• 검색 결과가 없습니다.

 1.  Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA    

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA     "

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

    PSA  

* *

 

*  

(2002 3 2 , 2002 7 15 )

Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA

Young-Jae Choi, Uk-June Lee*, Min Oh* and Sung-Taik Chung

Department of Chemical Engineering, Inha University, Inchon 402-751, Korea

*Department of Chemical Engineering, Hanbat National University, Daejeon 305-719, Korea (Received 2 March 2002; accepted 15 July 2002)

 

      -PSA      ! "#$ 

 %&'. ( )  * +( ,-. /0 PSA* +( -1,-2* 345 627, +( ?@ AB CD EFG H 16% IJK L 6M'.   NO PQ RJS T U -G) H 0.31  P 0V#2* WXY  O Z[+\ '] ^ Z[ _2* `Eab /0 PSA <

XO -1&27   99.999%* Pcd'. /0 PSA  e '] WX JSf 'a  o IJ>M'. pq a(  -PSA  kG#$  Oi L 6M'.

Abstract−In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and carry out theoretical analysis by means of modelling and process simulation. The proposed system is comprised of the reaction part including membrane reactors and separation part including a layer PSA column. Detailed mathematical description for each process is developed and dynamic simulation for the combined process is performed. The reaction part contains two mem- brane reactors and the methane conversion of the system is improved more than 1% comparing with the conventional one mem- brane reactor system. The hydrogen mole fraction at the exit of the membrane reactor is approximately 0.31 but in order to use it for a commercial purpose, layered PSA process, which includes two adsorbents, is employed. The purity of hydrogen gas at the exit of the layered PSA is 99.999%. By recycling all useful gases from the layered PSA except hydrogen to the membrane reactor as a feedstock, the process efficiency is highly improved. In particular, the hydrogen recovery is improved as much as 9% comparing with the non-recycle system. It is, therefore, concluded that the proposed hybrid system contributes to the effi- cient production of high purity hydrogen.

Key words: Membrane Reactor, PSA, Modeling, Simulation, Hybrid System, Novel Configuration

1.  

        

    ! "#$% &'( ) , *+,  , 

- . "#/0 12 34$% & 5607. 892- : "#;

NOX, SOX, CO, CO2 : < => ?@ ABC'2D EF: G H I JKL'2: "# ) MN 34 % &7.  OP

'2 Q/ R, S   T8 4U ) O> : 3S V

>0 W0 "#$% &'(, XY  3S V> :< R,  Z 0 [\ 4]   % OP^ _`'2 abc &7[1].

de : fg H 34 hi j k OP^ _`'2 

 R,  l2m _` Q 8n4 opY qr$% &'(, de s St 0# : R, ; 0u v; 8n: GH wxy z: {07. |i} s 0# 3S V> ~; 7€ |i } s :< ~S ‚4 ~ƒ„x …†ƒ„'2 n‡ KˆK(,

‰ ƒ„: ‡Š N0 :< ~ƒ„- R€‹ 4 …†ƒ

„'2 ŒP'2 ‡Ž, ‹7. ~ƒ„- R€‹ 4 |i

To whom correspondence should be addressed.

E-mail: minoh@hanbat.ac.kr

(2)

} s   ŒP'2 ‡Ž‘'2D ’„P ~0 R€= “ '2 ”•c _–'2: ~0 k LoY qr$(, 3S V> ~

 — ƒ– E˜ ™; š›- ~0 4œ ! ‹7[2].

