• 검색 결과가 없습니다.

Synthesis and Cure Kinetics of Resol Type Phenolic Resin/Layered Silicate Nanocomposite

N/A
N/A
Protected

Academic year: 2022

Share "Synthesis and Cure Kinetics of Resol Type Phenolic Resin/Layered Silicate Nanocomposite"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

.ž; ¾¦>æ/[çÒ&šÞ ¾žÚ~

B– 5 ãz³ê†ö &‚ ’

æ^Á‚"^Á;žÒ

‚“"VFö z"

(2001j 6ú 19¢ 7>, 2001j 8ú 3¢ j)

Synthesis and Cure Kinetics of Resol Type Phenolic Resin/Layered Silicate Nanocomposite

Ho-Yun Byun, Min-Ho Choi and In-Jae Chung

Department of Chemical Engineering,

Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusung-gu, Daejeon 305-701, Korea (Received 19 June 2001; accepted 3 August 2001)

º £

æº B>‚ ¾¦>æf jÝ~&, nꞶ(frequency factor)º B>‚ ¾¦>æö jš 7V ·~. V¢B ¾ž Ú

Abstract−Resol type phenolic resin/layered silicate nanocomposites(RPLSNs) were prepared by melt intercalation method and the cure kinetics was studied as a function of the amount of layered silicate. The partially exfoliated structure was found below 3 wt% of layered silicate, while more stacked silicates were found at 5 wt% of layered silicates. The result of FTIR experiment for cure reaction of phenolic resin showed that the RPLSN had almost the same activation energy as pristine phe- nolic resin but it had 7 times lower frequency factor than pristine phenolic resin as the amount of layered silicate increased.

Therefore, the steric hindrance of layered silicate in the nanocomposite affected the cure kinetics and disturbed the formation of three dimensional network structure of phenolic resin during cure reaction.

Key words: Resol Type Phenolic Resin, Layered Silicate, Nanocomposite, Cure Kinetics

1. B †

ª¶ Ï[ ã«»(polymer melt intercalation)f Vš~ ª¶ &O

»j &‚ šÏ~šB ª¶/[çÒ&šÞ ¾ž Ú(polymer/

layered silicate nanocomposite)¢ B–~º O»š. š O»j Û~

ª¶f [çÒ&šÞ~ bbj ª¶~ FÒ *š Nê¾ Ï[

Nê šçb‚ j &~ ¾žÚ¢ B–† > ®. ª¶/[ç

·~ Ò&šÞ¢ ÒÏ~šBê ¸f Vê' bW(žË ;ê, žË Î îÊ)[1-2], ¸f heat distortion temperature(HDT)[3], Ôf cc ê

>[4-5], Ôf VÚ R"ê[6], ¸f ÚÏBW(solvent resistance)[7], ¸f

šN *êê[8] ~ ßûj &.

ª¶ Ï[ ã«»ö ~š B–B ª¶/[çÒ&šÞ ¾ž

Úº ª¶f Ò&šÞ Қ~ 'ž ç^·Ïb‚ ž~  ª¶ÒҚ §f Ò&šÞ [*b‚ ã«>º ;êö ~š  ’–

& Ö;B. ¾žÚ~ ’–º ã«; ’–(intercalation)f ;Ò;

diffraction(XRD) b’ NZ, ¯ V&².(basal diffraction) b’~ *~, η, ’V ö ~š ’ê† > ®. ã«; ¾žÚº ª¶ Ò Òš [*ö ã«>Ú Ò&šÞ~ [*j 9&B XRD b’ NZç (2θ=~10o)ö 9Úê [* –Òö š>º î‚Ú *~ö b’& ¾æ

¾º ©b‚ {ž† > ®, ;Ò; ¾žÚº Ò&šÞ [ç ’

–& j*® ZîB~² ªÖ>Ú XRD b’ NZçö b’& ¾æ¾ æ pº ©b‚ {ž† > ®.

ÎîÊ~ Ã&, cc ê>~ 6², Ò, ;žW~ Ëç b‚

žš  ª¶¢ šÏ‚ [çÒ&šÞ ¾žÚö &‚ ’&

To whom correspondence should be addressed.

