• 검색 결과가 없습니다.

 1.  The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell    "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

        

   

 

(1999 5 31 , 2000 8 1 )

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Sang Deuk Lee, Inchul Hwang, Byung Gwon Lee, Inseok Seo, Tae Hoon Lim and Seong-Ahn Hong

Environment & Process Technology Division, Korea Institute of Science and Technology, 39-1, Hawolkok-dong, Sungbuk-ku, Seoul 136-791, Korea

(Received 31 May 1999; accepted 1 August 2000)

 

%& '( )* ! !+, ,- .+ / 01 2 '34  5 %&6 78 9& :; <

= > . 80%$ ?@A <BC    DE; 2F G $ *H HI <? J

 99%?H$ ! !+# 98% ?H$ ,- .+ K LG  kWM$ ! 0N  OP . 

< Q )*R %& '( ST G U VW XY Z[ \ HI ]4^C endotherm? _>BP .

Abstract−The plate reformer consisting of combustion chamber and reforming chamber, which can be integrated in the MCFC fuel cell system, has been prepared and the performance test was carried out. In order to study the effect of initial tem- perature and space velocity on the performance of reformer, the temperature profiles were measured and the conversion of hydrogen and methane and the composition of products were analyzed. Upon the operating condition based on fuel cell stack having fuel utilization of 80%, the reformer was able to generate hydrogen for several kW fuel cell stack, maintaining the hydrogen conversion of above 99% and methane conversion of 98%. The temperature profile recorded during the test showed the endotherm representing the operating state of reformer.

Key words: Plate Reformer, MCFC, Methane Reforming, Hydrogen

E-mail: sdlee@kist.re.kr

1.  

  MCFC     

  . Fig. 1 MCFC     !" #

$%  &'  (  )* " +,-. /0 1 2, 32$% 456 +789 :; < = :.

/ anode >(   +?@ AB89 (+ C

A D +?E. F anode >( +,G( HI +?J K( LE. +?@ +?E ( cathode CO2ABM$%

NL8O & +?1 @% -P89  QR 1M$% L E.   @ AB8 ST0 3 ;0 U  Q R0 VW QR D =?X CO% -YE ; anode =? AB M$% NLE[1].

 QR: CH4+H2Ο↔3H2+CO, ZH=49.2 Kcal/mole VW QR: CO+H2O↔H2+CO2, ZH=−9.8 Kcal/mole

X U MCFCL  +,-. / anodeX cathode

=? [ CO2 AB \] ^_] ` Iab c d1e(500 Kcal/

Nm3) anode >(  QR 1M$% NL Ff /

 Vg hi6 jR] = : k= l2 Rmn 8 O, 1-P o p9. ?q rs t (.u :9v

. w nxy MCFCL  ( gzA{ NL8 |}

 ~, }}€ -8 s‚ =?AB X ƒ8

 „…O †‡ uˆDv] ‰Št‹ E.

ŒŽ. MCFCL$% d8u : j2"  % Hitachi N 2s+?, ChiyodaN 1Y , IHIN ‘’ y = :

[2].  3(. €  “” c d1e anode >(

+?• WD JK +?–— /u :$O, +,G( ˜™

t‹ š- +? ›œ  +? JK ž% u :. nŸ, 1Y   +? ( ¡I }{L$% ’K8 JK N L] = ¢$£% ¤1 JK d ¥  ¦2 0‰( 8 u :. ‘’  sW §_ -1q2 ¨ Ff +?

 ( HI }{L JK ©5 NL] = :u  c( %

(2)

 38 5 2000 10

‰ª] = :. ¥ t2$% 2« (›£% /0 ¬­  /- ®­ “¯ ‰ª] = :9 3(. €  ( °

±u :[3].

² + MCFC   % ³´ (. … :

‘’ µu,  d W ¶ ·¸ s‡% = kWB L

¹Tº» +,-.L  X  ¼L †½ †‡, ‰ª³

@¼ @¾.

2.  

 [ ¼†½ †‡ WD +,-. +,L¿ 80%

% ³ MCFC  “N¾. “N 70 À$%  X

¼†½ ‰ªu † Á, @¼ @¾.

@¼   Â  , ArÃ(¥ C) Ä t{

V=y ST -YÅ, +?Å, Æ3 t, +?@0 @  C Ç È ÉÊ tN¾.

2-1. 

2-1-1. 

Fig. 2 ² + †‡ ‘’   ‰ª !¾. 