žŸ s ~S 3S V> ~- ~ ž ¡ –¢B£S

 ¤ Œ›P^ 8ny :< ¥$ˆ¦'(, Adris [3]; 7

€: |i} §s "#  ¨Ÿ ©ª s ~S-:   3S V> ~ Q< P « ¬ % 0 Q 0­P 8n

 r ®7. Shu [4]; 7€ U¯^ŽU U°±  |i} s KK, š ©ª s ~S-:  3S V> ~ Q

 ²³P 8n r ®%, Xuu Froment[5, 6]: ~«x ´¤

. µ¶ ~S(plug flow reactor) « "#  .y: ²³wxu ·, ¸¹ ®7. 0y: 8n 0ˆ- Barbieriu Di Maio[7] 

" <  3S V>  Q |i}-s ~Sy: €œ

¢ ºº: zH ªV »y ¼ yˆ, m~ 4U /, ½ g›, š

›u ¾=: ¿  Q Àx 8nÁ7. 0   –Â  à~S ?’ Q< "4 r$Ä% Å,‹ wxy ÆÇ

 {ÈÉ ¤ ²³ wxu · ®7. –Â ~S: OÊ, ~S Ë

~‚-:  ‡Š0 …† ƒ„:  ‡ŠÌ7 ÍYb ™c-

„…†4 Έ{(, 0 wx ž ¡: A4 ~ Ï  &Ð a 

&Ä7. Madia [8]; Pd-Ag s ~S- š›, ~=x m~ 4U : /  ~=: ¿ x v; ¤ 4K ªV» »BC' 2D  3S V> ~-: ’ Àx Q  8n Á7. Í Ñ'2‚Ò: ’žÓ0 ~S: @n-:  ž ¡ ªÊ zH ( ž ¡0 ~S: Ô0_– hÕ š› n? Ö! :×Ø aÙ7. XY ~=: /0 Ú Û ~S-: š› K S 

 JK: f0 ‡ K ÜÝ OÊ, žÞ: 0 AØ aÙ

%, ²³ wx Sß š P « {Èà7. Kim [9];

|i} s ~S 0#  3S V> ~- žŸ áâ:

S ‚-: š — P#  " ®'(, ž‹ ~S : ç _–'2 Έ{ Šè é * "# ®7. ) 0 0#

 H2O/CH4 , m~ 4U / .Ž% ¾ê ëO : »4 ž

 ¡ Eì ƒ– ¸¹ ®7.

JK íî   O: ïâ- ]0{ ]-

# =>0 ðØ$% & ‚R4U2‚Ò # 4U ñç 

‡Ž S  7ò ‡Ž _` z PSA ªÊ À¡P0% OP^

_`'2 abc &7. PSA ; R,/x óH ô› :× 

¤ V: õö÷'2 n€$ˆ&'(, ø¡x ô› ù0S  

 "0Ú ¨¥ ¤ 4K úÅ2 0ûˆc &7.

ü 8n- : V> ~'2‚Ò %ô›:  R,< ý

 & s V> ~Su Ÿ¢ PSA2 n€‹ þÿ Fig. 1x v 0 ¥ % 0 Q 0­P % B› ®7. ¥‹ þÿ;

2V: |i} s ~S2 n€‹ ~‚‡x 2V: Ÿ ðØ  Ÿ

¢ PSA2 n€‹ ‡Ž‚‡'2 {ˆ q7.

~‚‡ "#‹ 2V: |i} s ~S BU; Choi [11] :

Z0 Ì%‹  &7. hi- ü 8n- Choi [11] :< p‹

|i} s ~S BU: nu ~‚‡: P « "# ®7.

~‚‡- ?@‹ 4U G P=^  › E ~=^

3S,  ‚N R€=^ Î,, 0, : €‡0 ðØ

‹7. %ô›:  S   : 4U ‡  x S  Ë ‰V: Ÿ'2 n€‹ Ÿ¢ PSA ›¾$ˆ  4U4

‡Ž‹7. PSA 4Š, õö, AŠ, ö: 4úÅ2 n€$ 0 z õöúÅ- 99.99% 0¢: %ô›    &'(, AŠúÅ

- ö‹   ÿ4U ~‚: ¾n2 \ô B L9

íAÝ  &7.

