• 검색 결과가 없습니다.

PP-g-MA/ [ç Ò&šÞ ¾žÚöB~

N/A
N/A
Protected

Academic year: 2022

Share "PP-g-MA/ [ç Ò&šÞ ¾žÚöB~"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

PP-g-MA/ [ç Ò&šÞ ¾žÚöB~

ª¶ïö &‚ 'Ë

’«"Áf;Á‚"^Áfç×Á;žÒ

‚“"VFö z"

(2001j 6ú 19¢ 7>, 2001j 8ú 3¢ j)

The Effect of Molecular Weight of PP-g-MA/Layered Silicate the Nanocomposites

Chong Min Koo, Mi Jung Kim, Min Ho Choi, Sang Ouk Kim and In Jae Chung

Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusung-gu, Daejeon 305-701, Korea

(Received 19 June 2001; accepted 3 August 2001)

º £

ª¶ïÎ"¢ ÚÚ~b– ‚« ΂æ& Vê' bW 5 Fæ' –ÿö ÚÊ 'Ëj "ºæ¢ ÚÚ~. zÞÓÊ

ª¶~ ª¶ï~ Nšº ª¶~ 㫳ê(intercalation rate) ö jî¢ ‚« ;’–(morphology)öê 'Ëj Žj {

C18M

Žïö V¢ ç& 6ê Ã& š &Ë b– ªÖê& &Ë Ôf HMPP/MMT Úº 6ê Ã&& –~ ìî.

Abstract−The effect of molecular weight of matrix polymer for the maleated polypropylene/clay nanocomposites prepared by melt intercalation method was investigated. Two kinds of maleated polypropylenes with similar grafting level of maleic anhydride, but with different molecular weight, were used. The molecular weight of a matrix polymer profoundly affects not only the intercalation kinetics but also the final morphology of maleated polypropylene nanocomposites. One maleated polypropylene(LMPP) with low molecular weight fast exfoliates and the other(HMPP) with high molecular weight slowly intercalates into the organically modified clay. In addition, the final morphology has a significant influence in the mechanical and rheological properties. The exfoliated nanocomposite shows the largest increase of the mechanical and rheological prop- erties. The deintercalated nanocomposite shows the smallest increase of the properties.

Key words: Polypropylene, Montmorillonite, Nanocomposite, Morphology, Molecular Weight

1. B †

ª¶/[çÒ&šÞ(PLS) ¾žÚº Öë' wÏ&ËW šö B öò jî¢ ^'ž šöB ôf &j &æ ®. PLS ¾ž

Úº ²ï~ [çÒ&šÞ Î&‚ê – Vê' 5 ' ßW, V Ú R" 6²~ Ëç j áj > ®b– š‚ Ë6f Òò¢ ãï zÊ ²Ò~ ãBWj ¸¢ > ®[1-12]. 6‚ PLS ¾žÚº

^‚ *(confined geometry) nöB~ ª¶ ÒÒ~ –ÿ[16-24]

5 ª¶/¾ž«¶~ çæz–ÿ ö Îžê‚ ÒÏF > ®[25- 32]. ß® çæz–ÿ f PLS ¾žÚ~ ‚« Î‚æ¾ bW  j šš~º– 7º‚ †j ‚.

æ.ræ &¦ª~ PLS ¾žÚ ’f B–'ž Gšö .6

'~ WËj B>† > ®º ;Ò;(exfoliation) ;’–~ PLS ¾ž

Ú B–ö 76j v ’& > ®. PLS ¾žÚ~ ‚«

;’–º [çÒ&šÞ, ª¶, FV~~Ú  Қ~ ç^·Ïö þ~ 6çš [çb‚ ßö®º ’–¢ <V r^ö ª¶& úނ

R~ ã«;(intercalation) z ¾j& ;Ò; ’–~ ¾žÚ¢ á V *šBº ª¶f Ò&šÞ Қ~ ;‚ ç^·Ï ¯ Ϫ‚ ç Ïz ßWš ®Ú úîbš(enthalpic gain)š ®Ú¢ ‚[27-32]. æ

ª¶~ æWö ~š ª¶f [çÒ&šÞ~ çÏz¢ ¸šº–

To whom correspondence should be addressed.

E-mail: chung@cais.kaist.ac.kr

(2)

z B39² B5^ 2001j 10ú 2-1.

