• 검색 결과가 없습니다.

010.141 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS MODULE 6

N/A
N/A
Protected

Academic year: 2022

Share "010.141 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS MODULE 6"

Copied!
29
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

ENGINEERING MATHEMATICS II

010.141

NUMERICAL METHODS FOR

DIFFERENTIAL EQUATIONS

MODULE 6

(2)

INTRODUCTION

Ø The methods which we will cover are:

• Methods for First-Order Differential Equation o Euler Method

o Improved Euler Method o Runge-Kutta

o Adams-Bashforth o Adams-Moulton

• Methods for Higher Order Equations and for Systems

(3)

METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATION

In this section, we will assume that the problem to be solved is expressed as:

y' = f ( x, y ) y ( x0 ) = y0 Initial Value Problem and f is such that the problem has a unique solution.

We shall start with step-by-step methods, i.e., x0 ® x1 = x0 + h ® x2 = x0 + 2h, ×××

where "h" is the step size.

(4)

METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATION (cont)

Step-by-step methods' formulation is derived from Taylor series

(

+

)

=

( )

+

( )

+ ¢¢

( )

+L

y x h y h

x y' x

y h

x y

2

(5)

EULER'S METHOD

For instance, the Euler method also called Euler-Cauchy is derived directly from the first two terms of the Taylor expansion:

( )

( ) ( ) ( )

( ) x h f ( x, y )

y

x y' h x

y h

x y

y x, f y

+

»

+

» +

¢ =

(6)

EULER'S METHOD

The iteration process follows:

( )

( )

( ) ( ) ( )

( )

(

1 1

)

1 2

0 0

0 1

0 0

0 0

1

0 0

y , x f h y

y

y , x f h y

y

y , x f h x

y h

x y y

y 0

y i.e.

known y

+

=

+

=

+

= +

=

=

®

(

n n

)

n 1

n

y h f x , y

y

+

= +

(7)

EULER'S METHOD

(8)

EULER'S METHOD

(9)

Example

Consider the D.E.

wyth i.c. y(0) = 0

This D.E. has solution:

y(x) = ex – x - 1

EULER

y dx x

dy = +

(10)

EULER: TABLE 19.1 h = 0.2

Note: exact solution y = e1 – 1 – 1 = 0.718 Approx. is 0.489

error 0.229 ® significant

(11)

A priori, one would want to create methods which use more terms of the Taylor series

where

IMPROVED EULER (HEUN'S METHOD)

( )

f f

f

x y y

f x

y f x f

y

x + ×

=

× ¶

¶ + ¶

= ¶ ,

'

( ) ( ) ( ) ( )

( ) ( ) ( )

L

L

+ +

+

=

+ +

+

= +

y , x ' 2 f y h

x, hf x

y

x

"

2 y x h

hy' x

y h

x y

2 2

(12)

Obtaining the derivatives of f is time consuming and cumbersome.

Instead an another approach is preferred where intermediate values are introduced to increase accuracy.

Uses Predictor - Corrector Method Predictor:

Corrector:

IMPROVED EULER METHOD

(

n n

)

n 1

n

y h f x , y y

*+

= +

( ) ( )

[

+ *+

]

+1 = n + n n + n 1 n 1

n f x ,y f x ,y

2 y h

y

(13)

Improved Euler is called a predictor-corrector method, i.e., one step predicts, one step predicts.

Example: Consider:

IMPROVED EULER METHOD

( ) 0 0

y

y dx x

dy

= +

=

(14)

IMPROVED EULER METHOD (cont)

( ) ( )

[ ]

[ ]

n+1 n 2 n n n+1 1

n 2 n n n n n n

n 2 n n n n n n

n 2 n n

n

y = y x + y + x + y , y = x + y = y x + y + x + h + y + h x + y

= y x + y + x + y + 0.2x + 0.2y , h = 0.2 = y 2.2x + 2.2y + 0.2

= y

h

n h

h

h

*

+ ¢

é ù

+ ë û

+ éë ùû

+ + +

( )

( )

n n

n n n

n+1 n n n

0.22x + 0.22y + 0.02

= y 0.22 x + y + 0.02 Improved Euler y = y 0.2 x + y Euler

+ +

(15)

ILLUSTRATION – TABLE 19.3

( )

( ) ( )

Define:

y = y h f x , y

y = y f x , y + f x , y

n n n

n n n n+1

n

n h

n +

*

+ *+

+

+ é

ëê

ù ûú

1

1 2 1

(16)

