• 검색 결과가 없습니다.

양자 광학 - Laser Optics

N/A
N/A
Protected

Academic year: 2022

Share "양자 광학 - Laser Optics"

Copied!
27
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab

.

Hanyang Univ.

양자 광학

- Laser Optics (레이저 광학) -

담당 교수 : 오 차 환

교 재 : P.W. Miloni, J.H. Eberly, LASERS, John Wiley & Sons, 1991 부교재 : W. Demtroder, Laser Spectroscopy, Springer-Verlag, 1998

F. L. Pedrotti, S.J., L.S. Pedrotti, Introduction to Optics, Prentice-Hall, 1993 2008 봄학기

(2)

Nonlinear Optics Lab

.

Hanyang Univ.

Chapter 1. Introduction to Laser Operation

1.1 Introduction

LASER : Light Amplification by the Stimulated Emission of Radiation

1916, A. Einstein : predicted stimulated emission 1954, C. H. Townes et al. : developed a MASER

1958, A. Schawlow, C.H. Townes : adapted the principle of MASER to light 1960, T.H. Maiman : Ruby laser @ 694.3 nm

1961, A. Javan : He-Ne laser @ 1.15 mm, 632.8 nm

(3)

Nonlinear Optics Lab

.

Hanyang Univ.

Einstein’s quantum theory of radiation

[light-matter interaction] * N1, N2 : No. of atoms at E1, E2

* r : photon density

* A21=1/t21 : spontaneous emission rate

* B12, B21 : stimulated absorption/emission coefficients

[radiative processes]

(stimulated) absorption

stimulated emission spontaneous

emission

B12N1r A21N2 B21N2r E2

E1

(4)

Nonlinear Optics Lab

.

Hanyang Univ.

Spontaneous & Stimulated emissions

Spontaneous emission

Stimulated emission

Phase and propagation

direction of created photon is random.

Created photon has the same phase,

frequency, polarization, and propagation direction as the input photon.

(5)

Nonlinear Optics Lab

.

Hanyang Univ.

Einstein’s A, B coefficients Rate equation :

0 ) ( )

( 1 12

21 2 21

2

2  N AN B

r n

N B

r n

dt

dN (thermal equilibrium)

kT h kT

E

E e

N e

N ( )/ /

1

2 2 1 n (Boltzman distribution of atoms)

1 1 ) 8

( 3 /

3

21 /

12

21

 

h kTh kT

e c

h B

e B

A

n n

n n 

r (Planck’s blackbody radiation law)

3 3

21 21 21

12

, 8

c h B

B A

B  n

if N

2

N

1

(population inversion)

Light amplification ! (Lasing)

(6)

Nonlinear Optics Lab

.

Hanyang Univ.

Four key elements of a LASER

- Gain medium (Active medium) - Pumping source

- Cavity (Resonator) - Output coupler

pumping laser

relaxation

relaxation

Laser light

pumping source gain medium cavity (resonator)

output coupler total

reflector

(7)

Nonlinear Optics Lab

.

Hanyang Univ.

1) Pumping source

- Optical : Nd-YAG, Ruby, Dye, Ti:sapphire, … - Electrical : He-Ne, Ar+, CO2, N2, LD, …

- Chemical : HF, I2, …

2) Active medium

- Gas : He-Ne, Ar+, CO2, N2, … - Liquid : Dye

- Solid : Nd-YAG, Ruby, Ti:sapphire, LD, …

3) Cavity or Resonator

- Resonator with total reflector : Maximizing the light amplification - Output coupler : Extracting a laser light

- Resonance condition : ml/2=L (m:integer)

Four key elements of a LASER

(8)

Nonlinear Optics Lab

.

Hanyang Univ.

1.2 Lasers and Laser Light (Characteristics of laser light)

Monochromaticity (단색성)

- Linewidth(FWHM) : 7.5 kHz (He-Ne laser)

<< 940 MHz (low pressure Cd lamp) Coherence (결맞음)

- Definite phase correlation in the radiation field at different locations(spatial) and different times(temporal)

Directionality (지향성)

- Divergence angle : f1.27l/D < q2.44l/D (diffraction limit angle)

Brightness (높은 휘도)

- Radiance : 106 W/cm2-sr (4mW, He-Ne laser)

<< 250 W/cm2-sr (super-high-pressure Hg lamp) Focusability (집속도)

- Focusing diameter : d ~ f f

(9)

Nonlinear Optics Lab

.

Hanyang Univ.

1.5 Einstein theory of light-matter interaction (Laser action)

- Number of photons, q

bq

dt anq

dq  

stimulated emission

loss

- In steady state : q  n  0

n

t

a

nb

: threshold number of atoms

: Minimum(threshold) pumping condition - Number of atoms in level 2,

n

P fn

dt anq

dn    

spontaneous emission

pumping

t

t

f n

a P fb

a f b

qP   0   

(10)

Nonlinear Optics Lab

.

Hanyang Univ.