0u v; þÿ: 0­P 8n  , ü 8n-  

 Q  P « ¬ Ë " r ®7. "

: wx ÆÇ {ÈÉ ²³x · ®'( 0   P 

«x ": › ¸3 ®7. ¸3‹  : P «

Sß  : V>2‚Ò %ô›:  R,  žÞ þÿ

 Q n ¥ % 0 Q " r ®'(, 0 S

2.  

2-1.  

s ~S ©ª4 ž$ˆ V> ~0 Έ{ ‚‡x s 

Fig. 1. Hybrid membrane-PSA system.

(3)

 40 5 2002 10

 R€‹ 4 …†$ …†‚‡'2 n‡$( 0 ‰ ‚‡ "

0 æì‹ |i} s'2 n‹7. hi- Î~ 3S V> ~S u ӎ ~S -  ~x ‡Ž4 ¨B ΈÉ7. 4„~

- ’„P    ž ¡; R€= z: X €‡

› 0u v; LŽ #Ï  &'(, : ŒP  :  i:  ~0 0 Q QP ¼i Ý  &7. XY |i } s; ¤ €‡y2 n€‹ S¢ ÿ=2‚Ò 100%: Œ› 4 K%  ‡ŽÝ  &7 M-  ‡Ž   ~x 8 Å  W; 8n4 0ûˆc7. |i} sy  : …†

g› w úÅ2 R$ g < 4 ,  ¨¥ À

7Ðx v; ±Å2 {ȁq7[2].

(1)

Fig. 2-  ŒP'2 ‡Ž  |i} s ~S-: s

V> ~ LŽ {ȁÄ7. |i} s; ©ª ~ ƒ„- R,‹

 8gP'2 Ø'2D   ©qB£%, ™; š›

- ù;  ž ¡ #7.  |i} s 100% ô ! …† K …† s: ò“ ƒ„: : ‡Š: e: N0

 2 4 ™; Šè-› R,Ï  &7. |i} s "#

 Qú : V> ~ ´!"- Q‰$ GH ÆM; 

#€x |i} g: 4#07. k {4, žP^ |i} s: 

…†è; ~ ƒ„-: ù; ©ª ~ g›u ½ g› ·

 ™7 Z0(, hi- ù; …† g› 4K s ~Sy: p

ž0 ªÊ Hn‹7. …† g› xA ! 34B£ Î _`;

s: ‰$ %0 Z'2 .F- ªÊ &; |i} sy: ã Q

 8n4 de yˆ ªÊ op ! r$% &7[2].

2-2. PSA 

ü 8n- "#$  PSA ; ¤ 4K: R€=0 ¨B

 Hn$K '% %ô›:  R,  Z P'2 % &' {, ¾$ 4U4 44K(, , 0,, 0,) 02 0 Q G: (; %b4 Hn‹7. ), X õö4 X €‡

Q<- *; õö €œ 4K2 0 OÊ  V: õö "#<

- L  %ô›:  S ˆ+7. 0 OÊ 7Õ €>: õö

 ž ‰V: õö÷ "#Ý  &'{, ]ì #x mž: ò

Ÿ Ÿ¢ õö BU "#  Z0 -ë 7. õö2 õö€œ

x X€- N0 Ì0 o€x i0" 5A4 "#$Ä'(, 

"0Ú; \ 4ŠúÅ2‚Ò öúÅ 0.S/K 4V: úÅ2 n

€$ˆq7.  "0Ú ¨¥  ÷- qr$ SüP^ úÅy

Q Šè: »u ÷ ‚-: Þ µ¶_– Fig. 3x Fig. 4

 {ȁÄ7[10].