E-mail: chung@cais.kaist.ac.kr

(2)

642 æ^Á‚"^Á;žÒ

z B39² B5^ 2001j 10ú

šÞ ¾žÚº ö >æ¢ V.‚ šÚrb–[9-12], ž 

¾¦ >æº &Ë J¾B W>æ‚ ¸f [B ßW(ablaive property),

~> n;W, ' n;W, Ï n;W ~ ßûj &æ ®ÚB  .Òò, ÎÞO 2Ú, "–, ÏÒ ÖëÏ 7OB, z+, Ú 

Ò&šÞ [*ö ã«ʺ ©š ÚJ. š ^B¢ ~V *š

Usuki[14] f ¾¦>æ¢ W~º ";öB 4-aminophenol hydrochloride

‚ FVzB ÒÎڂ¾šÞ¢ Žþ b~ ž"£; ¾¦>æ/[ç Ò&šÞ ¾žÚ¢ B–~&, š[15] 5 ‚[16, 17] f F;

ž"£ >æö [çÒ&šÞ¢ Ï[ ã«»ö ~š ªÖB [* ã

«;" ;Ò; ¾žÚ¢ B–~&. ~æò, jçræ F;’–¢

òV Ú[, ª¶ïš – .ž >æ~ âNö'ž ’–~ ßû~ B

£b‚ žš .ž; ¾¦>æ/[çÒ&šÞ ¾žÚ~ ’º š

šö  ’öBº .ž; ¾¦>æ/[çÒ&šÞ ¾žÚ¢

B–~V *~, ª¶ïš · ‚>Wž .ž; ¾¦>æ¢ šÏ~

¾žÚ¢ B–~&, [çÒ&šÞ~ ·š ¾žÚ~ ãz

–ÿö ~º 'Ëj –Ò~&.

2. þ

2-1.

 ’ö ÒÏB .ž; ¾¦>æº (")zJ—FzöB B–B KSP20 b‚B, ;ª .ž >æ& bö ªÖ>Ú ®º ò&. š òº bö ¦ª'b‚ Ÿj ®V r^ö "ï~ Ã~>¢ Î&~ ;ª j Ž*Î ê, ÿ֚–Vf êJ6j šÏ~ >ªj B–‚ ê ï¶ÒB‚ .j ^‚ &¢ áî. .ž; ¾¦ >æº KL‚ «

«~&.

[çÒ&šÞº Na+-montmorillonite(MMT) &º ¢ Kunipia Ò~ B®(CEC=119 meq/100 g)j ÒÏ~&b–, FV~~B ÒÎڂ

¾šÞ(organically modified montmorillonite)¢ B–~V *š Òς

ω-amino acidº AldrichÒ~ 6-aminocaproic acid¢ ÒÏ~&b–, FV

~~B ÒÎڂ¾šÞº C6Mš¢ ««~&. ªöç~ .ž; ¾

¦>æf [çÒ&šÞ(MMT, C6M)¢ ï¶ÒBj šÏ~ b~

¢ šÏ~ 110oCöB 1*ÿn ãz>wj V.  ê 130oCöB 1* ÿn convection ovenöB êãz(postcuring)¢ B .ž; ¾

RPLSNsº KLMMTw, KLC6Mw¢ ««~&. šr wº ¾ž

2-2. G;

.ž; ¾¦>æ(KL)~ ª¶ïf ªC ς tetrahydrofuran(Merck Ò)j ÒÏ~ GPC(Waters WISP 712) G;j ۚ {ž~&. &ª

¶ï~ ¾¦>æ RÒ^~ ;WªCf MALDI/TOF/MS(Matrix Assited Laser Desorption Ionization/Time of Flight/Mass Spectroscopy)¢ šÏ

~&. ¾¦>æ~ ‚>WV¢ {ž~V *~ 400 MHz solid-state

13C-CP/MAS NMR(Bruker, DSX400)j ÒÏ~&. b’& ß~º © j ‚²z~V *‚ magic angle sample spinning(MAS)f 10 kH&.

