• 검색 결과가 없습니다.

Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations

N/A
N/A
Protected

Academic year: 2022

Share "Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations "

Copied!
41
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

EE ngineering Mathematics II ngineering Mathematics II

Prof. Dr. Yong-Su Na g (32-206, Tel. 880-7204)

Text book: Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, Wiley (2006)

(2)

Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations

(PDEs) (PDEs)

12 1 Basic Concepts 12.1 Basic Concepts

12.2 Modeling: Vibrating String, Wave Equations

12.3 Solution by Separating Variables. Use of Fourier Seriesy p g

12.4 D’Alembert’s Solution of the Wave Equation. Characteristics 12.5 Heat Equation: Solution by Fourier Series

12.6 Heat Equation: Solution by Fourier Integrals and Transforms 12.7 Modeling: Membrane, Two-Dimensional Wave Equation

12.8 Rectangular Membrane. Double Fourier Series

12.9 Laplacian in Polar Coordinates. Circular Membrane.

Fourier-Bessel Series

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

l f b l f

12.11 Solution of PDEs by Laplace Transforms

2

(3)

Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations Ch. 12 Partial Differential Equations

(PDEs) (PDEs)

12 1 Basic Concepts 12.1 Basic Concepts

12.2 Modeling: Vibrating String, Wave Equations

12.3 Solution by Separating Variables. Use of Fourier Seriesy p g

12.4 D’Alembert’s Solution of the Wave Equation. Characteristics 12.5 Heat Equation: Solution by Fourier Series

12.6 Heat Equation: Solution by Fourier Integrals and Transforms 12.7 Modeling: Membrane, Two-Dimensional Wave Equation

12.8 Rectangular Membrane. Double Fourier Series

12.9 Laplacian in Polar Coordinates. Circular Membrane.

Fourier-Bessel Series

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

l f b l f

12.11 Solution of PDEs by Laplace Transforms

3

(4)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

K

u 2 2 2

z Heat Equation(열전도방정식) :

σρ

c K u t c

u = =

2 2 2

,

) y Diffusivit (Thermal

:

2 열확산계수

c

ty) Conductivi (Thermal

: 열전도도 K

비열 :

σ

밀도 : 물체의

ρ

z 문제

물체의 밀도 ρ :

1차원 열전도방정식 : 2

2 2

x c u t

u

=

경계조건(Boundary Condition) :

초기조건(Initial Condition) :

( ) ( )

0 ,

t u L

,

t

0 ( 모든

t

에 대하여 )

u

= =

( )x f ( )x ( x L)

u

, 0 = , 0 ≤ ≤

(5)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

z 1단계. 열전도방정식으로부터 두 개의 상미분방정식의 유도

( ), ( ) ( ) 22 ''( ) ( ), u F( ) ( )x G t t

G x u F

y G x F y

x

u( )= ( ) ( ) = ( ) ( ) = ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )

(

2

)

2

'' ''

,

,

x p F t

t G G x F c t

G x F

t G x t F

t G x x F

y G x F y

x u

=

=

=

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( )

2

p

x F t

G t c

G x F c t

G x

F = = =

( ) ( ) 0, ( ) ( ) 0

''

+ 2 = + 2 2 =

F x p F x G t c p G t

(6)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

z 2단계. 경계조건의 만족

( ) ( ) ( ) ( ) ( ) ( )

( )0 ( ) 0

0 ,

, 0 0

, 0

=

=

=

=

=

= L F F

t G L F t

L u t

G F t

u 을 적용

경계조건

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 0 ( ) cos sin

''

0 0

, 0 ''

2 2

+

=

= +

=

=

= +

px B

px A

x F x

F p x F

L F F

x F p x F

( ) ( ) ( )

( )0 0, ( ) cos sin 0 sin 0 ( : )

sin cos

0

=

=

= +

=

=

=

+

=

= +

L n p n

pL B

pL B

pL A

L F A

F

px B

px A

x F x

F p x F

π 정수

( ) ( ) sin ( 1, 2, 3, ")