 SUS316, Ës cover plate ‰  dimension

544 mm(length)Ì414 mm(width)Ì60 mm(height)O, @(Íj Q R ­2: 2.4 liter), +?@(Íj QR ­2: 2 liter)0 +,Cº@ Ä

¨6 3C$% 89 :. +?@0 +, Cº@ 20.0 mm r Î$% 0.5 mm slit : ’$% CÏ8O +,( +, Cº@

Ðѳ  slit |D +?@ ui6 Cº8Ò ¾. (

+, Cº@, +?@, @ Ó®6 CÇ• WD ÔÕÖ

×× C Ø(manifolds) †¾u, +?(X  ( % Qj–Ê iÒ ¾. @0 +?@  JKX +?

JK ×× ÙÚ¾. @ Û+( =Ü  A N L8 Haldor TopsoeN }{L JK(“ÝÞ: R-67-7H) ©Ð 5 mm  ¨ % ob 1,874 g(4: 1 g/cm3) ÙÚ¾. JK ³´  ß : @àá € JK% Ni âbã ^.­

^.89 :. +?@ Nikki-UniversalN Honeycomb(200 CPI) 

€ Pd ^. JK(“ÝÞ: NHX) 1,146 g(4: 0.673 g/cm3) +?

@ ¨ ä6 ob ÙÚ¾. NLE +? JK åd Ñ 3 æÏ JK +?  % NL8O NL   250- 700oCu 2 Ar à 30,000-40,000 Hr−1.

 ¤  CÇ ç WD @0 +?@ ¤ è 28 1-j(Thermocouple Type K) †¾.   14 1 -j (  –Ê éb 65 mm rÎ$% ×× @0 +?

@ rµ}(Fig. 2 ê) , ¥ ë 14 1-j ×× @0 +?@ ì½ –Ê 1/4 µ}(Fig. 2 í) ê W 1-jX

‘î6 †¾. &Ïu @0 +?@ Ô8u >Ö8 (

   ç WD ( C Ø ï = 1-j †

¾.

    ðÏñ  % ò@8 1 !} W Fig. 1. Simplified flow diagram of a MCFC system.

Fig. 2. A drawing of plate reformer.

(3)

³   W, Ió ×× 1 kW Le (1’ ô¾$O

 , (1’, u  (( i Ø “” s1(ceramic wool)

% ! ³ 1 ò@ Íj õ® = :Ò ¾.

2-1-2. ¼ †½

Fig. 3 kWB  ¼ W †½ ö.  &'

! ÷X U ¼†½ M, [ +, AB, 1, , Á æÏ [ ( Cø% 89 :.

M, [ +, AB  [ +? ž ( ¥ 3

e AB] = :Ò ( @àá, e Ñe tù , e úû

†¾.

1 M, [ +, AB üE ( ¥ 3 500oC

}$% 1³ % AB C$% (1%X 1 †

¾. Furnace 5 kW Le LindbergN ‰ý NL¾u,  1 (1% ¤ µ$% þ SUS316Ø ¥ Inconel 600 Ø ÿ9 NL¾. 1 % NLE (Ø &  M,  1L 6 m, +, 1L 6 m, A 1L 4 m% ¾.

  QR0 +? QR =î WD  B

÷X U @, +?@, +, Cº@% E  , 1 kW(220 V) Le (1’ 2, ( Ô [ >Ö >Ø †¾.

ÁæÏ [ ( Cø reformate =C R W Ø

× †¾u, reformate [ +?( 180 cm  Car- bosphere(Alltech Co) column ôE gas chromatography(Gow-Mac Instrument Com. Series 580)% Cø¾$O, reformate [ +?(

Ñe ç W wet gas meter(Sinagawa Co.) †¾.

2-2. 

(1)  JKX +? JK  ¤ =? [ ?(30% H2/ N2) ¬( 10 l/min% Ïq 700oC 6rl in-situ%

- æÏ.

(2) JK - æÏ Á, 1 ñ u  N2X =Ü 

  @ , CO, CO2X ? +, Cº@ , A +?@

×× +Ã$% AB³     ðà. F AB (

& Ñe  ¼t‹ Ñe0 l®6 8 ST0 =? 

?% j­u, 1  ( Ö  700oC  8Ò   tù‡( ôE (1%% (1. ¥  ô89 : ( 1’ 100 V(2.2A)-110 V(2.4A) ® - (³ 

­   Ñ. ž 1e !Ù³   ( 700oC }

$% Ñ.8Ò .   ( 1r } 5oC W ¤ Ñ .8q     CÇ   ҇% Òu    QR - } (Temp.A)% /.

(3)   QR - }  ( ®6 Ñ.8q, @0 +

?@ AB8 ? ×× ST0 =?% l j³  Q R0 +? QR l 8Ò . QR  @0 +?