Spatial distribution of laser beam (Gaussian beam)

t

t

H

E E

H , m

Maxwell’s curl equations

: Scalar wave equation

2 0

2

2

t

E m E

Put, E(x, y,z,t) E0(x,y,z)eit (monochromatic wave)

=> Helmholtz equation : 0

2 0 2 0

2

t

E m E

=>

Assume, E0 (x, y,z)eikz

=> 2 2 0

2 2

2





ik z y

x

Put, 2 2 1/2

2

) (

, )]}

( ) 2

( [

exp{ r x y

z q z kr

p

i

=>

q i dz

dp q

dz d

q  1)  0,   1 (

2

(11)

Nonlinear Optics Lab

.

Hanyang Univ.

0 1)

1 (

2  

q dz

d

q => qzq0

is must be a complex ! =>

q Assume, q0 is pure imaginary.

=> put, qziz0 ( : real) z0

At z = z0,

)}

0 ( exp{

2 ) exp(

) 0 (

0 2

z ip

z kr

Beam radius at z=0, 0 2 0)1/2 ( k

wz : Beam Waist

l

w02 i

z q  

at arbitrary z, q

=> 2 2

0 2

0 2

0 2

0

1 1

1

i w z R

z i z z

z z iz

z

q

 l

 

 

 

 : Complex beam radius

(12)

Nonlinear Optics Lab

.

Hanyang Univ.

q i dz

dp   => ip(z) ln[1(z / z0)2]1/2itan1(z/ z0)

=> exp[ tan ( / )]

] ) / ( 1 [ )] 1 (

exp[ 2 1/2 1 0

0

z z z i

z z

ip

 

(13)

Nonlinear Optics Lab

.

Hanyang Univ.

Wave field

 

 



 





 

 



) ( exp 2

) / ( tan [

) exp exp (

) ( )

, ,

( 2

0 1

2 2 0

0

z R i kr z

z kz

z i w

r z

w w E

z y x E

A

where,









2

0 2

0 2

2 0 2

0

2( ) 1 1

z w z

nw w z

z

w

l : Beam radius





2 0 2 2

0 1

1 )

( z

z z z

z nw z

R l

: Radius of curvature of the wave front

l

02

0

z nw : Confocal parameter(2z0) or Rayleigh range

(14)

Nonlinear Optics Lab

.

Hanyang Univ.

Gaussian beam

z

0

w0

I

Gaussian profile

2w0

/ 0

2

/ l nw

q 

spread angle :

 0 z

Near field (~ plane wave)

Far field

(~ spherical wave)

z

(15)

Nonlinear Optics Lab

.

Hanyang Univ.

Propagation of Gaussian beam - ABCD law

Matrix method (Ray optics)

yi

yo ai

ao

optical elements

 

 

 

 

 

 

 

i i o

o

y

D C

B y A

a

a C D

B

A

: ray-transfer matrix

(16)

Nonlinear Optics Lab

.

Hanyang Univ.

1) Free space

q

r1 r2

z1 z2

r2 = r1 + qd q : constant

(paraxial ray approximation)

d



 

 

 

 



 



1 1 2

2

1 0 1

q q

r d

r

q1

n1/s + n2/s’ = (n2-n1)/R r : constant

q2  q1 n1/n2 – (1- n1/n2) (r1/R)



 

 



 

 

 

 

1 1

2 1 2

1 2

2 2

0 1

q q

r n

n R

n n r n

2) Refracting surface

q2

s s’

r

n1 R n2

Ray-transfer matrices

(17)

Nonlinear Optics Lab

.

Hanyang Univ.

(18)

Nonlinear Optics Lab

.

Hanyang Univ.

(19)

Nonlinear Optics Lab

.

Hanyang Univ.

ABCD law for Gaussian beam

 

 

 

 

 

 

 

i i o

o

y

D C

B A

y

a

a

o i i

i i

o

D Cy

B Ay

y

a a

a

i i

i i

o o

o

Cy D

B Ay

R y

a a

a 

 

) (

)

(ray optics q Gaussian optics

Ro

D Cy

B Ay

i i

i i

 

a a /

/

D Cq

B q Aq

 

1 1 2

q

2

q

1

optical system

 

 

D C

B A

ABCD law for Gaussian beam : iz0

z q  

l

02

0

z nw

(20)

Nonlinear Optics Lab

.

Hanyang Univ.

example) Focusing a Gaussian beam

q1

w01 w02

z1 z2

?

?





















f z

f z z z z f z

z f

z D

C B A

/ 1

0

/ /

1

1 0 1 1 /

1

0 1

1 0 1

1 2 1 2 1 2

1 2

) / 1

( /

) / (

) / 1

(

1 1

2 1 2

1 1

2

2 q f z f

f z z z

z q

f q z

 

(21)

Nonlinear Optics Lab

.

Hanyang Univ.

2 01 2

2 1 2

01 2

02

1 1 1

1 

 

 



 

 

 l

w f

f z w

w

) ) (

/ (

) (

) (

2 2 01 2

1

1 2

2 f

w f

z

f z f f

z

 

  l

02

01 w

w 

- If a strong positive lens is used ; => 1

01

02 q

l f w

wf

2 1

2

01 / (z f )

w l  

- If => z2f

=> f f f d

w

w f 2 N , N /

) 2 (

2

01

02   

 l

l : f-number

; The smaller the f# fo the lens, the smaller the beam waist at the focused spot.