«>îºæ¢ {ž~V *~ Rigaku X-ray generator(CuKα, radiation with λ=0.15406 nm, 40 kV, 80 mA)¢ ÒÏ~ çNöB XF ². Ê

¿Þ¢¢ &V~&. šr ².'ê, 2θº 1.2o-10oš scan speedº 2o/min&. RPLSNs~ ;j &V~V *š 100 nm~ vþ~ Þ

j ê² z+~ Philips CM-20 R"*¶*ãj šÏ~&. šr

&³*{f 160 kV&. .ž; ¾¦>æf RPLSNs~ ãz³ê†j

&V~V *~ Bomem-MB 100 FT-IR ª7V¢ ÒÏ~&. 4 cm1

~ šçê‚ 5-20² scanning~&. RPLSNs~ FÒ*šNê¢ G;

~V *~ DMTA(Rheometric Scientific DMTA Mark IV)¢ ÒÏ~

&. šr, "2>º 2 Hz, strainf 0.07, Ò ßN ³êº 10oC/min b‚ ~&.

3. Ö" 5 V

3-1. FV~~B ÒÎڂ¾šÞ~ ßWz

ω-amino acid& [çÒ&šÞ~ [*ö ¾ ã«>îºæ¢ {ž~

V *~ X-ray diffraction(XRD)¢ šÏ~&. Fig. 1f FV~~B ÒÎڂ¾šÞ~ XRD b’š. B>‚ ÒÎڂ¾šÞ~ b’&

7.24oöB ¾æ¾æò 6-aminocaproic acid modified MMT(C6M)~ b

’*~º 6.83o

šÏ~ [* –Ò¢ êֆ > ®.

(1)

VB dº basal spacingš, λ=0.15406 nmšæ‚, MMT, C6M~ basal spacingf '' 1.22, 1.29 nmš.

3-2. .ž; ¾¦>æ~ ßWz

‚>W~ KL>æ~ ª¶’–¢ rjV *~ solid-state 13C CP/

MAS NMR

ortho'(29.21 ppm), ortho-para(34.93 ppm), para-para(39.67 ppm) methylene bridgeš–, 8®f methylol group, 9®f dimethylene ether bridge(Ph- CH2OCH2-Ph), 10, 11®f ¾¦ÒöB >w~æ pf orthof para*

~¢ ¾æÞ[19]. ¾¦Ò~ hydroxy group~ orientation Î"r^ö methylol group" methylene bridgef hydroxy groupö &š ortho¾ para *~ö ¿² B. .ž; ¾¦>æº ¾¦ö &š "ï~ ªr

–®¢ Î&~æ‚ .Vö ¾¦ö ªr–®& ¿º >wš  ê ö ê¯>º »>w †šV r^ö >w.Vöº methylol group 6º ž ¾¦ç~ ortho¾ para *~~ >w >²f >w~ dime-

sinθ λ 2d---

=

Fig. 1. X-ray diffraction patterns of (a) MMT and (b) C6M.

(3)

thylene ether bridge¾ methylene bridge‚ ÖB RÒ^¢ ò²

methylol group

GPC¢ šÏ~ ’‚ KL>æ~ >ï ª¶ï Mnf 1,026, Z² ï

‚ «~~ &ª¶ï~ b’š ßöB ¾æ¾æ‚[21], &ª¶ï~ R Ò^~ ª¢ ¦z ¶^® rjV *š MALDI-MSþj >¯

~&. ¾¦>æº ǂ RÒ^ ç‚ šÒ~V r^ö z'ž

–Wj rV ÚJÚ ©b‚ rJ^ ®. šö &š Karasf Hillenkamp [22]º Wª¶¢ ªC~V *‚ O»b‚ MALDI-MS¢ B~&

. š O»j šÏ~š &ª¶ï~ ¾¦>æ RÒ^~ «~¢ ¦z

^ª~ r > ®º Ë6š ®. Fig. 3f ª¶ï 1,400š~~ KL>

æ~ MALDI-MS âš. Pasch š B‚ ©¾" .ž; ¾¦>

æ¢ ¾¦ç" örš‚ ÖB 7Ú¢ &;~ MALDI-MS Ê

¿Þ"çö ¾æ .ž; ¾¦>æ RÒ^~ ’–¢ ÚÚš ª¶

ï 1,200š~öBº ¾¦Ò¢ &Û 4-8B ;ê‚ Ž~ ®º © j r > ®[23].

