´H R 0.810-3€ ž˜ ä€ ”EÕ ˜´ \

°\ „Ę 5´H 0.5710-2 „˜, ¬Ì фx „ Ä ô 5´H´ °˜ ´ì˜ ŠÔ Ä Œ X È$.

8, œ P2ANS 5Q©ô U „ \°  Œ ,e ˜

˜, ((œ DANS 89´ pP É˜Ì p4XÔ ä

€ ”E ýð€Ô ,ì bar ”E|œ „Ä„ \°˜Ì X

´ ä` 89$´ 0ð\ DANS 89 „Ä ´< X 2Ô X|œ ʜ p4˜Ô ô$.

P2ANS50 U  Q°ì¼ ˜´ TE è ´H  R´

 ´Ì P̘, ' TM è ´H  R4$ ф ,

 R˜ h´, É U ˜ 5´H R´ 60Ä  œ@@ (∆n

¼0.02) X$@ $ DôÔ D„ Figure 6\ <

X È$. QX‘˜ ÍÔ °ì\ ›˜ Dpå iå< Q X‘p˜ transition dipole˜ iå´ ¼˜˜@„ Œ ›˜ œ

@ ¡X@ ¼ôØ @å  ´Ì Ʉ ˜Ì \$. 8,

œ ä€ ”E|œ \°\ P2ANS50 U ô\ ÉX Ô QX‘˜ ýðÔ Qœq„ D˜, °ì˜Ô ›˜ D på iå´ „Ä ´ É˜Ì Åì˜ œ QX‘ Í

@ „Ä ´ É˜Ì D ÈÔ DANS€ (l èh A|œ ´(ô Ì \$. ÅìXÔ ›˜ Dpå iå

˜´˜Ô `A¸ QX‘ ˜˜, „Ä ´ ɜ

iå|œ ´ì˜Ô DANS 89´ |@ Ä´@ X´\ „ Ä ´ ɜ iå¸ TE è ´H ´ TM è\

4$ ” Ié˜Ì P̘p Œx Figure 6˜ ð<@ Ø ØÔ Ã´$.

TE€ TM è\˜ ´H  ” @œ ´€ Y€

dń ÝŘp D˜, ATR (attenuated total reflection)

FTIR $„ Xɘ@$. UV¼ P2ANS50 „Ä ¼U

D °ì˜, QX‘„ `œ  „Ä ´ É˜Ì (TE

mode) øQ\ IR ”„ ´é˜, aUœ øQ ATR-FTIR äÙø< (Figure 7)< „Ä ´ Xœ øQ|œ aUœ

(TM mode) ATR-FTIR äÙø<„ ûô A è\˜ Q

œq ͼ „˜@$. DANS ô ä8ä 89˜ C¼C

´Q ð©´ Šô œ ä` 89 5¡ ¬° ˜œ ù q |¬¸ 1584 cm-1 |¬ xp@ Ié˜Ì DôÔ Ã´ Ø Ø°, 8 ð< DANS \ (  ÙôÈÔ NO2 89´ ôx 1335 cm-1 ˜ NO289 sym. Stretching

 ô |¬@ DôÔ Ã´ @p\$. DôA|œ

„÷œ ”¼ 4´Ô TE€ TM è øQ ATR-FTIR ä Ùø<ô\ 1335 cm-1 |¬ ”¼ x@˜Ì „ @ p˜@$. ä€ ”E˜ ð<œ „Ä ´ É˜Ì p4

˜Ì XÔ DANS 89 ô NO2 89 sym. stretching 

ô˜ transition moment iå€ „Ä ´< ɜ TE è\€ Y , „Ä ´ X|œ p4\ DANS Ù ôÈÔ NO289˜  ô iå€ TM è iå< Y

$. Q°ì D p¼ AA øQ FTIR $\ ûô

)LJXUH  Polarized ATR-FTIR spectra (TE mode) change of P2ANS50 film with photo-bleaching time./