 ’ö çÏB ª¶º Table 1ö ;Ò>îb– ª¶ïš – maleic

anhydride(MA)‚ ¢*ÞB Ò*‚j2 HMPPf ª¶ïš ·f

LMPP¢ ÒÏ>î. LMPPº ^ÎCFzöB BA~b– HMPP º š*~ þöB áf solid phase grafting method[33]ö ~š B–

f octadecylammoniumb‚ ~~B montmorillonite(C18M)¢ ÒÏ~&

. ¾žÚº Ï[ã«»ö ~š 200oCöB B–>î.

2-2. G;

Òς v «~~ PP-g-MAöB MA~ ¢*ÞNf FTIR(Bomem- MB-100)[34], 1H NMR(Bruker-AMX-500)[35], Ò ö² ªC(HERAEUS;

CHN-O-Rapid)[35]j šÏ~ G;~&. ¾žÚ~ B–¦º Rigaku X-ray generator(CuKα radiation, λ=0.15406 nm)¢ ÒÏ~ &

V~&. 6‚ ÏêB~ ªÖçº TEM(Philips CM-20)¢ ÒÏ~

{ž~&. PP-g-MA/C18M ¾žÚ~ VêßW(thermomechanical property)j ªC~V *šB DMA(Universal V2.5H TA Instruments) G;j ~&b–, êÿ>º 1 Hz, ßN ³êº 3oC/min&. Fæ' ß Wf Parallel-plate(æª: 25 mm)& ËOB ARES Rheometer ¢ šÏ~

 200oC~ NêöB G;~&, Î F; 6êW 'nöB >¯

~&.

3. Ö" 5 V

3-1. PP-g-MA~ ßWz

Table 1ö PP-g-MA~ ßWj «~&. B†öB Þ/®š ‚«

;’–ö ª¶~ ’–& ~º '˚ ç® ’æ‚ ª¶~ ª

¶ï Î"¢ ÚÚV *š  þöB Òφ v PP-g-MA~ MA 

¢*ÞNj FTIR, NMR, ö²ªCj ۚ ÚÚ~. Û~ PPf MA f v «~~ PP-g-MA~ FT-IR Ê¿Þ"j Fig. 1ö ê~&. Fig. 1

öB MAº 1,860 cm1" 1,780 cm1öB C=O~ anti-symmetric stretching bandf symmetric stretching band¢ '' ¾æÚ, PPº C=O band&

ìb–, HMPPf LMPP ãÖ 6‚ 1,860 cm1" 1,780 cm1"¾öB C=O~ anti-symmetric stretching bandf symmetric stretching band¢

'' ¾æÞ. v ª¶~ MA;ê¢ {ž~V *š Ò*‚j2~

*;'ž b’ž 1,170 cm1öB~ b’¢ V&b‚ ç&‡>(relative absorbances)(AC=O/A1170)¢ jv~& 8š –~ jÝ~&b– NMR 5 ö²ªC Ö"º š* ¢^öBf ?f O»j ÒÏ~ G;~&

[36]. 1H NMRö ~~ PP-g-MAö ¢*ÞB MA~ ·j êÖ~

º O»f MAö ®º methine proton~ peak š'j propyleneö ®º methine proton~ peak š'" jv~ Z² ªN‚ ~Ö~º ©š

[12, 36]. ö²ªC" NMRj šÏ‚ Ö"& ;{® ¢~~æº pæò þJN¢ J† r –~ j݂ Ö"‚, HMPPf LMPPº MA~

¢*ÞNf £ 2.0% ;ê‚ jݎj r > ®.

3-2. Intercalation Kinetics

Fig. 2º intercalation kinetics¢ ÚÚV *~ PP-g-MA" C18M bbj 200oCöB annealing *ö Vž X-ray ². NZ~ æz¢

~ ' ò¢ ' Úöç(annealing) *ò¢ Úöç‚ ê /ïÎ ê &G~&. Fig. 2(a)º HMPP" C18M bb~ X-ray ². NZb

‚B .Vö t=0öBº C18M~ 2θ=4.87oöB (001) b’& ¾æ¾®

. Bragg’s law¢ šÏ~ C18M~ [* –Ò¢ êÖ~ 18.13 Å~

8j áî. HMPP" C18M bbj ÚöçŽö V¢ (001) b’º 66 ²'ãb‚ šÿ~– šº ª¶& [ç Ò&šÞ~ [*b‚

ã«> ®rj "– £ 1*êš Úöç~z¢ê (001) b’º

£ 2θ=2.6oöB z šç šÿ~æ p FæNj r > ®. >šö Fig. 2(b)

