• 검색 결과가 없습니다.

16. Fraunhofer Diffraction

N/A
N/A
Protected

Academic year: 2022

Share "16. Fraunhofer Diffraction"

Copied!
32
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

• Occurs when light encounters obstacle.

• Different parts of wavefront interfere with each other.

• Two sorts of diffraction – Fresnel diffraction – Fraunhofer diffraction

Diffraction

16. Fraunhofer Diffraction

(2)

( ) ( ) ( )

r ds P jkr

j U P

U 1 exp cos

01 01 1

0 θ

λ

∫∫

=

01

cos r

= z θ

( ) (

ξ η

) ( )

ξ η

λ r d d

U jkr j

y z x

U exp

,

, 2

01

∫∫

01

=

( ) (

2

)

2

2

01 = z + x − ξ + y −η

r

Only two assumptions : scalar theory + r01 >>

λ

Huygens-Fresnel Principle

(3)

Fresnel Approximation

+  −

+  −

2 2

01 2

1 2

1 1

z y z

z x

r ξ η

( )

λ

( )

ξ η

[ (

x ξ

) (

y η

) ]

dξdη

z j k z U

j y e

x U

jkz

exp 2 ,

, 2 2

+

=

∫ ∫

( )

( )

( )

ξ η ( ) ( ) ξ η

λ

η λ ξ

η π

ξ e d d

e U

z e j y e

x

U z j z x y

j k y

z x j k

jkz

∫ ∫

+ +

+





= 2 2 2  , 2 2 2 2

,

( )

( ) ( )

z y f z x f z

j k y

z x j k jkz

Y X

e U

z e j y e

x U

λ λ

η

η

ξ

λ ξ

/ ,

/ 2

2

2 2 2

2

, )

, (

=

= +

+





= F

(4)

Fresnel Diffraction

• This is most general form of diffraction – No restrictions on optical layout

• near-field diffraction

• curved wavefront – Analysis difficult

Fresnel Diffraction Fresnel Diffraction

Screen

Obstruction

(5)

A very historically important example of Fresnel Diffraction is Poisson’s Spot .

(6)

Fraunhofer Approximation

( ) ( ) ( ξ η ) ξ η

λ η π

λ U ξ j z x y d d

z j e y e

x U

y z x

j k jkz

 

  − +

= ∫ ∫

+

2

exp ,

,

) 2 (

2 2

( )

2

max 2

2

η

ξ

+

〉〉 k z

( )

{ }

f x z f y z

y z x

j k jkz

Y X

z U j

e e

λ

η

λ

λ ξ

/ , /

) 2 (

,

2 2

=

= +

= F

(7)

Fraunhofer Diffraction Fraunhofer Diffraction

Fraunhofer diffraction

• Specific sort of diffraction – far-field diffraction

– plane wavefront – Simpler maths

(8)

Fraunhofer diffraction from a

rectangular aperture. The central lobe of the pattern has half-angular widths

y y

x

x λ / D andθ λ / D

θ = =

The Fraunhofer diffraction

pattern from a circular aperture produces the Airy pattern with the radius of the central disk

subtending an angle θ =1.22λ /D

Fraunhofer Diffraction – examples

(9)

Fraunhofer diffraction - Single slit

Divide slit into two parts

– Extra distance for each pair of points is sinθ 2

 b

θ θ

b b

θ

sin s

s

(10)

Destructive interference when

• dark fringe for

Dividing slit into 2, 4, 6, 8, ...

– dark fringes at

b b

2 2 sin sin θ θ = = λ λ 2 2

sin sin θ θ = = λ λ b b

sin sin θ θ = = 2 2 λ λ , , 3 3 λ λ , , 4 4 λ λ , ,

b b b b b b K K

(11)

Analysis

s b b

s s sin sin θ θ

θ θ

For Fraunhofer, screen is at infinity(or, at focal plane), so all rays have the same angle.

P

f

(12)

Fraunhofer Diffraction

• Achieved by using parallel light

– produced by lens.

• Lens

– Fourier transform of aperture on screen

screen

Focal length

aperture

θ

(13)

Analysis

• Displacement at point P, dE

P

– from wave passing through small length ds is proportional to

ω θ

) sin

( = + ⋅



 

=  e , r r s r

dEp dEo i kr t o

• From Hoygens principle, we assume that

waves spherical

: r

E 1

(14)

Analysis

( ) ( )

[ ]

) ( sin sin

sin sin

sin 1 sin

sin :

2 2

2

2 1

2 / sin 2

/ sin 2

2 sin

) (

) 2 (

2

sin

) sin

(

β β β

θ β β

β

θ θ

θ

θ θ θ

ω θ ω

ω θ

c I

I I

kb

r , b E E

e ik e

r E ik

e r

E E

e E e

ds r e

E E

r s

since

, r e

ds dE E

length unit

per amplitude E

, ds E dE

o o

o R L

ikb ikb

o L b

b iks

o R L

t kr R i

t kr b i

b

iks o

p L

t o ks

kr i o

p L

L L

o

o o

o

=

=

=

=





=

<<





=

=

+

(15)

Analysis

( )