Fig. 4 {ÈÉ \ 4ŠúÅ(I)- ~S @n- {u xS

 x E ~=  R€=^ CH4, CO2, H2, CO4 õö÷'2 

¾$â- õöúÅ: Šè/K 4Š  úÅ07. ‰ 01 úÅ2-

4, CO2, H2, CO4 Åg f$ˆK( é õö>^ CH4, CO2, H2, CO õö$%, î õö>: R€=^ H24 ˆq7. õö÷ @n2 {š R

€=^ H2; ä] ä]‹7. 7Ð'2 QSŠ/K Šè0 2ˆ

K! $ –Â AŠúÅ(III)2 0ˆK(, 0 úÅ- õö‹ é õö

>: €‡^ CH4, CO2, CO4 –Â_–'2 3c {Í! $% 0 €‡

y; s ~S2 ô $ˆ \"#‹7. 4Ks'2 –Â_–'2 N2

4U ¾ B£( ÷ ‚: é õö> 6  öúÅ(VI)

ì(  "0Ú 4ì% \ 4ŠúÅ2 0ˆq7.

3. 

¥‹ þÿ: ~‚‡^ |i} s ~S Q P «

5 ðØ ¢6 0­P %; Choi [11] :< r$Ä'(, ü 8n- ~‚‡ Q P «; 0 6  n€ ®7. )

8 SÞ 0¢SÞ07.

9 BU; š 07.

F D A⋅ ---l PH

2,r PH

2,p

( – )[Nm3⁄h]

=

Fig. 2. Principle of membrane reforming.

Fig. 3. Pressure history in the bed for the layered PSA process.

Fig. 4. Flow direction in the bed for the PSA process.

(4)

: SÞ¢x õö "0: =>žÓ; LDF(Linear Driving Force)

«2 B‹7.

; ±Å Extended Langmuir š*'2 [‹7.

< õö÷ -: Šèé  Darcy’s Law hÕ7.

=  z õö÷: nP^ ^ê(úâP, >) ?Î 7.

@ g, ñ› .Ž% š› Q ~O_– n? ABÝ  &7.

=> K*

(2) õö ‚2: i €‡: =>žÓ g›*; 7Ðx v0 LDF«

2 [‹7.

(3) qi* i€‡ 4U¢x ¢B & õö/07.

¨P x OCõö %bÝ OÊ: 7€‡Å õö; 7Ðx v0 Extended Langmuir š* "#Á7.

(4)

JK K*

(5) õöŸ ‚-: Šè: » 7Ðx v0 Darcy’s Law2 [

Á7.

(6)

õöŸ-  úÅ: GH OÅ —; 7Ðx v7.

OÅ—:

I. \ 4ŠúÅ

@z=0 (7a)

@z=0 (7b)

@z=L (7c)

@z=L (7d)

II. õö úÅ

@z=0 (8a)

@z=0 (8b)

@z=L (8c)

@z=L (8d)

III. –ÂAŠúÅ

@z=0 (9a)

@z=0 (9b)

@z=L (9c)

@z=L (9d)

IV. öúÅ

@z=0 (10a)

@z=0 (10b)

@z=L (10c)

@z=L (10d)

 úÅ-: valve: ¢B Table 1 {ȁÄ'( =€ì  æ Å» Table 2 {ȁÄ7.

) Langmuir isothermx LDF « ±D‹ ¤ iEÒ ;

Table 3 {ȁÄ7[10].

PSA : €œ ï  · S   P=^ H2: ô›, ø¡ €œK2- 7Ðx v0 : ®7.

εt∂Ci( )z

---∂t ρa∂qi( )z ---∂t

+ ∂

∂z---(εbu z( )Ci( )z) ∂2

∂z2

--- D[ z⋅Ci( )z ] +

=

∀z∈(0 L, )

∂qi( )z

∂t

---=ki(qi*( )z –qi( )z) ∀z∈[0 L, ]

qi*( )z qsibiPi( )z 1 biPi( )z

i=1 NoComp

+

---

= ∀z∈[0 L, ]

∂t----[(εtρgcpgbcps)⋅T z( )] ∂

∂z

---[εbu z( ) ρ⋅ gcpgT z( )] –

=

+Kz2T z( )

∂z2

--- ρa ∆Ha i, ∂qi ---∂t

i UD----[T z( )Text( )z]