~ (001) b’º Úöçš ·~¶î¶ Ò¢öj {ž† > ®b– š º [çÒ&šÞ& 30. šÚö š ;Ò(exfoliation)& jòNj ~ ïš – HMPPº ª¶ïš ·f LMPPö jš ¶Ö ã«³ê¢ ž

~, ª¶ïš – HMPPº C18Mö æ ã«Nö >š ª¶ïš · f LMPPº C18Mj ;ÒÎ. ¯ ª¶~ ª¶ïNšº 㫳ê Table 1. The characterization of two types of maleated polypropylene

LMPP HMPP

Tma(oC) 156.9 159.1

Mwb 59,000 185,000

PDI(Mw/Mn)b 2.3 5.6

Graft level(%) AC=O/A1170 1.8 1.9

1H NMR 2.0 2.4

Elemental analysis 1.9 1.9

aobtained from 2nd heating scan with heating rate of 10oC/min.

bmeasured by GPC

Fig. 1. FTIR spectra of pure PP, maleic anhydride, HMPP and LMPP.

(3)

ö jî¢ ‚« ;’–öê 'Ëj Žj {ž† > ®.

Fig. 3f [[ã«»ö ~š B–B ^ «~~ PP-g-MA/C18M~ X-ray

². NZj &. Fig. 3(a)º LMPP/C18M ¾žÚ~ X-ray ² . NZb‚B C18Mš 10 wt%ræº ;Ò; ;¢ &öj {ž† >

®b– Fig. 3(b)~ HMPP/C18M ¾žÚº C18M~ ·ö &êìš

ã«; Î‚æ¢ &öj {ž† > ®b– Fig. 3(c)~ HMPP/MMT

Úº MMT~ ·ö &êìš ª¶& MMTö ã«>æ prj Fig. 4º PP-g-MA/[ç Ò&šÞ ¾žÚ~ TEM Òêj 

f PP-g-MA¢ ¾æÞ. Fig. 4(a)º 10 wt%~ C18Mj ŽF‚ HMPP/

C18M

æ> ®º ©j {ž† > ®b– '[ >Ú ®º [ >º £ 40öB 100[š ßö^ ®º ;¢ ~ ®. [* *Ïf XRDöB áf – Òf ¢~~º £ 3.5 nm¢ š ®. Fig. 4(b)º 10 wt% C18Mj

ŽF‚ LMPP/C18M ¾žÚ~ TEM Òêš. HMPP/C18M ¾ž

Úf Ò ' Ò&šÞ [*š j*® ;Ò >Ú ®º ’–¢ 

‚« ;’–& Vê' ßW 5 Fæ' ßWö ÚÊ 'Ëj ~º æ {ž~&. Fig. 5º LMPP/C18M, HMPP/C18M, HMPP/MMT  Fig. 2. XRD patterns of HMPP/C18M3(a) and LMPP/C18M3(b) as a function of annealing time at 190oC.

Fig. 3. XRD patterns of LMPP/C18M(a), HMPP/C18M(b) and HMPP/MMT(c) with the amounts of clay. The inset in Fig. 4a shows the SAXS.

Table 2. Characterization of maleated polypropylene/clay nanocomposites

Wt% clay Sample Morphology Sample Morphology(2θ=d-spacing) Sample Morphology(2θ=d-spacing)

100 C18M (4.87o=1.8 nm) C18M (4.87o=1.8 nm) MMT (7.03o=1.26 nm)

1 LMPP/C18M1 Exfoliated HMPP/C18M1 Intercalated(2.74o=3.2 nm)

3 LMPP/C18M3 Exfoliated HMPP/C18M3 Intercalated(2.5o=3.5 nm)0 HMPP/MMT3 Deintercalated(7.70o=1.15 nm) 5 LMPP/C18M5 Exfoliated HMPP/C18M5 Intercalated(2.66o=3.3 nm)

10 0LMPP/C18M10 Exfoliated 0HMPP/C18M10 Intercalated(2.45o=3.6 nm) HMPP/MMT10 Deintercalated(7.67o =1.15 nm) Values in brace represent 2θ and d-spacing calculated by using Brag’s law. LMPP/C18M5 describes the LMPP/C18M nanocomposite with 5 wt% C18M.

(4)

z B39² B5^ 2001j 10ú

Ú~ Nêö Vž ÿ' &ËêW†~ æz¢ ê~®. −100oC,

−60oC, −10oC Ò 30oCöB ÿ' &ËêW†~ 8j Table 3ö 

–~&. ^ «~~ Ú Îv ÿ' &ËêW†f B>‚ ª¶ö

¢ š– ;Ò;~ ãÖ – b‚ Ã&Žj {ž† > ®.