ILLUSTRATION – TABLE 19.3 (cont)

( ) ( )

[ ]

[ ]

( )

y = y x + y + x + h + y + h x + y = y .1 2.2x + 2.2y + .2

= y 0.22 x + y + .02

n+1 n n n n n n n

n n n

n n n

+ + +

h 2

0 0

0

(17)

RUNGE-KUTTA

( )

( )

( )

0 0

n+1 0

n+1

1 n n

2 n n 1

3 n n 2

= f x, y ; x = x , y = y x = x + n + 1

Find y :

= h f x , y

1 1

= h f x + h, y +

2 2

1 1

= h f x + h, y +

2 2

y

at h

Define k

k k

k k

¢

æ ö

ç ÷

è ø

æ è

( )

( )

4 n n 3

n+1 n 1 2 3 4

= h f x + h, y +

y = y + 1 + 2 + 2 +

k k

k k k k

ç ö÷

ø

(18)

RUNGE-KUTTA (Cont.)

( )

( )

( )

1 n n

2 n n 1

3 n n 2

4

Again = x + y

= 0.2, 5 steps, from 0 to 1 = 0.2 x , y

= 0.2 x + 0.1 + y + 0.5 = 0.1 x + 0.1 + y + 0.5 = 0

y h k

k k

k k

k

¢

( )

( )

( )

n n 3

n+1 n n n

5 n

n+1 n n n

.2 x + 0.2 + y + After simplification:

y = y + 0.2214 x , y + 0.0214 at n=5: x =1

y = 0.718215 very close y = y + 0.22 x , y + 0.02 Euler: 0.48

k

®

9 IE: 0.7027 RK: 0.718215 True : 0.718282

(19)

MULTI-STEP METHOD (Optional)

Multi-step method are methods that use information from more than one of the preceding steps, thereby increasing accuracy.

(20)

ADAMS-BASFORTH METHOD (Optional)

(

x, y

)

, y

( )

x0 y0

f

y¢ = =

Consider

where f such that there is a unique solution

IDEA!! Replace f(x, y(x)) by an interpolation polynomial p(x).

( ) ( ] ( ) ( )

( )

( )

ò ò

+ + +

=

-

=

¢ = +

1 n

n

1 n n 1

n

n

x

x

n 1

n x

x x

x

dx x

y , x f

x y x

y y

dx x

y

(21)

The method is explained by taking a polynomial of order 3, p3(x) such that

ADAMS-BASFORTH METHOD (Optional)

ò ( )

+

+

+

=

1 n

n

x

x n

1

n

y p x dx

y

( )

( )

( )

(

n 3 n 3

)

3 n

2 n 2

n 2

n

1 n 1

n 1

n

n n

n

y , x

f f

y , x

f f

y , x

f f

y , x f f

- -

-

- -

-

- -

-

=

=

=

=

(22)

p3(x) can for instance be given by the Newton-backward difference formula (p807)

where

ADAMS-BASFORTH METHOD (Optional)

( ) ( )

( )( )

3 n

n 2 n

n

3 r r 1 r 2 f

6 f 1

2 1 r f r

r f

x

p + Ñ + + + Ñ

+ Ñ

+

=

1 n 1 k n

1 k n

k

1 n n

n

f f

f

f f

f

- - -

-

Ñ - Ñ

= Ñ

-

= Ñ

(23)

ADAMS-BASFORTH METHOD (Optional)

( )

3 n 2

n 1

n

2 n 1

n 1

n 2

1 n 2 n

2 n

3

2 n 1

n n

2 n 1

n 1

n n

1 n n

n 2

1 n n

n

f f

2 f

f f

f

f f

f

f f

2 f

f f

f f

f f

f

f f

f

- -

-

- -

-

-

- -

- -

-

- -

+ -

=

Ñ - Ñ

= Ñ

Ñ - Ñ

= Ñ

+ -

= -

- -

=

Ñ - Ñ

= Ñ

-

=

Ñ

(24)

ADAMS-BASFORTH METHOD (Optional)

( ) ( ) ( )

( )

( )( )( )

h x r x

f f

2 f

f f

2 f

2 r 1 r 6 r 1

f f

2 2 f

1 r f r

f r f

x p

n

3 n 2

n 1

n 2

n 1

n n

2 n 1

n n

1 n n

n 3

= -

- +

- +

- +

+ +

+ + -

+ -

+

=

- -

- -

-

- -

-

where r varies between 0 and 1 h dr = dx

(25)