)LJXUH  Decrease in 1335 cm-1 peak (TE and TM mode) intensity of P2ANS50 film with photo-bleaching time./

Absorbance

4;33# 4:33# 4933# 4833# 4733# 4633# 4533#

Wavenumber (cm-1)

3# 43# 53# 63# 73# 83# 93#

Exposure Time (min) A/A0 (1335 cm-1 )

413 31;

319 317 315 313

(6)

  Cho et al. Polymer (Korea), Vol. 28, No. 6, 2004/

  °U˜# 1# žVâ, \28Ì \6x, 2004„/

Ô 1335 cm-1 |¬ xp˜ PÌ UÔ TE èœ û€

ATR-FTIR äÙø<\ ”  ´Ì PÌ˜Ô Ã„ Figure 8

\ •¸  X È$. ´Ô Figure 6˜ Qœq ˜œ

´H  ” $\ TE èœ aUœ ´H ´ ”  ´Ì PÌ˜Ô Ã< Y€ ´`´$. Q°ì@ „Ä ´

 X iå|œ ÉX œ ›˜ Dpå iå€ „Ä

´ É˜Ì °ìXÔ°, ä€ ”E|œ ¸˜, „Ä

´ iå|œ D ÈÔ DANS 89$´ X|œ ´ì˜

Ô DANS$4$ ”  ´Ì QX‘„ ˜, Ä´@ ¼ôØ

° 1335 cm-1 |¬@ PÌ˜Ì \$. 8, œ „Ä ´

X |œ û€ øQ ATR-FTIR äÙø<\˜ DANS ù q |¬ xp PÌØ øQ prism coupling $\ TE è

œ û€ ´H ˜ PÌ@ AA˜ TM è\ û€ ð

<4$ ”  ´Ì Ø ØÔ Ã´$.

%-Ý

Q°ì ˜˜, \ (˜ Ä´¼ `˜, ÄÐ „ Ę ´H „ ”äÔ Qœq iÕ|œ P2ANS 5Q

©ô U ˜ ´H „ °H˜ , FTIR< UV/Vis ÄQ $

|œ ´H  Aå„ 8˜Ô ÄÐ ¬°˜ ”¼ ° ì˜@$. Qœq p¼ P2ANS50 U ˜ ´H ´ 1.71

\ 1.62Œ ф Ô Ã€ QX‘ ˜˜, DANS 8 9 ô ä8ä C¼C ´Q ð©´ Šôx ÄИ ø9  ´ ф p Œx´$. Q°ì p¸ P2ANS50 U

˜ ´H  PÌÔ DANS 89˜ ¬° ” ˜œ p,

@ ¬$Ô Ã„ Œ X È$. 5Q©ô °q p¼ ` UA|œ ´H ´ ”˜Ô ýð€ $´Ì Qœq˜ ý ðÔ ´H ´ HpÔ  ´Ì PÌ˜Ø Q°ì D

´ xô ´ ¼U R ,˜, ˜ ŠÔ Ä 4,

<$.

P2ANS U ˜ ´H € „Ä ´ É˜Ì QLœ

¼ p¼ ›˜ Dpå´ É˜Ô TE è\ aUœ ´ H  R´ Dpå qÄ´ „Ä´ Xœ \  É˜Ô TM èœ û€ R4$ ½D ¬Ì @pX$.

´,œ ´H ˜ h´Ô ä€ ”E„ ´é˜, ÄÐ U „ \°  ýð, ÄÐ ìì ô ä` 89$´ 5¡

¬°œ 0ðXô ÈÔ ÀÄ´ ((˜ Xô Š„

ä€ ”E ,e ˜˜, „Ä ´ ɸ iå|œ

D \ ´ì˜Ô • ´ „Ä ´ X|œ ÈÔ 

4$ ¬p Œx´$. P2ANS U  Q°ì¼ ˜Ì X

´ TE è ´H  R´  ´Ì PÌ˜Ô Ã„ < X È

$. QX‘˜ ÍÔ °ì\ ›˜ Dpå iå< QX‘

p˜ transition dipole iå´ ¼˜˜@„ Œ @å  ´Ì

Ʉ ˜Ì X œ, ä€ ”E|œ \°\ P2ANS50 U ô\Ô „Ä ´ É˜Ì D ÈÔ DANS€ ( l èhA|œ QX‘´ ¼ôØÌ \$. ÅìXÔ ›˜