⋅ +

∀z∈[0 L, ]

∂P z( )

---∂z –180µ ε⋅ ⋅b u z( )(1–εb)2 dp2εb3 ---

= ∀z∈[0 L, ]

Dz∂Ci( )z

∂z ---

– εbu 0( ) yRE_0 i,PRE_0 R T⋅ RE_0 --- C– i( )L

 

 

=

P 0( )=PRE_0

∂Ci( )L ---∂z =0 εbu L( )=0

Dz∂Ci( )0 ---∂z

– εbu 0( ) yAD_0 i,PAD_0 R T⋅ AD_0 --- C– i( )0

 

 

=

P 0( )=PAD_0

∂Ci( )L ---∂z =0

εbu L( ) QAD_L ---A

 

  Patm

P L( ) ---

 

 

=

∂Ci( )0 ---∂z =0 P 0( )=PBD_0

∂Ci( )L ---∂z =0 εbu L( )=0

∂Ci( )0 ---∂z =0

εbu 0( ) QD_0 ---A

 

  Patm P 0( ) ---

 

 

=

Dz∂Ci( )z

∂z ---

– εbu L( ) yD_L i,PD_L R T⋅ D_L --- C– i( )L

 

 

=

P L( )=PD_L

Table 1. Operating sequence for valves

STEP Valve 1 Valve 2 Valve 3-R Valve 3-P Valve 4

I Open Close Close Close Close

II Open Open Close Close Close Product

III Close Close Open Close Close Recycle

IV Close Close Close Open Open Purge

Table 2. Parameters used in the simulation

Physical properties of bed and adsorbent

AC layer ZE layer

Bed length (cm) 5

Bed inner dia. (cm) 1

Bed density (g/cm3) 544 691

Bed porosity 0.36 0.36

Particle density (g/cm3) 850 1,080

Heat capacity of adsorbent (cal/g⋅Κ) 6.590 6.904

*AC: Activated carbon, ZE: Zeolite 5A

(5)

 40 5 2002 10

(11)

(12)

S- purityH2  GS ¨¥: õöúÅ- õö÷ K{ ä]

 ä]‹ žÞ4U z H2 4U: ‡¡0(, recoveryH2  GS

¨¥ õö÷ 2 ¾‹ H24U: ò Q õöúÅ- ä]

-: ‡¡07.

4. 

4-1.  

þE PDAEs BU: ì< n S <- ¤ 4K _`0

"#Ï  &'{, Method of Lines(MOL) _` Sü F2 "# ® 7. MOL _`- GE‡ _* {È{ & ½ Q E‡

 E‡å ðØ  ¢E‡/ Œ Q _* BU'2 »  !

‹7[12].

½ Q E‡å 7åe"*'2 ž  S  QP^ ì

<`'2 N‡`, H`, MWR(Method of Weighted Residual), OC(Orthogonal Collocation) _` 0 &7. .¤{ [\/K: GE‡

_*: ì<` Q 0­P 8n4 Gˆq Æu X ì<

`x: ±Å HY H  0­P e 4D< G% &K '' (, "#ê: Œ hi ì<`0 w$ Z0 Î~P07. hi - ü 8n &ˆ-› º 4K: ì<` "#  ¨P"  r ®'(, I€x € &ˆ 4] JK€0 & _` Sß  0­P 8n qr ®7[12].

½e" Q ìP _`'2 BFDM(Backward Finite Difference Method)

_`: OÊ I0 #0 ! 0ûˆKS Á'{, 0 _`: ìHP

^ wØ^ ìP ,(Numerical diffusion) [¢0 {ÈL'2D 

› ÆM0 & Z'2 R$Ä7. OC _`: OÊ ü BUx

" õö÷ "#$ˆ ªÊ *; wx {ÈM Z'2 Ì% $%

&'(, ü õö÷: OÊ› NOÝ  wx Ì®7. .¤{ 0 _`; žÞ ƒ„ Q e" B›Ø'2D e"7å*: N4 ù

K! $( ›4 2ˆK úM0 &ˆ, žÞ: n½ H

 &Ä'(, hi- ü 8n: "› 0 _` "#  r$

Ä7[12].