@   Vg   ҇% ç³  ( 1r } 5oC W ¤ Ñ.8q }}€ t‹ P #$% ru, &F

  QR  (Temp.B)% /.

(4)   +?@ >ÖE +?( &j% j % –Öu,

@ >ÖE reformate Ø × |0 =C RÕ

‰ñ Á j % >Ö. >Ö ( gas chromatography% Cø

u, >Ö ( Ë0 RE 3 Ë ×× wet gas meterX c%

ç.

3. 

3-1. 

+? [  QR ( À Ñe [ t Table 10 U †

u, QR  éë +?Å, ST-YÅ,  Vg n tN

¾. À Ñe 80% +, L¿% -8 1 kWB MCFC 

 “N³ 7 O, QR    (1’ 110 V (2.4A) ¥ 100 V(2.2A) (³ ®   CÇ Ò ¾.

3-1-1.  CÇ n

Fig. 4 110 V(2.4A) -   (1’ ( Á +?

Fig. 3. A schematic diagram of apparatus for plate reformer test.

(4)

 38 5 2000 10

@0 @ QR - } (Temp.A) CÇ, QR (Temp.B) C Ç, &Ïu ”   „(∆T) (  –Ê éb ¾. 

 Ô8 ( ? ST0 =?% j  QR0 +? QR ª Á ®r Ð0³ @0 +?@   ( QR (Temp.B) CÇ !³Ú #0 U }}€ Ñ.

"¾.  +?@  dÆ +?1 @% -P8u 

 QR =89   1=.( p9.u :; !³À.

1=.( p9Ú Â }€X QR    CÇ% ∆T ‡º¾u  (  –Ê éb ¾. @

M, Ô À…$% ] F, +?@ ∆T -Q (-)

! …„ Ü(³ ÁQ (+)$% Ü(¾u. @  

 -Q 100 mmX 200 mmN BΟ þ?³ 107 mm.…

∆T( (−)

330 mm

@ 300 mm ¤ ñ š78u †‡   Le

1 kWB ! ¨ # < = :. @ *(ê)  ∆T ( 1/4W(í) ∆T! ª  !¾.  70 @ | 0 (  –Ê =©–Ê$% Ó®6 Cº8 ! 

* ? 8u   QR !  ®9u :;

< = :. +?@ ∆T [ @ ∆T 2C( (−) 

!¾. #$% +, ABe ³ +? QR  d1 e  QR ž 1e! 2u,     }

€X U6 Ñ. WD anode >(  !t +,( ž

 # < = :. +?@   CÇ @ ÐkX  i6 (  –Ê$%    „ !. u :$O (  =© –Ê$% ÑN y !u :.  +?

@ @0 PÏ QR3y +?Cº@ |³ Ó®6 Cº, -P$% +? QR +?@ - É\ Úî !³À

. &´ @ -Q( W +?@ ÁQ @%

 1-P  p9  ( ? þ? !".

Fig. 5

@ ∆T 100 mmX 200 mmN (−) Í? ! Fig.

4 !³Ú 110 V(2.4A) Ðk ! ª   ¤u, ÁQ

.  110 V(2.4A) Ðk(330 mm) ! (+)$% l .…

 @ #C$% l¾; !³u :. # @

Úî8 # È #$%    CÇ JK( Íj Table 1. Operating condition for reformer test(load: 1 kW)

Flow rate(l/min) Composition(mol%)

Fuel H2 02.72 09.0

CO 00.55 01.8

CO2 12.44 41.4

Air 14.37 47.8

Total 30.08 100.00

Feed CH4 02.99 23.5

H2O 09.73 76.4

Total 12.72 100.00

Fig. 4. Temperature distribution in plate reformer(load: 1 kW).

(voltage: 110 V; space velocity: 1,060 hr−1, Combustion cat.; 407 hr−1, reforming cat.;∆T(oC)=Temp.A-Temp.B.; , : reforming cham- ber;, : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at  shown in Fig. 2.)

Fig. 5. Temperature distribution in plate reformer(load: 1 kW).

(voltage: 100 V; space velocity: 1,060 hr−1, combustion cat.; 407 hr−1, reforming cat.; ∆T(oC)=Temp.A-Temp.B.; , : reforming cham- ber; , : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at  shown in Fig. 2.)

(5)

 & Ñ.. ' < = :.

3-1-2. +?Å [ ST -YÅ

 ¼ +? QR 70X  QR 70 ϳ Table 20 3 ××  ¤. QR  +?@0 @   CÇ  ( 1e éb i6 Ñ.8$O &  CÇ Íu  , Í c   &Ïu ‘Ó  % ¾.