Fig. 6f LMPP/C18M, HMPP/C18M, HMPP/MMT Ú~ Ï[ç

šÞ Žïš Ã&Žö &ËêW†f Ã&~–, «ö VÞV(terminal slope)

® ;Ò;~ LMPP/C18M ¾žÚ~ ãÖ Ò&šÞ& Î&Nö V¢ &ËêWNö Ã&;ê& &Ë b– 6‚ ã«;~ HMPP/

C18M ¾žÚ~ ãÖ& ã«>æ pf HMPP/MMT  z – &

ËêWN~ Ã&¢ ž. 6‚ «ö VÞV æz ;ê 6‚ ;Ò;~

LMPP/C18M ¾žÚ~ ãÖ &Ë †ž 6²Nj šº >š ã«

>æpf HMPP/MMT Ú~ ãÖ &Ë ¶Ö 6²Nj &. « ö VÞV~ 6²*çf Ò&šÞ& ¾ž >&b‚ ªÖ >Ú ®Ú '

~š ¾æ¾º *皖 š *çf “(yield) *ç" &ê& ®. V

¢B Ò&šÞ~ ªÖê& &Ë – ;Ò;~ LMPP/C18M ¾ž

Fig. 4. Transmission electron micrographs of HMPP/C18M(a) and LMPP/C18M(b) with 10 wt% C18M.

Fig. 5. Dynamic storage moduli(E') of LMPP/C18M(a), HMPP/C18M(b) and HMPP/MMT(c) as a function of temperature.

Table 3. Dynamic storage moduli of the nanocomposites and matrix polymers at various temperatures Storage modulus, GPa

−100oC −60oC −10oC 30oC

LMPP 13.0 12.92 12.48 1.60

LMPP/C18M10 19.21(3.01) 18.48(2.9) 16.08(2.45) 4.24(2.57)

HMPP 19.56 18.49 18.37 5.51

HMPP/C18M10 20.38(2.13) 18.03(2.12) 14.52(1.73) 7.13(1.32)

HMPP/Na-MMT10 18.74(0.91) 18.26(0.97) 18.85(1.06) 6.36(1.16)

Values in brace indicate the relative storage modulus to the matrix polymer.

(5)

Ú& &Ë †ž 6²Nj š ªÖê& &Ë Ôf HMPP/MMT 

Ú& &Ë ¶Ö 6²Nj ž.

Fig. 7f Fig. 6~ þöB êÿ> 100 s1öB~ B>‚ ª¶¢ V

&b‚ ‚ ç&6ê¢ ê~&. .ç† > ®š ;Ò;~

LMPP/C18M ¾žÚ~ ãÖ Ò&šÞ& Î&Nö V¢ 6ê

~ Ã&;ê& &Ë b– 6‚ ã«;~ HMPP/C18M ¾žÚ~

ãÖ& ã«>æ pf HMPP/MMT Ú z – 6ê~ Ã&

¢ ž. š *çf „öB J«~&š ªÖ ;ê& Ö>‚ ;Ò

;~ ¾žÚ& &Ë Ö>‚ ÏêÎ"¢ š– ªÖê& &Ë Ô f HMPP/MMT Ú& &Ë ¾‚ ÏêÎ"¢ šº ©b‚ šš†

> ®.

4. Ö †

žÚ¢ B–~, ª¶ïÎ"¢ ÚÚ~b– ‚« ;’–& V ê' bW 5 Fæ' –ÿö ÚÊ 'Ëj "ºæ¢ ÚÚ~. zÞ ÓÊ ª¶~ ª¶ï~ Nšº ª¶~ 㫳ê ö jî¢ ‚« ;

’–öê 'Ëj Žj {ž† > ®î. ª¶ïš ·f LMPP&

ª¶ïš – HMPP z †ž ã«³ê¢ &b– – ª¶ï~

HMPP~ ãÖ C18Mö æ ã«Nö >š ª¶ïš ·f LMPPº C18Mj ;ÒÎ. 6‚ ‚« ;’–~ Nšº Vê' ßW 5 F

Ú& &Ë Ö>‚ ÏêÎ"¢ š– ªÖê& &Ë Ôf HMPP/

MMT Ú& &Ë ±æ pf ÏêÎ"¢ &.

6 Ò

 ’º ¢^f "Ò(KOSEF)j ۂ the Center for Advanced Functional Polymersf 2000jê vò ‚“ 21Òëö ~~ æö>î Vö 6Ò ãî.