∴ = = x n =

L x n

F x

F n π

( ) n ( ) n Gn( )t Bne n t L

cp cn t

G t

G

 +

λ 2

= 0 ,

λ

= =

π

⇒ =

λ 2

( )

i

nπx λ 2t (

1 2 3

) ( )

, = sin

e

(n

= 1 , 2 , 3 , "

)

L x B n

t x

un n π λn t

(7)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

z 3단계. 전체 문제에 대한 해. 푸리에 급수

( ) ( ) sin 2

=

=

= u x,t B nLxe cnL

x,t

u n n π λn t λn π

1

1 =

= n L L

n

( )x = Bn n x = f ( )x

u ,0 sin

: π

충족

초기조건의 ( ) ( )

( )

=

=

L n

n n

L dx x x n

L f B

L f

1

2 sin

,

적용 π 급수

사인 푸리에

L L 0

(8)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

Ex. 1 Sinuroidal Initial Temperaturep

( )

( ), . 50 C ?

C 0

, C 80 sin

100

cm 80

D

D D

얼마인가 시간은

걸리는

떨어지는

최고온도가 막대의

이때 구하라

온도

유지될

양끝이 이고

초기온도가 구리막대의

길이 절연된 측면이

t x u

πx

C sec cm cal 0.095

, C gm cal 0.092 , cm gm 8.92

:

밀도 3 비열 D 열전도도 D

데이터 물리적

대한 구리에

(9)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

Ex. 1 Sinuroidal Initial Temperature

( )

( ), . 50 C ?

C 0

, C 80 sin

100

cm 80

D

D D

얼마인가 시간은

걸리는

떨어지는

최고온도가 막대의

이때 구하라

온도

유지될

양끝이 이고

초기온도가 구리막대의

길이 절연된 측면이

t x u

πx

p

C sec cm cal 0.095

, C gm cal 0.092 , cm gm 8.92

:

밀도 3 비열 D 열전도도 D

데이터 물리적

대한 구리에

의하여 초기조건에

( ) ( )

[ ]

n n

K c

B B x B

x x f

B n x

u

2 2 2

3 2 1

1

870 9 95

0

0

, 100

sin80

80 100 sin 0

,

=

=

=

=

=

=

=

=

π

π

π "

[ ]

( ) xe . t

t x u

K L

c

001785 0

1 2

2 1 2

2 2

sin80 100 ,

sec 001785 .

80 0 870 . 158 9 . 1

sec 158 cm

. 92 1 . 8 092 . 0

95 . 0

=

=

=

⎥⎦

⎢⎣

=

=

⎟⎟

⎜⎜

=

=

π σρ λ λ π

( ) 80

[ ]sec 6.5[ ]min 001785 388

0 5 . 0 ln

50

100e0.001785t = t = = [ ] [ ]

001785 .

0

(10)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

Ex. 4 Bar with Insulated Ends. Eigenvalue 0

경계조건을 양 끝이 단열되었을 때의 조건으로 바꾸고 열전도 방정식의 해를 구하라.

(11)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

Ex. 4 Bar with Insulated Ends. Eigenvalue 0

경계조건을 양 끝이 단열되었을 때의 조건으로 바꾸고 열전도 방정식의 해를 구하라.

( ) ( ) (모든 대하여)

경계조건

이다 기울기는

없다면 열흐름이

단열되 끝이

비례한다

기울기 온도의

전열속도는 의하면

실험에 물리적인

0 0

0 :

. 0

.

) (Gradient

t t

L u t

u ( ) ( ) (모든 대하여)

경계조건 : ux 0,t = 0, ux L,t = 0 t

( )t F ( ) ( )G t u ( )L t F ( ) ( )L G t F ( ) F ( )L

u ( )0, = '( ) ( )0 = 0, ( ), = '( ) ( )= 0 '( )0 = '( )= 0

( ) ( )

( ) ( ) n

px Bp

px Ap

x F' px

B px A

x F

L F F

t G L F t

L u t

G F

t

ux x

π cos

sin

sin

cos

0 0

0 ,

, 0 0

, 0

+

=

+

=

( ) ( )

( )x n x

F

L p n

p B

pL Bp

pL Ap

L F Bp

F n

π

π cos

, 0

0 cos

sin '