(1’ - 110 V(2.4A)% Ñ. Ðk, +?@ ‘Ó   735oC¾$O =? š- +? QR p9(u, 100 V 684oC

 ‘Ó X 99.6% =? -YÅ !¾. +?@ +?E (

  cathode% AB8£% =? G À% Ñ.

v . ¥   1)Å Íj%  WD (› 

Ë +, +? v £% +?@   Í? 700oC}$%

Ñ.  v  < = :.

 QR 70 ‘Ó    ST -YÅ0 Æ3 t

ST-=Ü  QR ‘0 ½³ ‰¾. (1’ (

}$% @ ‘Ó  ( 707oC 649oC% þ?¾;  *

u ST-YÅ þ? + }j2$% 2u & y ‘ - YÅ! ¡,. ¥ =? t ‘t! Šr ¡ 

!¾$ COX CO2 t½ - "5¾.

3-2. 

ABÑe(¥ Ar Ã) À Ñe 1.5>(1.5 kW -œ ƺ }_8 (e)X 2>(2 kW -œ ƺ }_8 (e)% Ü(

Arà Vg éë ®. @¼ =î¾. F   (1’ 110 V(2.4A) - (¾.

3-2-1.   CÇ n

Fig. 60 7 ×× 1.5 kWX 2 kW D_ Arà j +?

@0 @   CÇ !¾.  ( Ñe }Ø¢

}}€   CÇ( Ñ. "] = :.

Fig. 6 Ðk, @ ∆T @ Ô% 172 mmW

Í? !³u :.  Fig. 4 !³Ú 1 kW Ðk

107 mm! @ ÁQ% l .   þ? + 1 kW

 ÐkX ÑN 125oC¾. ∆T } š!³ 370 mm .… (+)$% Q-¾. Fig. 7 Ðk   Vg(∆T) Í?

á/  ÁQ% l³ @ * C W6 8u

∆T } ¥ á/ š!D   Ö 0 FŽ. ∆T (−)

 !¾. &´   þ? + Íu 125oC " Ñ.8.

 70  M, Ñe Ü( éb QR 1³ JK É\ @ ÁQ% º !³À. &´ JK _ QR à Ar à ¨6 ÉÊ ±. ,. (  =© – Ê    CÇ ¥ Ar à Ü( éb êWX íW

  „( þ?¾.  70% QR3 Ñe Ü(

:; < = :. nŸ, 2 kW D_ Arà @¤

 “2 JK(  QR 1³¾ # 3] = :. +?

@   CÇ 1 kWB ÐkX U, 42$% BÎ  

Vg !. I +? QR Ar à }Ø¢ +?@ - É

\ Ó®6 p9.u :; !u :. &´ +?@ ∆T

 Vg% < = :5, Ar Ã( Ü( éb +?@

 @%   -P  ®9 É\ @ QR É\

6³ @ ÁQ ~ +?@ -Q% lu :.

3-2-2. +?Å [ ST -YÅ Table 2. Test results of plate reformer: combustion reaction(load: 1 kW)

Average combustion temp.(oC) 735 684

Space velocity(hr−1) 1,060 1,060

H2 Conversion(%) >99.9 99.6

Fuel inlet temperature(oC) 577 572

Oxidant inlet temperature(oC) 546 546

Outlet temperature(oC) 677 618

Combustion temperature(oC) Maximum 764 700

Minimum 701 652

Table 3. Test results of plate reformer: reforming reaction(load: 1 kW)

Average reforming temp.(oC) 707 649

Space velocity(hr−1) 407 407

CH4 conversion(%) 99.2(98.0) 99.6(92.0)

Dry composition of products(%) CH4 00.2(0.4)0 00.4(1.9)0 H2 78.1(77.2) 78.6(76.4) CO 13.0(12.5) 10.0(10.4) CO2 08.7(09.9) 11.0(11.3) Total flow rate of dry outlet gases(l/min) 11.7 11.0

Inlet temperature(oC) 532 532

Outlet temperature(oC) 640 607

Reforming Temperature(oC)

Maximum 749 692

Minimum 612 576

[( ): Equilibrium composition and conversion on methane steam reforming at average reformer temperature.]

Fig. 6. Temperature distribution in plate reformer(load: 1.5 kW).

(space velocity: 1,590 hr−1, Combustion cat.; 606 hr−1, reforming cat.

votage: 110 V. ∆T(oC)=Temp.A-Temp.B.; , : reforming chamber;

, : combustion chamber; closed symbols: Temp. at  shown in Fig. 2; open symbols : Temp. at  shown in Fig. 2.)

