• 검색 결과가 없습니다.

Cross-flow ïÎîj šÏ‚ Cyclodextrins~ β' Ö" ÿ ªÒ

N/A
N/A
Protected

Academic year: 2022

Share "Cross-flow ïÎîj šÏ‚ Cyclodextrins~ β' Ö" ÿ ªÒ"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Cross-flow ïÎîj šÏ‚ Cyclodextrins~ β' Ö" ÿ ªÒ

s&V*Á"ã^ ϧ&v "& z¦

(1999j 1ú 14¢ 7>, 1999j 9ú 21¢ j)

Enzymatic Production and Simultaneous Separation of Cyclodextrins Using Cross-flow Membrane Module

Jun Ki Hong* and Kyung Ho Youm

School of Chemical Engineering, College of Engineering, Chungbuk National University, Cheongju 361-763, Chungbuk, Korea (Received 14 January 1999; accepted 21 September 1999)

º £

Cross-flow ïÎîš J~B ï b>wV¢ ÒÏ~ &ÏW *ªb‚¦V cyclodextrins(CDs)~ β' Ö" ÿ

ªÒö &‚ ’¢ >¯~&. š Ö" ï >wVº CDs¢ Ö ¯ cross-flow ïÎîj ۚ ³ ªÒÚb‚Ž

CDs~ β &š 5 F; maltooligosaccharide‚~ *~j ÛBB *ª~ CDs‚~ *~Nj 37%‚ ¢;~² FæÒ

> ®î. 10%(wt/vol) *ªÏ‡, 2 atm~ –·{K 5 600 mL/min~ B~Fï ~öB ï >wV¢ 24* ÿn Ú*~

&j r CDs~ ï * š' C Öïf £ 6.7 kg/m2šîb–, šr~ α-, β-, γ-CD ''~ Öjº £ 4.4 : 5.5 : 1

šî. Cross-flow ïÎîj J~‚ ï >wVöB~ CDs *Ú~ Öï" ÖWf dead-end ïÎîj J~‚ ï >w

Abstract−A study on the enzymatic production and simultaneous separation of cyclodextrins(CDs) from soluble starch was performed in a membrane bioreactor equipped with the cross-flow membrane module. The conversion of starch to CDs was maintained at a constant value of 37%, since the cross-flow membrane module, in which the separation of CDs from the reac- tion solution was occurred, suppressed the product inhibition and the breakdown of CDs to the linear maltooligosaccharide.

After the reaction for 24 hr using a 10%(wt/vol) soluble starch solution, the produced amount of total CD per unit membrane area was about 6.7 kg/m2 at the operating pressure of 2 atm and the circulation rate of 600 mL/min. Under these operating con- ditions, the production ratio of α-CD : β-CD : γ-CD was about 4.4 : 5.5 : 1. The produced amount and productivity of CDs in a membrane reactor equipped with the cross-flow membrane module were about 1.8-2 times higher than that in a membrane reactor equipped with the dead-end membrane module.

Key words: Cyclodextrin, Membrane Bioreactor, CGTase, Cross-flow Membrane Module

1. B †

Cyclodextrins(CDs)º α-(14)-D-glucopyranose *Ú& {&;ž

j~öW ~璖‚ ÖB ~; maltooligosaccharide‚Ž, ֏B α-D-glucopyranose *Ú~ >ö V¢ 6B& ÖB ãÖ¢ α-CD, 7B& ÖB ãÖ¢ β-CD, 8B& ÖB ãÖ¢ γ-CD¢ ¦ž. š CDsº ž¦º ‚>Wš–, Ú¦º ²>Wž ÿ~ ’–¢ <

®b–, α-, β- 5 γ-CD ''f Ú¦ ÿ~ ’V& B‚ šV r

^ö ’V& 皂 ²>W bî" F'b‚ 7 zb(inclusion compound)j ;W‚[1, 2].

CDsº 1891j Villiers[3]ö ~š  šÒ& ‚.‚ rJrb–, 1903 j Schardinger [4]š Bacillus amylobacter ^V CDs~

ªÒ 5  ’–¢ ’‚ š¾ šö &‚ ’& ‚B® šÚæ

² >î. CDsº >BW bî~ n;z, ÖzOæ, 7ªš bî~

^, ²>W bî~ Ϛê Ëç, ® 5 F~~ êî B–, ~£

®~ n;z, ²>W bî ªÒ ~ Ïê‚ wϚ &Ë~ bÚ ö &‚ ëWš ìÚ, *Ò ~£® 5 ê£, ³£, ®, zË®, 2¢Ê, "ò, ÒêÒò ~ ª¢ö 7º*~² ‚Ï> ®. ‚

" CDs‚¦V ҂W FêÚ~ W, b>w ÖW Ëçj *

‚ Î&B, 7 šWîÚ ªÒ¢ *‚ ’‚îƾb column Ï*

b‚~ ‚Ïö &‚ ’ê ‚B® šÚæ ®Ú „b‚  >º

& z× Ã&† ©b‚ .çB[5-7].