Dpå iå ˜´˜Ô `A¸ QX‘ ˜˜, „Ä

´ ɜ iå|œ ´ì˜Ô DANS 89´ |@ Ä

´@ X´\ „Ä ´ ɜ iå¸ TE è ´H 

´ TM è\ 4$ ” Ié˜Ì PÌ˜Ô Ã´$. ´€

Y€ TE€ TM è\˜ ´H  ”¼ øQ ATR-FTIR

$\ ûô Ô NO2 @­ Õô |¬ xp˜ ”

¼ °ì˜, ÝŘ@$.

)Õ }8 0¬Ô ðÐÀ hx@ p`\\

ì L¼ä1 Ql` p`\\ ì(˜ |œ X ÉXõ$.

7DEDKDGBDL

1. G. P. Agrawal and R.W. Boyd, “Contemporary Nonlinear Optics”, Academic, Boston (1992).

2. D. Ulrich, Mol. Cryst. Liq. Cryst., 160, 1 (1988).

3. P. Prasad and D. Williams, “Introduction to NLO Effects in Molecules & Polymers”, John Wiley & Sons, NY (1991).

4. T. Leslie, R. Demartino, E. Choe, G. Khanarian, D. Haas, and H. Yoon, Mol. Cryst. Liq. Cryst., 153, 451 (1987).

5. C. C. Teng, Appl. Phys. Lett., 60, 1538 (1992).

6. H. Man and H. Yoon, Adv. Mater., 4, 159 (1992).

7. S. Ham, S. Choi, B. Lee, and K. Song, Polymer(Korea), 21, 201 (1997).

8. K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegemann, Appl. Phys, Lett., 55, 1161 (1989).

9. E. Tomme, P. Daele, R. Baets, and G. Mohlmann, J. Appl.

Phys., 69, 6273 (1991).

10. Y. Shi, W. Steier, L. Yu, M. Chen, and L. Dalton, Appl. Phys.

Lett., 58, 1131 (1991).

11. S. Imamura, R. Yoshimura, and T. Izawa, Electron. Lett., 27, 1342 (1991).

12. J. Kim, T. Zyung, and W. Hwang, Appl. Phys. Lett., 64, 3448 (1994).

13. T. Zyung, W. Hwang, and J. Kim, Appl. Phys. Lett., 64, 3527 (1994).

14. S. Choi and K. Song, Polymer(Korea), 23, 158 (1999).

/

참조

관련 문서

z The refractive index, and consequently the speed of light in an optical medium, does change with the light intensity.. z The principle of

노인에서의 수면 무호흡으로 인한 장기적 합병증이 중년 환자와 비교하여 차이가 있는지 여부는, 노인의 수면 무호 흡을 하나의 특정질환으로 간주할 것인지 아니면 노인의

• Transmission Phase Grating – light is periodically modulated in phase due to refractive index variations. • Reflection Gratings – widely

혼합제를 사용하여도 천식 조 절이 되지 않는 경우 경구 약제인 류코트리엔 조절제 그리 고 (또는) 테오필린을 추가하여 사용한다. 류코트리엔은 효 과 면에서는

Influence of the refractive index of the embedding medium on the resonance position and linewidth of the particle plasmon resonance of a 20 nm gold

결핵균에 감염된 사람의 일부에서만 결핵이 발병하는데 어떤 사람에서 결핵이 발병하는지 그 자세한 기전은 알려져 있지 않지만 결핵균의 독성(virulence)이 강하거나 결핵균에

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field.. 4) Saturated absorption

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of