(

m

)

b if 1

ely, Approximat

, 3

, 2

, 1.43

graphic by

solved

tan

d d

, when I

I

f ( y

b m f y

/ 2 k

b

m

2, 1,

m with m

kb

when, c

I I

21

1 2

1

max 21

o

>>

+

=

=

=

=

=

 =



=

=

=

=

±

±

=

=

=

=

=

β θ

λ

π β

π β

π β

β β

β

β β

β β

β β

λ θ

λ π θ

λ

π θ

β

β

sin

47 . 46

.

sin 0 cos

sin

) sin

sin

, sin

0 )

( sin

2 2

L L

(16)
(17)

0 0

0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 11

θ β = kb2 sin

π 2π 3π

−3π −2π −π 0

I

o

I /

(18)

Circular aperture

• For a circular aperture

– Diffraction pattern given by

– J

1

( )is a first order Bessel function – D is diameter of aperture

( ( ) )

22

11

  

 

  

 

θ θ θ θ

∝ ∝

sin sin sin sin

½ ½ kD kD

½ ½ kD kD J J

I I

(19)

Circular Aperture

Circular aperture

Single slit (sinc ftn)

Sin θ

0 λ/D 2λ/D 3λ/D

−λ/D

−2λ/D

−3λ/D

Intensity

(20)
(21)

Airy Disc

• Similar pattern to single slit – circularly symmetrical

• First zero point when ½kD sinθ = 3.83 – sinθ = 1.22λ/D

– Central spot called “Airy Disc”

• Every optical instrument

• microscope, telescope, etc.

– Each point on object

• Produces Airy disc in image.

(22)
(23)
(24)

Resolution

• Ability to discern fine details of object

– Lord Rayleigh in 1896

• resolution is function of the Airy disc.

– Rayleigh: Limit of resolution

• Two light sources must be separated by at least the diameter of first dark band.

• Called Rayleigh Criterion

(25)

Resolution

∆ϕ

(26)

Rayleigh Limit

∆ϕ

min

Angular limit of resolution = ∆ϕ

min

=1.22λ/D

∆l

min

Limit of resolution = ∆l

min

=1.22f λ/ D

f = focal length

(27)

Rayleigh Criterion

Light distribution of a cross section of respective airy disc.

Rayleigh Limit

(28)

Resolving Power

• Defined as

– 1/∆ϕ

min

• or

– 1/ l

min

• To increasing resolving power

– increase diameter of lens

– decrease wavelength

(29)

Double-slit diffraction

(30)

Double-slit diffraction

( ) ( ) ( ) ( )

[ ]

[ ]

β α α β

β ε β

ε

β α β β

θ α

θ β

θ

β β

α β

β α

θ θ

θ θ

θ θ

2 2

2 2 2

2

2 1 2

1

2 / sin ) ( 2

/ sin ) ( 2

/ sin ) (

2 / sin ) (

2 ) (

2 ) ( 2 sin

) (

2 ) (

sin

sin cos 4

sin cos 2

2 2

sin cos ) 2

( )

2 (

sin ,

sin sin

1





=









=

=

=

+

=

+

=





+





=

+

+

+

+

o o

L o

o R

o i L

i i i

i i o

R L

b a ik b

a ik b

a ik b

a ik o

L

b a

b a

iks o

b L a

b a

iks o

R L

r I b E c

irradiance

; c E

I

r b e E

e e

e e

i e b r

E E

ka

kb

e e

e ik e

r E

ds r e

ds E r e

E E

a b

b (a-b)/2 (a+b)/2

(31)

Double-slit diffraction

m b a p

: (2)

&

(1) satisfying or

orders, missing

for Condition

2, 1, 0, m , θ b

m : minima n

diffractio

(2) - - - - - - - - - b

b

: term envelope n

diffractio The

2, 1, 0, p , θ a

p : maxima ce

interferen

(1) - - - - - - - - - a

: term ce interferen The

r b E I c

I

I

o L o o

o

=

±

±

=

=

±

±

=

=





=





=





=

L L

sin sin sin sin

sin cos sin

cos , 2 sin cos

4

2 2

2

2 2

2

λ λ

θ π λ

θ π

λ

λ θ α π

α ε β

β

(32)

Multiple-slit diffraction

[[ ]]

[[ ]]

{ }

2 2 2 /

1

2 ) ) 1 2 (

2 ) ) 1 2 (

2 ) ) 1 2 (

2 ) ) 1 2 (

sin sin

sin sin

sin





=

+

= ∑ ∫ ∫

=

+

+

α α β

β

θ θ

I N I

ds e

ds r e

E E

o

N

j

b a j

b a j

b a j

b a j

iks iks

o R L

integers other

all p

for occur minima

2N, N,

0, p for occur maxima

principal

2, 1, 0, p , θ N a

p or N , : p

minima

N N N

: N magnitude

2, 1, 0, m , θ a

m or , m :

maxima principal

(1) - - - - - - - - - N

: term ce interferen The

lim

limm m

2

=

±

±

=

±

±

=

=

=

±

=

=

±

±

=

=

L L

L

sin

cos cos sin

sin

sin sin

sin

λ α π

α α α

α

λ π

α α

α

π α π

α

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Phase profile of conventional DOE Obtained diffraction image. Optical vortices appear in the diffraction image generated by

Time series of vertical cross section of potential vorticity and wind vector calculated by Case 1 along the A-A' line indicated at Fig.. Same

3.9 Bead and cross section profiles of welds in LASER welding. Bead

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

A cross section of wood from a white-pocket area of decayed wood showing delignified wood cells. These cells have no middle lamella (this is the area between