CDsº *ª ªš ➠cyclodextrin glycosyltransferase[EC2.4.1.19, 1,4-α-D-glucano-4-α-D-(1,4-glucano)-transferase, CGTase]ö ~š *

E-mail: khyoum@cbucc.chungbuk.ac.kr

*Present Address: R&D Center, Hanbul Cosmetic Co., Umsung 369-830, Chungbuk, Korea

(2)

ªb‚¦V W>º–, šr j¾ö ¾æÞ cyclization >w[ (1)~

;>w]" coupling >w[ (1)~ >w] 5 disproportionation >w [ (2)]š ãç'b‚ ¢ÚÂ[8, 9].

Gn G(nx)+ CD−Gx (1)

Gn+ Gm G(nx)+ G(m + x) (2)

VB Gn, Gm, G(nx) 5 G(m + x)º '' n, m, n−x 5 m+xB~ α- D-glucopyranose *Ú& ֏B F; maltooligosaccharideš–, CD- Gxº xB~ α-D-glucopyranose *Ú& ֏B CDs¢ ¾æÞ.

CGTaseº *ªj glucosyl donor‚ ÒÏ~ ゠1~ cyclization

";ž intramolecular transglycosylation >wj ۚ α-, β- 5 γ-CD

¢ W‚. ¾ cyclizationj ۚ n−x& 1-7Bž G(nx)(glucose, maltose, maltotriose, &ª¶ï maltodextrin)& W>š CGTaseº š j glucosyl acceptor‚ ÒÏ~ ゠1~ coupling" ゠2~ dis- proportionation ";ž intermolecular transglycosylation >wj ¢b

7ö glucose, maltose 5 &ª¶ï maltodextrinš šÒ~² >š

CDs ֚ &š>–, 6‚ Kim [10]~ ’Ö"ö ~~š Wb

ž CDsö ~‚ CGTase~ &šê – ©b‚ >Ú ®.

*ªb‚¦V CGTaseö ~‚ CDs~ çë' Öf "‚ “"

¢j 7b‚ šÚ^ z. 1969j “ Corn Products Inter- national Co.öB CGTase¢ Òς β-CD~ çë' ֚ ‚.‚

šÚrb–[11], ê ¢ Teijin Co.öB β-CD Öj *‚ pilot plant

¾ „B J«‚ :f ?š *ªb‚¦V CDs~ β' Ö W B CDs 5 " š ¢; ³ê 8 šçb‚ ¸jæš Öb

&šf CDs~ F; maltooligosaccharide‚~ ªš r^ö >Nš Ô j ÖW GšöB ^B& ®. V¢B CDs~ ÖWj ¸šV *

šBº >wχb‚¦V CDs¢ j•‚ Öbj Ö ¯ ³ 'b‚ ªÒ~º Î"'ž O»~ BBš º’B.

bî ªÒ V»7 ~¾ž ïªÒ»f ªÒ–·j *ö Î"' b‚ ¯† > ®b–, j ÒÏ~æ pº Ë6 r^ö β, Wî 5 ҂W bî~ ªÒ;B  ß® b; 5 bªÒVF ª

¢ö wÏWš ¸[13]. 6‚ ïÎîj b>wV‚ ÒÏ~º ï  b>wVö &‚ ’ê šÚæ ®º :, b 6º β¢ V BÒ > ®º ïš ¦OB ïÎîj b>wV‚ ÒÏ~š >w V Úö b 6º β¢ &vÚ ~ > ®b–, ÿö Öbj ïj ۚ ¯ ³'b‚ ªÒš â > ®Ú Öb &š¢ Oæ

 ’öBº CGTaseö ~‚ *ª~ ªšf WB CDs~ ªÒ

¢ cross-flow ïÎîš J~B ï b>wVöB >¯Žb‚Ž  Öb &š¢ ÛBÊ, ÿö >wχb‚¦V CDs¢ Î"'b

‚ ³ ªÒŽb‚Ž CDs~ Öï" ÖWj Ã&ʶ ~&

¦&&~& ¸ ‚ÏWš – bî‚ *~Ê, &ž CGTase¢

W *ªÏ‡j &çb‚ Bacillus macerans F¾~ CGTase¢ ÒÏ

cross-flow ïÎîš J~B ï >wVöB –·–š æzö Vž CDs

5 V B‚B ¢^[15]~ dead-end ïÎîš J~B ï >wVöB~

2. þ

2-1.þÒò

➠CGTase‚º ¢ Amano Pharmaceutical Co.‚¦V Bacillus macerans V·j ۚ ÖB ‡ç β(Lot No., CGRRU11529L,

>w–š: pH 6, Nê 60oC)¢ ÒÏ~&b–, ‚& ò‚B~ α-, β-, γ-CDf Vîž &ÏW *ª(soluble starch: SS)f “ Sigma Co.‚¦

ªÒïb‚º V B‚B ¢^[15]öB ‚'~ ªÒïb‚ F;‚ ª

³ª¶ï 10,000 ʞ “ Millipore Co.~ polysulfone Òî~

ïj ÒÏ~&.