õö÷: ç _– hi 10V: H2 {PÄ'(,  H

- 3N e": OC on finite elements method "# ®7. ¢

¢B 0.S/K: ¨P¨ Q " r ®% ¨P¨

1ß ½#'2 Å, ®7. žÞ0 ¢¢B 0.S/K(PSA: O Ê GSP ¢¢B) " r ®'( RSÒ¢- T ²rB½;

9,212ß 0Ä7.

4-2. 

Shu [4]: ²³- s ~S á: š›4 500oC2 ÎÝ Û

~S @n-: ž ¡; 43.5%2 Ì% $Ä'(, ¨Î —-

¨P" wx 43.61%2 0.11%: ÍN Ì®7. ) Jang [10]

 Park [14]: i0"  o€'2 q‹ Ÿ¢ PSA ²³

-u ¨Î —(o€/i0" )- : ô› · ® Û −0.25%-0.17% "0: ÍN  Ì®7. 0u v; ·   s ~Su PSA   Q  «5  ": 

purityH

2

u L( )

tad_start tad_end

CH2( )dtL

u L( )

tad_start tad_end

NoCompi

=1 Ci( )dtL

---

=

recoveryH

2

u L( )

tad_start tad_end

CH2( )L dt

u 0( )

tcy cle_start tcy cle_end

CH2( )dt0

---

=

Table 3. Langmuir isotherm parameters, mass-transfer coefficient of LDF model and heats of adsorption

Component ai,1×103[mol/g] ai,2[K] bi,0×107[1/mmHg] bi,1[K] −∆Ha[cal/mol] ki[1/sec]

AC ZE AC ZE AC ZE AC ZE AC ZE AC ZE

CH4 −1.78 −0.29 1.98 1.04 26.60 6.44 1,446.7 1,862.1 4,482 4,635 0.4 0.2

CO2 −14.2 02.09 6.63 0.63 33.03 0.67 1,496.6 3,994.3 6,112 12,128 0.1 0.1

H2 04.32 01.24 0.0 0.36 06.72 2.20 1,850.5 1,159.3 1,879 1,486 1.0 1.0

CO 00.92 −0.58 0.52 0.83 07.86 2.53 1,730.9 2,616.3 3,986 6,954 0.3 00.15

*AC: Activated Carbon, ZE: Zeolite 5A

Fig. 5. Membrane reactor system.

Fig. 6. Methane conversion profile for Case 1 and Case 2.

(6)

› ¸3 ®7.

4-2-1. s ~S:  ž ¡ ·

ü 8n Q¢ BU^ |i} s ~Su PSA  z Uä ~

‚ <V  |i} s ~S n- Fig. 5u v; 1V s ~

S2 n€‹ BU(Case 1) x 2V s ~S2 n€‹ BU(Case 2)-: : ž ¡ ·  Ìâ Fig. 6x v0 v; ž ¡2 Bã  B½: µ¶ hi : ž ¡ A¡0 N0 Ì0!

‹7. Case 1: @n-   ž ¡; 43.61%0% case 2: @ n-   ž ¡; 50.83%2 2V: s ~S BU0 v;

Ô02 0ûˆq 1V: s ~SÌ7 : ž ¡0 î 16.6% 4/

–¢‹ Z a  &7. 0 case 2: n¢ ‰ 01 ~S: …†

ƒ„'2 ô m~4U  G¾Ø'2D ‰ ƒ„-: ‡Š

: N ù! yˆ W'2D Έ{! ‹7. ), ‰ 01 ~S- : ‡Š: N ~ƒ„- R€‹ 4 …†ƒ„'2 Åg 0

¨ ! $( hi- 0 ~ _–'2 Xë0! ‹7. hi - 54P^ ~0 Åg K$ˆ žÞ: ž ¡ ù0! ‹7.

