• 검색 결과가 없습니다.

Chapter 8. Semiclassical Radiation Theory

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 8. Semiclassical Radiation Theory"

Copied!
20
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab

.

Hanyang Univ.

Chapter 8. Semiclassical Radiation Theory

8.1 Introduction

Semiclassical theory of light-matter interaction (Ch. 6-7)

- Ignores the quantum-mechanical nature (ex : quantum fluctuations) of the EM field - Treats the matter quantum-mechanically through the Schrodinger equation

=> Semiclassical theory is not perfect to describe fully the light-matter interactions (ex : spontaneous emission), but successful to describe all of atomic radiation

when the number of photons are much larger than unity.

In this chapter, we will complete our development of the semiclassical theory ; Maxwell-Bloch equation.

(2)

Nonlinear Optics Lab

.

Hanyang Univ.

8.2 Optical Bloch Equation

: An equivalent set of vector equations of the density-matrix equations ;

) 2(

A21 22 12 * 21

11 1

11 

i

) 2(

) A

( 2 21 22 12 * 21

22 

i

) 2 (

)

( 22 11

* 12

12

i i ) 2 (

)

( 21 22 11

21

i i

(6.5.14)

(6.5.17)

) 2 ( 22 11

* 12

12

i i

) 2 ( 22 11

21

21

i i )

2( 21

* 12

11 

i

)

2( 21

* 12

22 

i

(6.5.2) : without relaxation

: with relaxation

(3)

Nonlinear Optics Lab

.

Hanyang Univ.

For two-level atomic system, 1122 1

Define,

12

21

  u

) (21 12

i v

11

22

 

w

(8.2.1)

1) In the case of no relaxation

(6.5.2) => Δv dt

du

χw dt Δu

dv

dt χv dw

(8.2.2)

(4)

Nonlinear Optics Lab

.

Hanyang Univ.

Consider a fictitious space with unit vectors,

and define a “coherence vector” (Pseudo spin, Bloch vector),

and a “torque vector” (Axis vector),

, ,

w v

u 2 3 1

S  ˆ  ˆ  ˆ

S

Q

1 3 Q ˆ ˆ

(8.2.2) =>

S S Q

dt

d

(8.2.5)

(5)

Nonlinear Optics Lab

.

Hanyang Univ.

The effect of is only to rotates about the direction ofQ It cannot lengthen or shorten

S Q

S

2 2 ( ) 0

2 S S QS

S dt d dt

dS

2 11 11 22 2

22 12

21

2 11 22 2

12 21 2

12 21 2

2 2 2

2 4

) (

) (

) (

u v w S

1 1

) (

) (

2 )

( 4

2 2

* 1 1

* 2 2

2

* 1 1

* 1 1

* 2 2 2

* 2 2

* 2 1

* 1 2

c c c

c

c c c

c c c c

c c

c c c

: Conservation of probability in the two-level atom.

(in the absence of collision or relaxation)

w  

22

 

11 : Degree of inversion



) 1 ,

0 (

1

) 0 ,

1 (

1

11 22

11 22

w

w : population is entirely in the upper level

: population is entirely in the lower level

(6)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) 0 (at resonance) , const.

1 Q   ˆ

: Bloch vector rotates about axis

 cos sin

w v

(8.2.2c) =>

dt

 

 sin

sin 

dt

d     t

t w

t v

 cos sin

11 22

22

11 1

w

2 , 1

2 1

22 11

w w

) cos 1

2 ( 1

) cos 1

2 ( 1

22 11

t t

: Same form to (6.3.18) when 0

(7)

Nonlinear Optics Lab

.

Hanyang Univ.

Ex) 0(at resonance) , const.

t t dt

t 0

' ') ( )

( 

: “area” of the pulse

) ( )

( ˆ) ) (

( e E0 t E0 t

t

r21ε where,

[ pulse]

If, external wave inverts the atomic population from the lower to the upper level.

(8)

Nonlinear Optics Lab

.

Hanyang Univ.

If E0 is time-dependent,

1) The rotating wave approximation in going from (6.3.13) to (6.3.14) fails if  itself contributes rapid temporal variation.

=> We must assume that E0(t) is a slow varying time function.