Note) To satisfy this condition, the beam is expanded before being focused.

(22)

Nonlinear Optics Lab

.

Hanyang Univ.

Chapter 2. Classical Dispersion Theory

2.1 Introduction

Maxwell’s equations :

t H D

t , - B E

, 0 B ,

0

D 

 

 

 

 μ H

B  0 (for nonmagnetic media) P

E D 

0

Wave equations :

2 2 2 0 2

2 2 2

t P ε c

1 t

E c

- 1

E 

 

  (2.1.13)

(23)

Nonlinear Optics Lab

.

Hanyang Univ.

2.2 The Electron Oscillator Model

) r ( F ) , r ( r E

2 2

en en e

e

e e t

dt

m d  

Equation of motion for the electron :

Electric-dipole approximation : ) x ( F ) , R ( x E

2 2

t en

dt e

m d  

where, x R

: relative coordinate of the e-n pair

: center-of-mass coordinate of the e-n pair

m: reduced mass

x p

P  NNe x

) , R ( x E

2 2

ks

t dt e

m d   

Electron oscillator model (Lorentz model) <refer p.30-31>

(24)

Nonlinear Optics Lab

.

Hanyang Univ.

2.3 Refractive Index and Polarizability

x )

, R ( x E

2 2

ks

t dt e

m d   2 02 x E(R, )

2

m t e dt

d  

 

 

Consider a monochromatic plane wave, E(z,t)  εˆE0 cos(

tkz) )

/ cos(

εˆ E

x 2 2

0

0 m t kz

e  



 

 

Dipole moment : p  ex a E

where, polarizability :

2 2 0

2 / )

(

  

a

em

Polarization :

) cos(

/ E p ˆ

P 2 2 0

0 2

kz m t

N Ne  

 

 

 

(25)

Nonlinear Optics Lab

.

Hanyang Univ.

From (2.1.13),

) cos(

ˆE ) ) (

cos(

ˆE 0

0 2

2 2 0

2

2 N t kz

kz c c t

-k 



 

 a

 

 

1 ( ) 22 2( )

0 2

2

2

 

 a

n

c N

k c  

 

 

: dispersion relation in a medium

For a medium with the z electrons in an atom :

2 / 1

0

) 1 (

)

( 

 

 

 

Na

n : refractive index of medium

, ) / cos(

εˆ E

x 2 2

0

i e m t kz

i





z

i

e i 1

x p

2 / 1

1 2 2

2

0 2

/ 1

0

1 / )

1 ( )

( 







z

i i

m e

N n N

 

 a

(2.3.22a)

(26)

Nonlinear Optics Lab

.

Hanyang Univ.

Electric susceptibility (macroscopic parameter), :

E

P  

0

    N a (  ) / 

0

2 /

)]

1

( 1

[ )

(      n

z

i i

m Ne

1

2 2 0

2

1

)

(    

(27)

Nonlinear Optics Lab

.

Hanyang Univ.

2.4 The Cauchy Formula

z

i i

i

mc n Ne

1 2 2

2 2 2

0 2

2 2

1 4 )

( l l

l l

 l 

From (2.3.22),

If li2 << l2,





z

i

i

mc i

n Ne

1

2 2 2

2 0 2

2

2 1

1 4 )

( l

l l

 l 

If we suppose further that | n2(l)1|  1

 





2

1

2 2 2

2 0 2

2

1 1

8 1 1 )

( l l

l l

l  A B

mc n Ne

z

i

i i

(as in like a gas medium)

where, ,

8 1

2 2

0 2

2

z

i

mc i

A Ne l

z

i i z

i i

B

1 2 1

4

l l

: Cauchy formula

참조

관련 문서

In this paper, high-strength galvanized steel for application of the automotive cowl parts carry out respective processes MIG, Laser, Nd:Yag Laser-Mig

LITT(Laser induced interstitial thermotherapy) 레이저에 의한 조직내 열치료. LITT(Laser induced interstitial thermotherapy) 레이저에

- Symmetric strike of the pellet by the incident laser or ion beam and efficient energy coupling between the beam and the target:.. deeper penetration using high

Study of Thermal Effects and Structural Deformation Induced by Pulsed Laser Absorption in Human Skin.. By Jae-Young Kim Advisor

:Continuous new-bone formation (asterisk) is identified around the defect margin (arrows).(H-E stain, × 40) Higher magnification demonstrates some new-bone formation (asterisks)

To obtain the local concentration and distribution of soot particles formed within the flame, laser-backlit images produced with a 635 nm light source

In this study, we investigated the effects of low-power CO 2 laser on proliferation on human gingival fibroblast cells so that determine laser

Effects of pulse frequency of low-level laser thrapy (LLLT)on bone nodule formation in rat calvarial cells.. Low-level laser therapy stimulats