4-2-2. õö÷-:  ¿ ‡¡ »

õö÷-:  ¿ ‡¡ » · Ìâ Fig. 7x v0 õö

÷ ¾n-: : ¿ ‡¡; 0.3280% õö÷ @n x ä]

-: : ¿ ‡¡; 0.9999 0Ä7. Fig. 8- GSP ¢¢

‹ u v0 õöúÅ(II úÅ)- é õö>^ €‡y0 ‰ Ÿ

q$ˆ & õö õö$% î õö>^  õö÷ x â- : ¿ ‡¡0 34Ø a  &7.

Fig. 9 GSP ¢¢B ›ÓÁ Û,  GS Q õö÷ feed

endu product end-: u : ¿‡¡ B Z07. õö

÷: product end(z=L)- : ¿‡¡; 4ŠúÅ MM 34  õöúÅ- : ¿‡¡0 d%2 ùKâ- %ô›: 4  Fig. 7. H2 mole fraction profile of PSA inlet and outlet.

Fig. 8. Component mole fraction profile at adsorption step(cyclic steady- state).

Fig. 9. Component mole fraction profile for one cycle at cyclic steady-state.

Fig. 10. Hydrogen recovery profile.

(7)

 40 5 2002 10

ˆZ a  &'(, ) ; õö õö$ˆ : {ÍK ' Ð a  &7.

4-2-3. ô›  ø¡ ·

Fig. 10- PSA: –ÂAŠúÅ- ö‹ 4U€‡ s ~

½ hÕ Ø: B2 {ȁÄ7. ßS 200ß/K ™; ø¡

Ì0% &'{, . Ë \ô  B ù; ø¡ Ì0% &'( G SP ¢¢B 0.Y Û(î 1,300ß) \ô ; 0.695, ô : OÊ 0.6342 \ô B î 9.6% 4/ 34Ø a  &7. Fig. 11

; \ô Åu ô Å-:  ô› {ȁÄ7. ‰ OÊ ‰

 &ˆ : ô› 99.999%2 {È\'(, \ô : OÊ› ô

› A] Æ4 ^ Z'2 {È\7.

4-2-4. õö÷-: š›»

Fig. 12 õö÷-: š›» 3NL ½- {ȁÄ7. 

: úÅ hi 4U¢y0 õö õö  öx ìâ-

‚: š›: » Ì®7. õö€‡y0 õö$â- õö’ :<

š›4 ¢_ ®74 öx ìâ- ö’2 ^< š›4 b A a  &7.

5. 

ü 8n   2V: |i} s ~Su PSA 0 wÿ‹ þ ÿ0 ¥ $Ä'( 0 Q 0­P 8n4 r$Ä7. 0­P 8n: nÞP^ _`­'2 ¥‹  Q P «5  ¨ P"4 r$Ä7. `- a: u v0 ¥ BU: ~

‚^ 2V: |i} s ~S-: : ž ¡0 S×: 1V: s

~S n Ì7 î 16.6% ùÐ a  &Ä7. ) |i} s ~

S: ~ƒ„- {š ÿ4U PSA   ‡ŽØ'2D 99.999%

 ø‹ ; |i} s ~S \ô BC'2D L9: \o

ô›    ~-‡Ž BU: wÿ Q 0­P 8n

l2m ¢ : Vp  VŒ  {: BãM'2 #

! "#Ï  & Z'2 "9‹7.



0 aÆ; 1999c› ^ Q·: KL :  8n$ÄÐ (INHA-20348).