2) If not just the amplitude but the phase of E0 changes in time, we can no longer assume that an adjustment of the wave function phase will make (t) real.

=> , E should be complex.

[Remarks]

(9)

Nonlinear Optics Lab

.

Hanyang Univ.

2) In the case considering the relaxation processes

(6.5.14), (6.5.17) =>

w i iv u i

w i i

i i

v i u

) )(

(

) (

2

) (

) (

2 2

21

11 22

21 21

12 21

12

21    

} {

2 2

2 22 21 22 21 22 12 * 21

11

22       

A i

w

) ( 21uiv

) put,

( 2 21

iv u iv

w u

12 21

22 , ,

2

1  

By definitions,

(10)

Nonlinear Optics Lab

.

Hanyang Univ.

)]

( )

( 2[ ) 1

1 ( *

1

iv u iv

i u T w

w       

 

where,

1 2

21 21

1

2 1 1

1 1

T T

T A

 

: longitudinal lifetime of spin

: transverse lifetime of spin

) 2 (T2T1

2ˆ 3ˆ

T1

T2

(11)

Nonlinear Optics Lab

.

Hanyang Univ.

8.3 Maxwell-Bloch Equations

Atomic state under the influence of an external perturbation (EM wave or light) can be described by Schrodinger equation. But, in order to describe the atomic state exactly, we need additional equation to express the behavior of the light by the

Interaction with the atoms. = Maxwell equation ! Assumptions :

)

) (

, ˆ (

) , (

1)E r tε

z t ei tkz : monochromatic, plane wave propagating along the z-direction

; r, both in

field varying

Slow

2) t

2 ,

2

k z

z



 

,

k z 



t

; varying slow

also is

on Polarizati

3) ( )

21

12 ( , )

2 )

,

(z t Nerz t ei tkz P

21 ,

21



t t t



21

2 21

2

(12)

Nonlinear Optics Lab

.

Hanyang Univ.

Maxwell wave equation :

) , ( )

,

( * 21

0

t z ik N

t ct z

z

)

, 1 (

) , 1 (

2 2 2 0 2

2 2 2 2

t t z

t c t z

c

z E P





ˆ ) ( 12 *

* e r ε

where,





)]

( )

( 2[ ) 1 1(

) )(

(

) 2 (

) , (

* 1

* 0

2

iv u iv

i u T w

w

w i iv u i

v i u

iv u ik N

t ct z

z

 

u iv

21

(8.2.18) =>

Maxwell-Bloch Equations

(13)

Nonlinear Optics Lab

.

Hanyang Univ.

8.4 Linear Absorption and Amplification

In practice, there may be background atoms in laser active medium,

and we should add the background atom effect to the Maxwell equation, (8.3.6).

) ,

21(

* 0

t z ik N

(8.3.1) : background atom effect

Background-atoms are far from resonance and come to steady state extremely quickly, so we can use the adiabatic result (7.2.1) for 21. And, these atoms are at most only slightly excited, so that 220,111

) 2(

/

11 22

21

i (7.2.1) i

2 21 2

) )(

2 / ( 2

/

i i

i

i where, ε/

  

 

 

i a

i c

N N ik

2 1

2 0 2 2

* 21

*

0 where, 0 2 2

2

c a N

2 2 0

2

) /

(

c

a N

(14)

Nonlinear Optics Lab

.

Hanyang Univ.

(8.3.6) =>

) , ( )

, 2 (

2 21

* 0

t z ik N

t ct z

i a

z  



 

 

 

[Quasi-steady solution]

0 )

2  ( 

 

 

 

  i z

z

0 ,

0 12 12

ct

( )( )

2 1

2 11 22

i a i

i a where,

2 0 2

*

*

 

 

i

z i

z 0

2

 

z

z z

z

||2*   *

I

|

| 

2

I

I

  z

e

z

 I(z) I(0)

where, aa(1122)

(15)

Nonlinear Optics Lab

.

Hanyang Univ.

1) If the resonant atoms are all in their ground state, 11~1, 22~0 field

the of n attenuatio

:

0

  a a

2) If the resonant atoms are all in their excited state, 11~0, 22~1

) 0 ,

1 (

&   

  a a a a

field the

of on Aplificati negative

large a

be can

:  

* Threshold condition for amplification ; 22 - 11 a /a

(16)

Nonlinear Optics Lab

.