šç~ Ö"‚¦V KL>æº &ª¶ï~ RÒ^¢ Ž~šB > ®î.

Fig. 2. Solid-state 13C CP/MAS NMR spectrum of phenolic resin. Asterisk indicates spinning sideband.

Fig. 3. MALDI-MS spectrum of phenolic resin.

Fig. 4. X-ray diffraction patterns of (a) KLMMT and (b) KLC6M cured at 110oC for 1 hr followed by curing at 130oC for 1 hr as a function of silicate content.

(4)

644 æ^Á‚"^Á;žÒ

z B39² B5^ 2001j 10ú

3-3. .ž; ¾¦>æ/[çÒ&šÞ ¾žÚ(RPLSN)~ ßWz

ª¶/[çÒ&šÞ ¾žÚ& ã«;žæ ;Ò;žæº X-ray diffraction(XRD) NZ" Transmission Electron Microscopy(TEM)Òê

ö  b’& ¾æ¾–, ª¶& Ò&šÞ~ [*ö ã«>Ú [*

–Ò¢ {Ëʚ (001)š~ b’& &'öB ¾æ¾² B. š ’

–¢ ã«;(intercalation)š¢ ö~–, [璖& 2Z>Ú XRDç

~ Ò&šÞº ;Ò> ¢¦ ã«Nj r > ®, 5 wt%öBº b

j r > ®.

Fig. 5

&šÞ¢ ¾æږ, ²ï:ûf ¾¦>æ¢ ¾æÞ. Òê7*ö š

º ~¦ ¦ªf R"*¶*ãò &j";öB Z ¾¦>æ& ¾

5 wt%

B>‚ ÒÎڂ¾šÞ [* –Òê 9Ú KL>æ& z ¾ [*ö ã«F ©b‚ &b¾ {‚ Nš¢ "æº p~.

3-4. .ž; ¾¦>æ/[çÒ&šÞ ¾žÚ ãz³ê†[24]

KL>æ 5 RPLSN~ ãz ³ê†j &V~V *š FTIRj šÏ~

oCöB

>wVj r~ *ö Vž FTIR Ê¿Þ"š. >ÖzV~ stretching

‡>Zº 3,330 cm1š–, z2V~ stretching ‡>Zº 2,900- 2,800 cm1š. 1,100 cm1ö methylol group~ stretching ‡>Z¢

6‚ {ž† > ®. ÊFç~ C-H Z~ deformation vibration~ ‡

>Zº 770-740 cm1š. ¾¦>æ~ ãz& ê¯Nö V¢ š Z

~ ‡>b’~ ^V& 6²~æ‚ š ~ b’ ’V æz¢ šÏ~ >

w~ *~Nj ’† > ®. ÊFç~ C-C Z~ deformation vibration f 1,500-1,400 cm1öB ‡>b’& ¾æ¾–, š f >wö ^

~æ pbæ‚ >wš ê¯Nö V¢ b’ ’V~ æz& ìÚ¢ ~æ ò, B‚º –.O 6²~º–,  šFº >wš ê¯Nö V¢ þ2

~ ¦b& >»(contraction)~V r^ž ©b‚ ž. š ¦b>»

f þ2 vþ¢ æzB G;‚ ‡>b’~ JN¢ FB~² B. š

 JN¢ B–~V *š  þöBº 1,481 cm1~ C-C Z~ ‡

Fig. 5. TEM micrographs of (a) KLMMT3, (b) KLC6M3, (c) KLMMT5 and (d) KLC6M5 cured at 110oC for 1 hr followed by post-curing at 130oC for 1 hr.

(5)

>b’¢ internal standard‚ F~&, ãz *ö &Ë ‡>b’& – (1,2-disubstituted, 1,2,6-trisubstituted)

j šÏ~ êÖ~&. 1,481 cm1 *~~ b’f 756 cm1 *~~ b

’º Lambert-Beer’s law¢ Vž. V¢B, Lambert-Beer’s law¢ šÏ

~ b’ ’Vö V¢ *~Nj ’~&.