(6)

 38 5 2000 10

¼ 70 Table 4X 5  ¤.

Table 4 !" +? QR Ðk, =? -YÅ Ar Ã

}Ø¢ 99.9% } Ñ.8. F ‘Ó +?  Ar Ã

 1590 hr−1 }R 1.5 kWB 721oC¾u Ar à 2120 h−1 }R 2kWB 717oC¾.

 QR Ar à Ü( ³ ST -YÅ ? þ?

ÐÊ !¾. &´ Ar à 810 hr−1 }R 2 kWB

 &  98% }7³   ‘Ó    ‘-YÅ

(93.8%) }$% ST QR¾.  @¼ NL   Le

 1 kWB +,-. À$%  +? (X  ( Ë 2

> } =L] = :; !³À.

4.  

kWB L¹Tº» +, -.L ‘’  ‰ªu “N anode

>(X ST L³   › ¼ =î¾. @¼70 89 70, ;0 U 7- :.

(1)†‡  % ST -YÅ 98% } Ñ.q 2 kWB

} =? ƺ] = :.  F Ar à +? JK

Ðk 2,120 hr1¾u  JK Ðk 810 hr1¾.

(2) 80% +, L¿% -8 MCFC  “N³ †

E +? (X  ( t +? QR0  QR 1=

. p9  } }€ -] = :.

(3)ª ¨ % ‰ª (›O % -1 q2 Ò †‡E ‘

’  MCFC +, -.  Kk 2¬  

€.



1. Twigg, M. V.: “Catalyst Handbook,” Wolfe Publishing Ltd.(1989).

2. Lim, T. H., Lim, H. C. and Hong, S.: Chemical Industry and Tech- nology, 16, 407(1998).

3. Hirata, T., Mizusawa, M., Koga, M. and Hatori, S.: IHI Engineering Review, 29, 53(1996).

Fig. 7. Temperature distribution in plate reformer(load: 2 kW).

(space velocity: 2,120 hr−1, combustion cat.; 810 hr−1, reforming cat.;

voltage: 110 V. ∆T(oC)=Temp.A-Temp.B.; , : reforming chamber;

, : combustion chamber; closed symbols: Temp. at  shown in Fig. 2; open symbols : Temp. at  shown in Fig. 2.)

Table 4. Test results of plate reformer: reforming reaction(load: 1 kW)

Average reforming temp.(oC) 707 649

Space velocity(hr−1) 407 407

CH4 conversion(%) 99.2(98.0) 99.6(92.0)

Dry composition of products(%) CH4 0.2(0.4) 0.4(1.9) H2 78.1(77.2) 78.6(76.4) CO 13.0(12.5) 10.0(10.4) CO2 8.7(9.9) 11.0(11.3) Total flow rate of dry outlet gases(l/min) 11.7 11.0

Inlet temperature(oC) 532 532

Outlet temperature(oC) 640 607

Reforming temperature(oC) Maximum 749 692

Minimum 612 576

[( ): Equilubrium composition and conversion on methane steam reforming at average reformer temperature.]

Table 5. Test results of plate reformer: reforming reaction(load: 1.5 kW and 2 kW)

Space velocity(hr−1) 606 810

CH4 conversion(%) 99.5(95.8) 98.3(93.8)

Dry composition of products(%) CH4 00.1(0.96) 00.5(01.4) H2 79.1(76.9) 78.5(76.7) CO 10.4(11.5) 10.9(10.9) CO2 10.4(10.6) 10.1(11.0) Total flow rate of dry outlet gases(l/min) 18.4 22.3

Inlet temperature(oC) 559 587

Outlet temperature(oC) 669 660

Reforming temperature(oC) Maximum 727 701

Minimum 603 610

Average 676 660

[( ): Equilibrium composition and conversion on methane steam reforming at average reformer temperature.]

참조

관련 문서

The LiMn 1.5 Ni 0.5 O 4 cathode materials calcined at 850 o C delivered the highest discharge capacities and exhibited good cycling characteristics in terms of the

bility of our experimental setup, because viscoelastic property of ppy during electrochemical deposition has been recently examined in the electrolyte solution by Muramatsu et

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

플록 구조의 측면에서 볼 때 폴리머를 일차 응집제로 사용하면 플록 강도와 크기가 향상되었지만, 다른 처리 옵션과 비교해 볼 때 플록 침전 속도에는 개선이 없었으며 유기 물질

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

The modernization of Korea was rapid compared to other countries. Consequently, the people of Korea encounter a dilemma and confusion about how their children should be