A : cross-sectional area of bed, area of the membrane [m2] b : Langmuir isotherm parameter [mmHg−1]

C : gas-phase concentration [mol/m3] cp : heat capacity [J/g · K]

dp : particle diameter [m]

D : apparent diffusion coefficient [m2/hr ] D : bed diameter [m]

Dz : diffusivity [m2/sec]

∆H : heat of adsorption [J/mol]

k : mass-transfer coefficient [sec−1] Kz : thermal conductivity [J/m · sec · k]

l : membrane thickness [m]

P : pressure in the bed, at each step [Pa]

Patm : Atmospheric Pressure [Pa]

q* : equilibrium adsorbed-phase concentration [mol/g]

q : concentration of adsorbate in solid phase [mol/g]

qs : saturation concentration of adsorbate in solid phase [mol/g]

Q : volume flow-rate [m3/sec]

R : ideal gas constant [m3· Pa/mol · K]

T : gas-phase temperature [K]

t : time [sec]

U : overall heat transfer coefficient [W/m2· K]

u : interstitial velocity [m/sec]

y : mole fraction [-]

z : length of the bed [m]

 

ε : porosity [-]

bar Fig. 11. Hydrogen purity profile.

Fig. 12. Temperature profile in 3-dimensional field for cyclic steady-state.

(8)

ρ : density [g/m3] µ : gas viscosity [Pa · s]



a : adsorbent AD : adsorption step b : bed

BD : blow-down step D : desorption step g : gas phase i : component p : permeation side RE : repressurization step r : reaction side s : particle t : total bed



1. Armor, J. N.: Appl. Catal. A, 176, 159(1999).

2. Aasberg-Petersen, K., Nielsen, C. S. and Jorgensen, S. L.: Catal. Today,

46, 193(1998).

3. Adris, A. M., Elnashaie, S. S. E. H. and Hughes, R.: Can. J. Chem.

Eng., 69, 1061(1991).

4. Shu, J., Grandjean, B. P. A. and Kaliaguine, S.: Appl. Catal. A, 119, 305(1994).

5. Xu, J. and Froment, G. F.: AIChE J., 35, 88(1989).

6. Xu, J. and Froment, G. F.: AIChE J., 35, 97(1989).

7. Barbieri, G. F. and Maio, P. D.: Ind. Eng. Chem. Res., 36, 2121(1997).

8. Madia, G. S., Barbieri, G. and Drioli, E.: Can. J. Chem. Eng., 77, 698(1999).

9. Kim, J. H., Choi, B. S. and Yi, J. H.: J. Chem. Eng. Jpn., 32, 760 (1999).

10. Jang, D. G., Shin, H. S., Kim, J. N., Cho, S. H. and Sub, S. S.: HWA- HAK KONGHAK, 37, 882(1999).

11. Choi, Y. J., Oh, M. and Chung, S. T.: Proceedings PSE ASIA 2000, 457(2000).

12. Oh, M.: Ph. D. Thesis, University of London(1995).

13. Reid, R. C., Prausnitz, J. M. and Poling, B. E.: “The Properties of Gases & Liquids,” McGRAW-HILL, New York(1988).

14. Park, J. H., Kim, J. N. and Cho, S. H.: AIChE J., 46, 790(2000).

참조

관련 문서

Hybrid biological particle-metal nanoparticle complex shows unique combined and often synergetic physical and biochemical properties.. Here, we propose the formation of hybrid

REMOTE OPERATION ANALYSIS AND SIMULATION ON GRAPHIC SIMULATOR For the hot cell arrangement of the process equipment, the workspace of the remote handling and maintenance device

In this study we developed another tumor vaccine expressing a membrane-bound form of IL-2 (mbIL-2) and SDF-1 in B16F10 melanoma and MethA fibrosarcoma cells. The

Also, we showed the analysis and signal process of an ultrasonic sensor character used for lateral control of the vehicle and ultrasonic sensors for obstacle detection

Therefore, to improve the process performance, the rinse pressure, reflux ratio and flow direction of rinse step were selected as variables, and the performance change

Abstact − In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two

Eruc, 1993, Planning and simulation of the ring rolling process for improved

In this paper, the rough set for preprocessing process, fuzzy system, neural network system, and error correc- tion model were used to enhance the performance of path