, 0 0

'

=

=

=

=

= +

=

=

=

( )x L Fn = cos

(12)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

( ) ( ) ( )

L e cn

L x A n

t G x F t

x

un n n n π λn t λn π

cos

, 2

=

=

=

( ) ( )

( ) A n x f ( )

L e cn

L x A n

t x u t

x

u n

n

t n

n

n n

π λ π π λ

0

cos

, ,

0 0

2

= =

=

=

=

초기조건으로부터 ( ) ( )

( )x dx A f ( )x n x dx

f A

x L f

A x

u

L L

n

n

cos π 2

1

cos

0 ,

0

0

=

=

=

=

=

초기조건으로부터

( ) ( ) dx

x L L f

A dx

x L f

A , n cos

0 0

0

(13)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

z Steady Two-Dimensional Heat Problems. Laplacs’s Equation

2차원 열전도 방정식 :

⎟⎟ ⎠

⎜⎜ ⎞

∂ + ∂

= ∂

2 2 2

2 2

y u x

c u t u

) (

0 0

,

) (Steady

2 2

2 라플라스 방정식

무관 시간에

열전도가

=

+

=

=

u u u

t 정상적 u

z Boundary Value Problem, BVP(경계값 문제)

) (

0

2 2 = 라플라스 방정식

+

=

u x y

경우 주어지는

값이

위에서

문제 : Dirichlet C u

경우 주어지는

값이

법선도함수 문제 : 위에서

Neumann u

u

C

경우 주어지는

값이

법선도함수 위에서

문제 :

Neumann

u n

C n

=

주어지고 값이

한부분에서는

문제 문제

경계값

혼합 , Robin : C u ,

경우 주어지는

값이

부분에서 나머지

C un

(14)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

z Dirichlet Problem in a Rectangular R y

u = f(x)

x u f(x)

u = 0

u = 0 u = 0

b

0

R

( ) ( ) ( )

d G F d d G

F y d

G x F y x

u , = 2 2 = 2 2 변수분리법 적용

u = 0 x

a 0

( ) ( ) ( )

dy k G d G dx

F d F

dy y dx

y

=

=

2 2 2 2

2 2

1 1

( ) ( )

( ) F ( ) n G( ) G ( ) A B

n F k

a F F

y n y

π n

π π π

2 1 i

0 0

:

2

=

=

경계조건 변의

오른쪽

왼쪽

( ) ( ) ( ) ( )

( )

G

n e

B e

A y G y G a x

x n F x a F

k n

n

a n a

n n

n

π π

0 0 :

, 2 , 1 ,

sin

,

=

= +

=

=

=

=

=

경계조건 아랫변에서의

"

( )

y n x

n

a y A n

e e

A y G B

A a n

y n a

y n n n

n n

π π

π π

π

sinh 2

0

⎟⎟=

⎜⎜

=

= +

( ) ( ) ( )

a y n a

x A n

y G x F y x

un n n n π π

sinh sin

* ,

= =

(15)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

y n x

n

π π

( ) ( )

( )x b f ( )x u

a y n a

x A n

y x u y

x u

n n

n n

=

=

=

=

=1 1

, :

sinh sin

* ,

, π π

경계조건 위변에서

( ) ( )

a b n a

x A n

x f b x u

n n

=

=

=1

sinh

sin

* ,

π π

( ) ( ) dx

a x x n

f a

b a n

A a dx

x x n

a f a

b A n

bn = n = a n = a

0 0

sin sinh

* 2

2 sin sinh

*

π

π π

π

(16)

12

12.5 Heat Equation: Solution by Fourier.5 Heat Equation: Solution by Fourierqq yy Series

Series

((열전도방정식 열전도방정식))

PROBLEM SET 12.5

HW 13 23 25 34 HW: 13, 23, 25, 34

(17)

12

12.6 Heat Equation: Solution by Fourier.6 Heat Equation: Solution by Fourierqq yy Integrals and Transforms

Integrals and Transforms

((열전도방정식 열전도방정식))

z Bars of Infinite Length

Heat Equation: 2

u

u

2 2

x c u

t u

=

Initial Condition:

( )

x f

( )

x

u ,0 =

u( )x,t = F( ) ( )x G t F ''+ p2F = 0, G + c2 p2G = 0

( ) ( ) 2 2t

( ) ( )

( ) ( ) c p t

t p c

e px B

px A

FG p

t x u

e t

G px

B px

A x

F

2 2 2

2

sin cos

; ,

, sin cos

+

=

=

= +

=

(18)

12

12.6 Heat Equation: Solution by Fourier.6 Heat Equation: Solution by Fourierqq yy Integrals and Transforms

Integrals and Transforms

((열전도방정식 열전도방정식))

z Use of Fourier Integralsg

( )= ( ) = ( + )

0 0

2

sin 2

cos

; ,

,t u x t p dp A px B px e dp x

u c p t

(19)

12

12.6 Heat Equation: Solution by Fourier.6 Heat Equation: Solution by Fourierqq yy Integrals and Transforms

Integrals and Transforms

((열전도방정식 열전도방정식))

z Use of Fourier Integrals

( )= ( ) = ( + )

0 0

2

sin 2

cos

; ,

,t u x t p dp A px B px e dp x

u c p t

( ) ( ) ( )

g

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ∫ ∫ ( ) ( )

=

=

=

= +

=

dp dv pv px v

f x

u pvdv

v f p

B pvdv v

f p

A

x f dp px B

px A

x u

0

1 cos 0

1 sin 1 cos

sin cos

0 , 초기조건으로부터

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∫ ∫

=

dv dp pv px e

v f t

x u

dp dv pv px v

f x

u pvdv

v f p

B pvdv v

f p

A

t p c

0

1 cos ,

cos 0

, sin

, cos

2 2

π

π π

π

0

π

(20)

12

12.6 Heat Equation: Solution by Fourier.6 Heat Equation: Solution by Fourierqq yy Integrals and Transforms

Integrals and Transforms

((열전도방정식 열전도방정식))

z Use of Fourier Integrals

( )= ( ) = ( + )

0 0

2

sin 2

cos

; ,

,t u x t p dp A px B px e dp x

u c p t

( ) ( ) ( )

g

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ∫ ∫ ( ) ( )

=

=

=

= +

=

dp dv pv px v

f x

u pvdv

v f p

B pvdv v

f p

A

x f dp px B

px A

x u

0

1 cos 0

1 sin 1 cos

sin cos

0 , 초기조건으로부터

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∫ ∫

=

dv dp pv px e

v f t

x u

dp dv pv px v

f x

u pvdv

v f p

B pvdv v

f p

A

t p c

0

1 cos ,

cos 0

, sin

, cos

2 2

π

π π

π

0

π

es2 bsds = e b2 2 2

cos

0

π 적용하면

공식

( ) ( ) ( )

( )

= dv

t c

v v x

t f t c

x u

1

exp 4 2

, 1 2

2

π

( )

+

= 1 f x 2cz t e z2dz

π

참조

관련 문서

에너지 자원분야에서는 현재 각 기관 구축된 자료의 공유 활성화 및 활용 기술 개발을 중점적으로 추진할 필요가 있다 활용할 경우 중복투자 방지를 통한 비용 손실을 줄

 The curl of the velocity field of a rotating rigid body has the direction of the axis of the rotation,.  and its magnitude equals twice the angular speed

 A power series with a nonzero radius of convergence R represents an analytic function at every point interior to its circle of convergence..  The derivatives of this

12.6 Heat Equation: Solution by Fourier Integrals and Transforms 12.7 Modeling: Membrane, Two-Dimensional Wave Equation..

11.4 Complex Fourier Series 11.5 Forced Oscillations.. 11.6 Approximation by Trigonometric Polynomials

Multi-step method are methods that use information from more than one of the preceding steps,

→ Bernoulli equation can be applied to any streamline.. The concepts of the stream function and the velocity potential can be used for developing of differential

Ø mass per unit length is constant; string is perfectly elastic and no resistance to bending.. Ø tension in string is sufficiently large so that gravitational forces may