(2)

VB º ß; >wV~ .V ‡>(absorbance), º V&V~ . V ‡>(absorbance), A1º ' töB >wV~ ‡>, Ò A2º ' töB V&V~ ‡>š.

Fig. 7f Fig. 6~ Ö"f  (2)¢ šÏ~ áf KL>æf KLC6M5

~ Nêf *ö Vž *~N ¾*š. *Nê 'öB ¾ž

Ò&šÞ~ Î&‚ žš ¾¦>æ~ ãz>wš £* ¶Jöj .G

† > ®. ãz³êç>(curing reaction rate constant) k¢ ’~V *

š r" ?š nNj ê«~& ãz³ê ç>º Arrhenius j

(3)

k=ko exp(−Ea/RT) (4)

VB, tº Nãz*, Tº .&Nê, Eaº ‚Wzö.æ, Ò

k0º nꞶ(frequency factor)¢ ¾æÞ. 6‚ >wN>& 2N¢

 &;~, (3)j 'ª~š,

α/(1−α)=kt+C (5)

VB Cº 'ªç>š.

Fig. 8f ¾¦>æ 130oCöB α/(1−α) vs. t~ âb‚, vitrification

pointš*~ .V F;'ž ¦ªòj ê‚ ©š. ¾¦>æº .Vö

ãz& ¢Ú¾š ºz& >Ú z šç ª¶š æç¢ > ìº vitrifica- tion pointö šš² B. ¢>'b‚ vitrificationf >wNêf >wb

~ FÒ*šNê& ?f 6j ö~–, š 6 šçöBº >wb~ 6ê

& ’² Ã&~, mobility& ’² 6²~ diffusion controlled >w

š B[25]. V¢B vitrification pointšçöBº  (5)¢ Òφ > ì . Fig. 9º  (5)¢ ò—~º F;'ž ’*j ;~V *~ ãz

*ö Vž dα/dt¢ Ö ©š. ãz³ê& .Vö /Ï~² 6²~

£ 10-12ª šêö VÞV& –~ 0ö êŽj r > ®. Fig. 10f KL>æ¢ 130oCöB 10, 12, 15ª ãzÎ ê, DMTA þj >¯

~ ’‚ tanδ Ö"š. tanδ b’~ ‚&6öB~ NꂦV ª

¶~ FÒ*šNê(Tg)¢ G;~&. Fig. 11f KL>æ~ 130oCöB ãz*ö Vž Tg~ æz¢ ê‚ ©b‚ &Û 11.14ªš vitrification pointªj r > ®î. š Ö"º Fig. 9öB ãz³ê& –~ 0š >

º vitrification pointf –~ ¢~Žj r > ®. V¢B vitrification α 1 A1⁄A2

A01⁄A02 ---

– 1 A

A0 --- –

= =

A01 A02

---dt =k 1( –α)n

Fig. 6. FTIR spectra of (a) cure behaviors of KLC6M5 at 130oC and (b) magnified peak at the region of 700-850 cm1 in (a).

Fig. 7. Conversions of (a) KL and (b) KLC6M5 as a function of temperature and time.

(6)

646 æ^Á‚"^Á;žÒ

z B39² B5^ 2001j 10ú

pointræ¢ linear fit 'b‚ F~ Fig. 12öBf ?š ê~&

. âj š vitrification pointš*öBº α/(1-α) vs. t& F;'š

–, š º*öBº ¾¦>æ~ >wš 2Nj ò—Žj r > ®. 6

‚ ¾žÚê vitrification pointÚöB 2Nj ò—Žj r > ®î

Fig. 13f lnk vs. 1,000/T~ Arrhenius plotš. š âj ۚ ’‚ ‚ Wzö.æf nꞶ¢ Table 2ö ¾æÚî. ãz>w³êç>º

 (4)öB š nꞶf ‚Wzö.æ‚ ’W>º–, ‚Wzö.

æº "‚ >wb" *š ç*~ ö.æN¢ ö~–,  ’V& š>

Fig. 8. Plots of α/(1−α) against curing time for (a) KL and (b) KLC6M5 at 130oC.