Hanyang Univ.

8.5 Semiclassical Laser Theory

Electric field in a laser cavity ;

t i m m

m

mˆε

(t)sin k ze E

L m

km /

) , ( )

,

(z t E z t

m

m

E where,

Polarization of m-th mode ;

t i m m

m 2Ner1221( )(z,t)sin k ze P

Maxwell wave equation considering cavity loss ;

z k t

z i N

z k t t

i

m m

m m

m

sin ) , ( sin ) 2 (

) (

) ( 21

* 0

0





Actually, different cavity modes are coupled through the z-dependence of m21z,t, but in many lasers this coupling is not important.

=> Take the average value of 21t) instead of individual m21z,t).

(17)

Nonlinear Optics Lab

.

Hanyang Univ.

) ( )

2 ( )

( * 21

0 0

t i N

t t

i m m





For quasisteady-state lase operation, and210

) 2(

/

11 22

21

i

i (7.2.1) : adiabatic approximation

)]

( )

( )[

2 (

) 2(

/ ) 2

(

11 2 22

2 0

2

11 22

* 0

0

t t

i t N

i N i

i i t

m m m

m

 

 

 

 

 

 

 

 



 

 

(18)

Nonlinear Optics Lab

.

Hanyang Univ.

m m

m i c g i

t





2 ( ) ( )

2 1

0

, ) )(

( )

( 2 1 2 1

2 2 0

2

N N N

c N

g

where, g

21

) ( )

( ), ( )

( 11 2 22

1 t N t N t N t

N

: Fundamental equations of semiclassical laser theory )

( )

( 2 1

2 21 1

1

1 N A N N N

N   

 m  ) (

) ( )

( 2 21 2 2 1

2 A N N N

N      m

(19)

Nonlinear Optics Lab

.

Hanyang Univ.

In steady state,

m(t)0

) 2(

) 2 (

0

 

 

c g i

im   

gain) (threshold

/ 0c g 

) 2 ( 21

 

   gc

m

) 2 (

1 2 2

21 21

m m

m

gc

gc gc

 

 

 









pulling) (frequency

Cf) section 3.5 : a positive sign of g is now possible !

(20)

Nonlinear Optics Lab

.

Hanyang Univ.

[Einstein laser model]

m m m

m m

m g c

c

     

*

0

*

* )

1(





2

0 2 1

2 2

) )(

( m m

m c N N

dt

d

  

(8.5.13) =>

(8.5.12) => Add a pumping term, K,

and Assume N2>>N1 condition is maintained by the pumping : K

N N

dt A

dN2 (2 21) 2 () 2

Define atom number : n2N2V, photon number : V c I c

V V

q  

0/2| |2

q q

V n c dt

dq

0 2

) (

KV n

A V qn

c dt

dn2  () 2 (221) 2

 Results of (1.5.1), (1.5.2)

Einstein laser model

참조

관련 문서

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

ƒ 유도 핵반응은 자발적인 핵분열 (Spontaneous Nuclear Reaction)과는 달리 다른 물질과의 작 용으로 원자가 반응하여 여러 가지 생성물을 만들어

ƒ 임계 에너지는 핵분열 하는 핵종에 따라서 다르므로 중성자를 흡수했다 해서 모든 핵종이 핵분열을 일으키는 것은 아님.. 235 U와 같이 정지상태의 중 성자를

Gombrich's theory of representation is based on the theory of perceptual trial and error, 'seeing' is not mere registration of image of stimuli as

The purpose of this study is to propose a method to apply Arts PROPEL's theory to actual class when teaching a student orchestra in a school.. The Arts

Hakim, The Story of Science – – Newton at the Center, Newton at the Center, Smithsonian Books, Washington DC, USA, 2005.. Smithsonian Books, Washington

마찬가지로 원자핵도 내부에 여러 에너지 준위를 가지는데, 에너지를 흡수하여 기저 상태에서 여기 상태로 전이될 수도 있고 반대로 에너지를 방출하여 여기 상태에서

¾ Optical Properties - A material’s response to exposure to electromagnetic radiation, particularly to visible light.. ¾ Light is energy, or radiation, in the form of