ADAMS-BASFORTH METHOD (Optional)

( ) [ ]

( )

( )

( ) ò ( )

ò ò

ò ò ò

+ +

- +

- +

+ + -

+

- +

=

=

- -

-

- -

-

+

1

0

2 3

n 2

n 1

n n

1

0

2 2

n 1

n n

1

0 1 n n

1

0 n 1

0 x

x

3

dr 2 r 3 r

6 r f 1

f 3 f

3 f

h

2 dr r f r

f 2 f

h

dr r f

f h

dr f

h

dr h dx

x p

1 n

n

L

(26)

ADAMS-BASFORTH METHOD (Optional)

( )

( ] ( )

( )

( )

úú û ù çç

è

æ + +

- +

- +

úú û ù çç

è

æ + +

- +

úú û ù çç è - æ

+

=

=

- -

-

- -

-

ò

+

2 2 r 3

3r 4

r 6 f 1

f 3 f

3 f

h

4 r 6 f r

f 2 f

h

2 f r

f h r

f h

? dx x p

2 3

4 3

n 2

n 1

n n

1

0 2 3

2 n 1

n n

1

0 2 1

n n

1 n 0 x

x

3

1 n

n

(27)

ADAMS-BASFORTH METHOD (Optional)

( ) ( )

( )

( )

+L úû ù êë

é ÷

ø ç ö

è æ +

÷- ø ç ö

è æ + -

- +

÷ø ç ö

è

æ + + + + + +

=

÷ø ç ö

è

æ + + -

+ -

+

÷ø ç ö

è æ + +

- +

- +

=

-

- -

-

- -

ò

-

+

4 2 1 6 3 4

1 6

2 1 2 f 1

h

24 4 24

4 24

1 4

1 6

1 2

1 1 f h

1 4 1

1 6 f 1

f 3 f

3 f

h

4 1 6

f 1 f

2 f

h

f 2 f

f h h dx

x p

1 n n

3 n 2

n 1

n n

2 n 1

n n

1 n n

n x

x

3

1 n

n

(28)

ADAMS-BASFORTH METHOD (Optional)

( )

÷ø ç ö

è

æ - - +

÷ø ç ö

è

æ + + + +

÷ø ç ö

è

æ - - - - - +

+ + +

= +

úû ù êë

é ÷

ø ç ö

è æ + -

ú + û ù êë

é ÷

ø ç ö

è æ + +

+ +

=

- - -

-

ò

-

+

24 8 f 1

h

24

24 3

6 f 4

h

24

24 3

12 8

f 12 h

f 24 h

1 6 4 12 24

4 2 1 6 f 1

h 4 2

1 6 3 4 1 6 f 1

h dx

x p

3 n

2 n

1 n

n

3 n 2

n x

x

3

1 n

n

L

(29)

ADAMS-BASFORTH METHOD (Optional)

( )

3 n 2

n 1

n n

n 1

n

3 n 2

n 1

n n

x

x

3

f 24 h f 9

24 h f 37

24 h f 59

24 h y 55

y

24 f 9

24 h f 37

24 h f 59

h f

24 h dx 55

x p

1 n

n

- -

- +

- -

-

- +

-

= -

÷ø ç ö

è + æ -

÷ø ç ö

è + æ

÷ø ç ö

è + æ -

ò

=

+

참조

관련 문서

Bessel Series ((극좌표에서의 극좌표에서의 라플라스 라플라스 연산자 연산자 원형박막 원형박막 푸리에 푸리에 베셀 베셀 급수 급수)) Bessel Series.

12.6 Heat Equation: Solution by Fourier Integrals and Transforms 12.7 Modeling: Membrane, Two-Dimensional Wave Equation..

 Part E: Numerical methods provide the transition from the mathematical model to an algorithm, which is a detailed stepwise recipe for solving a problem of the indicated kind

Direct method of solution of variational problem is one of the most powerful tools for obtaining numerical results in practical problems of engineering

Ø mass per unit length is constant; string is perfectly elastic and no resistance to bending.. Ø tension in string is sufficiently large so that gravitational forces may

Discontinuum Continuum.. and Min, K.B., 2015, Discrete element modeling of transversely isotropic rock applied to foundation and borehole problems, 13 rd ISRM

Kikuchi, "Solutions to shape and topology eigenvalue optimization problems using a homogenization method", International Journal for Numerical Methods in

¾ Electromagnetic methods use the response of the ground to the propagation of incident alternating electromagnetic waves which are made up of two