Fig. 9. Plots of the curing reaction rate α/(1−α) against time for (a) KL and (b) KLC6M5 cured at 130oC.

Fig. 10. Tan δ vs. temperature plots of KL partially cured at 130oC as a function of time.

Fig. 11. Tg behavior of KL cured at 130oC as a function of curing time.

(7)

ƒ ¸f ö.æ Ëã r^ö >wö ^~º >wb~ ·š ·j >w

³ê& ¶Ö >š,  ’V& ·bš Ôf ö.æ Ëã r^ö >wö

^~º >wb~ ·š ôj >w³ê& †š² B.

nꞶº >wb Қ~ Ïònê¢ ~~–,  ’V& š>ƒ >

KLC6M5

‚ ‚Wzö.æöB >wö jº‚ ö.æ Ëãj >Vö z FÒ~

š B>‚ ¾¦>æö jš ¾ž Ú~ ãÖ ¾¦>æ~ 3Nö'  璖 ;Wö ®ÒŽj r > ®. Lan [26]f ö >æ ¾ž 

ÚöB [* Ú~ ‚Wzö.æ& [ <öB~ ‚Wzö.æ z

šÞ‚ ž‚ «Úˆ r^ö B>‚ >æö jš Ô~. Tyan [27]

6‚ poly(amic acid)~ šz ";öB B>‚ Қ(polyimide)

3. Ö †

.ž; ¾¦>æ¢ šÏ~ .ž; ¾¦>æ/[çÒ&šÞ ¾ž

Ú¢ Ï[ ã«»b‚ B–~&. ãzÊV*~ KL>æº NMR j ۚ ‚>Wj &æº methylol groupj ŽF~ ®b–, MALDI- MS

XRDf TEMj ÒÏ~ .ž; ¾¦>æ/[çÒ&šÞ ¾ž

Ú~ Î‚æ¢ {ž‚ Ö" Ò&šÞ~ ‚š~ Bî" ç&ìš

3 wt%

šÞ~ ·š Ã&®rj r > ®î. V¢B, ¾¦>æ~ [* ã«ö Fig. 12. Linear plots of α/(1−α) against curing time for (a) KL and (b)

KLC6M5 as a function of curing temperature and time.

Table 1. Curing reaction rate constants of KL and KLC6M5 for various curing temperatures

Curing temperature(oC) KL KLC6M5

ka) Cb) Rc) ka) Cb) Rc)

190 0.013 0.017 0.9921 0.010 0.022 0.9875

100 0.026 0.014 0.9971 0.023 0.011 0.9986

110 0.061 0.007 0.9978 0.048 0.001 0.9987

130 0.216 -0.025- 0.9996 0.149 -0.020- 0.9996

150 0.645 0.111 0.9890 0.428 -0.074- 0.9899

a)Curing reaction rate constant(min1). b)Constant. c)Relative deviation from the perfect linearity(the value of unity).

Fig. 13. Arrhenius plot of the reaction rate constant(lnk) against 1,000/

T for KL and KLC6M5.

Table 2. The activation energy and frequency factor of KL and KLC6M5 Sample Ea(kcal/mol) ko(min1)

KL 20.19 1.8181010

KLC6M5 18.95 2.7571090

(8)

648 æ^Á‚"^Á;žÒ

z B39² B5^ 2001j 10ú

º Ò&šÞ¢ æWÎ FVzB~ 'Ëf –~ ì, ¾¦>æ~

&ª¶ï~ RÒ^ö ~š "‚ 'Ëj Arj r > ®î. ¾¦>

¦>æ~ >wf 2N >wb‚ 6«>îb–, Ò&šÞ¢ ŽF‚ ã Öö *~Nš ç&'b‚ z Ô~. 2N>wj šÏ~ ãz>w ö 'Ëj † > ®º ‚Wzö.æf nꞶ¢ ’~~. ‚ Wz ö.æº ¾žÚ~ ‚Wzö.æ& B>‚ KL>æ £*

æò nꞶº B>‚ KL>æö jš 7V ·~. V¢B ¾ž 

æ& ãz>wj † ãÖö KL>æÚ~ >wV¢Ò~ >wj Oš~

 j*‚ 3Nö' 璖 ;Wj Ú[² ‚.