^^ò

1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurau- chi, T. and Kamigaito, O.: J. Mater. Res., 8, 1185(1993).

2. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. and Kami- gaito, O.: J. Appl. Polym. Sci., 8, 1185(1993).

3. Gilman, J. W.: Appl. Clay Sci., 15, 31(1999).

4. Giannelis, E. P.: Adv. Mater., 8, 29(1996).

5. Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, S. G. and Giannelis, E. P.: Adv. Mater., 7, 154(1995).

6. Hambir, S., Bulakh, N., Kodgire, P., Kalgaonkar, R. and Jog, J. P.: J.

Polym. Sci. Polym. Phys., 9, 446(2001).

Fig. 6. Storage moduli(G') of LMPP/C18M(a), HMPP/C18M(b) and HMPP/MMT(c) with amounts of clay.

Table 4. Terminal slopes of G' and G” vs ω for the various nanocomposites Clay content

(wt%)

LMPP/C18M HMPP/C18M LMPP/Na-MMT

G' G” G' G” G' G”

0 1.61 1.00 1.51 0.98 1.51 0.98

1 1.10 0.97 0.96 0.97 - -

3 0.61 0.88 1.08 0.91 1.24 0.96

5 0.58 0.76 0.85 0.84 - -

101 0.00 0.17 0.48 0.67 0.78 0.70

Fig. 7. The relative complex viscosity for LMPP/C18M, HMPP/C18M and HMPP/MMT composites with the amounts of clay at fre- quency 100.0 sec1.

(6)

z B39² B5^ 2001j 10ú

14. Krokawa, Y., Yasuda, H., Kashiwagi, M. and Oyo, A.: J. Mater. Sci.

Lett., 16, 1670(1997).

15. Furuichi, N., Kurokawa, Y., Fujita, K., Oyo, A., Yasuda, H. and Kiso, M.: J. Mater. Sci., 31, 4307(1996).

16. Vaia, R. A., Sauer, B. B., Tse, O. K. and Giannelis, E. P.: J. Polym.

Sci., 35, 59(1997).

17. Hackett, E., Manias, E. and Giannelis, E. P.: Chem. Mater., 12, 2161 (2000).

18. Bujdak, J., Hackett, E. and Giannelis, E. P.: Chem. Mater., 12, 2168 (2000).

19. Vaia, R. A., Jandt, K. D., Kramer, E. J. and Giannelis, E. P.: Macro- molecules, 28, 8080(1995).

20. Krishnamoorti, R., Vaia, R. A. and Giannelis, E. P.: Chem. Mater., 8, 1728(1996).

21. Vaia, R. A. and Giannelis, E. P.: Macromolecules, 30, 8000(1997).

30. Ginzburg, V. V. and Balazs, A. C.: Adv. Mater., 12, 1805(2000).

31. Balazs, A. C., Singh, C. and Zhulina, E.: Macromolecules, 31, 8370 (1998).

32. Ginzburg, V. V. and Balazs, A. C.: Macromolecules, 32, 5681(1999).

33. Lee, S., Rengarajan, R. and Parameswaran, V.: J. Appl. Polym. Sci., 41, 1891(1990).

34. Sclavons, M., Carlier, V., Roover, B. D., Franquinet, P., Devaux, J.

and Legras, R.: J. Appl. Polym. Sci., 62, 1205(1996).

35. Park, J. K., Yang, S. M., Ryu, B. K., Mun, H. S. and Lee, J. D.: “The Study on Development of Polymer Alloy by Blend Between Nylon and Polyolefin,” 1993, Technical report for Honam Chem. Co. in Korea.

36. Kim, M. J., Choi, M. H., Koo, C. M., Kim, S. O. and Chung, I. J.:

HWAHAK KONHAK, 38, 691(2000).

참조

관련 문서

Home delivery of newspapers will end. with so many people getting their information online, there may not be a need for traditional newspapers at all.

ion-selective sensors not only depend on the nature of ionophore used, but also significantly on the membrane composition and the properties of plasticizers and

Properties depending only on the solute concentration, not on the nature (type, molecular weight of polymer homologue) of solute are called colligative property..

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

ABSTRACT : The aim of this paper is to propose the preservation of buffaloes not only as productive livestock, but also as a part of the biodiversity of wetlands and especially

The Grunwald-Winstein plots of first-order rate constants for cyclopentyl tosylate with Yc\ (based on 2-adamantyl chloride) show large dispersions (Figure 1).. However, the

tory activity of the isolated compound against Crotalus ada- manteus PLA2, it showed weak inhibition (IC50, 500 jiM;