6 Ò

 ’¢^f "Ò(KOSEF)j ۂ The Center for Advanced Functional Polymersf 2000jê vò‚“ 21(BK21)Òëö ~~ æ ö>îVö 6ÒҖ, .ž>æ¢ Bš" zJ— Fz(")ö 6 Òãî.

^^ò

1. Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A. and Okada, A.:

Journal of Applied Polymer Science, 67, 87(1998).

2. Wang, Z. and Pinnavaia, T. J.: Chem. Mater., 10, 3769(1998).

3. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O.: J. Mater. Res., 8, 1185(1993).

4. Yano, K., Usuki, A. and Okada, A.: J. Polym. Sci. Part A: Polym.

Chem., 35, 2289(1997).

5. Yang, Y., Zhu, Z., Yin, J. and Wang, X. Qiz: Polymer, 40, 4407(1999).

6. Messersmith, P. B. and Giannelis, E. P.: Chem. Mater., 6, 1719(1994).

7. Bursnide, S. D. and Giannelis, E. P.: Chem. Mater., 7, 1597(1995).

8. Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, L. G. and Gian- nelis, E. P.: Adv. Mater, 7, 154(1995).

9. Brown, J. M., Curliss, D. and Vaia, R. A.: Chem. Mater., 12, 3376 (2000).

10. Messersmith, P. B. and Giannelis, E. P.: J. Polym. Sci. A; Polym.

Chem., 33, 1047(1995).

11. Lan, T. and Pinnavaia, T. J.: Chem. Mater., 6, 2216(1994).

12. Wang, Z. and Pinnavaia, T. J.: Chem. Mater., 10, 1820(1998).

13. Knop, A. and Scheib, W.: “Chemistry and Application of Phenolic Resins,” Springer-verlag, Berlin(1979).

14. Usuki, A., Mizutani, T., Fukushima, Y., Fujimoto, M., Fukomori, K., Kojima, Y., Sato, N., Kurauchi, T. and Kamikaito, O.: U. S. Patent 4,889,885(1989).

15. Lee, J. D. and Giannelis, E. P.: Polymer preprints, 38, 688(1997).

16. Choi, M. H., Chung, I. J. and Lee, J. D.: Chem. Mater(2000).

17. Choi, M. H.: Ph. D thesis, KAIST, Korea(2001).

18. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T. and Kamigaito, O.: J. Mater. Res., 8, 1174(1993).

19. Werstler., D. D.: Polymer, 27, 750(1986).

20. Maciel, G. E. and Chung, I.-S.: Macromolecules, 17, 1081(1984).

21. Rudin, A. and Fyfe, C. A.: J. Appl. Polym. Sci., 28, 2611(1983).

22. Karas, M. and Hillenkamp, F.: Anal. Chem., 60, 2299(1988).

23. Pasch, H., Rode, K., Ghahary, R. and Braun, D.: Die Angewandte Makromolekulare Chemie, 241, 95(1996).

24. Carotenuto, G. and Nicolas, L.: J. Appl. Polym. Sci., 74, 2703(1999).

25. Adabbo, H. E. and Willams, R. J. J.: J. Appl. Polym. Sci., 27, 1327(1984).

26. Lan, T., Kaviratna, P. D. and Pinnavaia, T. J.: J. Phys. Chem. Solids., 57, 1005(1996).

27. Tyan, H. L., Liu, Y. C. and Wei, K. H.: Polymer, 40, 4877(1999).

참조

관련 문서

Levi’s ® jeans were work pants.. Male workers wore them

Intercalation of TLCP in layered clays is accomplished by heating the polymer with hexadecyl ammonium- montmorillonite (C 16 -MMT) above melting transition temperature

G1-phase arrested Fc cells were prepared by deprivation of both light and silicate for 1 d, and the synchrony of cell cycle was induced by culturing cells in the complete

ABSTRACT:In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics,

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Abstract − In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and carry out theoretical analysis by means of modelling

From the model-based analysis of surface kinetics, it was shown that the non- monotonic behavior of the ZrO 2 etch rate as a function of the BCl 3 /Ar mixing ratio could