2-2.þË~

Cross-flow ïÎîš J~B ï b>wVº Fig. 1ö ¾æÞ :f

?š χ &˖, β>wš ¢Ú¾º >w–, cross-flow ïÎî 5 ï R"‡ï G;¦(*¶&Þ" PC)~ 4¦ªb‚ ’W>Ú ®.

ÒÏB cross-flow ïÎîf “ Millipore Co.~ Minitan-S‚ ï~

FÎ š'f 30 cm2š. ¢;‚ >wNê(60oC)¢ FæÊV *š

χ &˖, >w– 5 ïÎîj “N– Úö J~~&b–, >w–

Ú~ χf ¶C v>Vö ~š 300 rpm~ ³ê‚ v>V.

2-3.þO»

2-3-1.²ª>w þ

&ÏW *ª χö~ ‚' β R«ï Ö;" ï b>wVöB

‚' β R«ïf 10%(wt/vol) &ÏW *ª χ 50 mLö *ª 1 g CGTase~ unit >¢ æzB If ê, B–²ÒöB B‚ ‚ ' >w–š(pH 6, 60oC)öB 300 rpm~ ³ê‚ v>~šB >wÏ

‡ 7~ β-CD ³ê¢ 5ª *Ïb‚ 1*ÿn G;~, š‚¦V β-CD Ö~ .V >w³ê¢ ’~  8š ‚&& >º r¢ ‚ ' β R«ïb‚ F;~&. šr β‚W 1 unitº ‚'‚W –

šöB 10% &ÏW *ª χ 1 mL‚¦V 1ª ÿn 1 mg~ β-CD

¢ Ö~º CGTase~ ·b‚ ;~~&.

²ª>wö ~‚ CDs Ö þf 10% &ÏW *ª χ 200 mL

Cyclization

 Coupling

Disproportionation



Fig. 1. System setup for membrane bioreactor equipped with cross-flow membrane module.

1. N2 cylinder 07. Reactor 2. Pressure regulator 08. Water bath

3. Valve 09. Magnetic stirrer

4. Pressure gauge 10. Cross-flow membrane module 5. Flow meter 11. Electronic balance

6. Solution reservoir

(3)

z B38² B1^ 2000j 2ú

ö ‚' βïj R«Î r pH 6, 60oC~ –šöB 300 rpm~

³ê‚ v>~šB ¢;‚ * *Ïb‚ WB α-, β- 5 γ-CD~

³ê¢ G;~ 24* ÿn >¯~&. α-, β- 5 γ-CD~ ;ïf

š ''š zJ2æ, ¾¦*î.ž 5 2‚Î’.ž Ö" 7 zbj ;W~º öÒ¢ šÏ~ Lejeune [16], Kaneko [17], Kato [18]š B‚ ;ï»j ÒÏ~&.

2-3-2. Cross-flow ïÎîj šÏ‚ CDs Ö þ

&ÏW *ªb‚¦V CDs~ β' Ö" ªÒ¢ Fig. 1ö ¾æÞ cross-flow ïÎîš J~B ï >wV¢ ÒÏ~ >¯~&. šr î²¢ šÏš χ &˖f >w– 5 ïÎîj ö~º {Kræ

&{B ïj ۚ R"B ·ò¢~ *ªÏ‡š &˖‚¦V >w

–‚ ¶ÿ'b‚ >Ç>Ú >w– ÚöB~ >wχ~ ·j “ç 200 mL‚ ¢;~² FæV. >w–‚¦V ïÎî‚~ >wχ

>Çj *š B~²*(DOHP 365, zž;&, ‚“)¢ J~~&.  WB CDs& ŽFB ï R"‡ïf *¶&Þ(FX-3000, A&D Co.,

¢)ö ~š 1ª *Ïb‚ ³ G;~ PCö Vƒ~&b–, 6‚

¢;‚ * *Ïb‚ ï R"‡ 7~ α-, β- 5 γ-CD~ *' ³ê

¢ G;~&. pH 6, 60oC~ >w–šöB þ~ –·æ>‚º (1) –·{K 2 atm 5 ïÎî‚ F«>º >wχ~ B~Fï 600 mL/min ~öB *ªÏ‡~ ³ê¢ 1-20%‚, (2) 10% *ªÏ‡

³ê 5 600 mL/min~ B~Fï ~öB –·{Kj 1-4 atm º*‚, (3) 10% *ªÏ‡ ³ê 5 2 atm~ –·{K ~öB B~Fïj 400- 1,000 mL/min‚ æzB 24* ÿn >¯~&.

3. Ö" 5 V

3-1.²ª>w þ

þj ۚ &ÏW *ª 1 g  Î&Î CGTase~ unit > æz ö Vž β-CD Ö~ .V >w³ê¢ ’~,  Ö"¢ ‚&8ö

&‚ ç&‚Wb‚ Fig. 2ö ¾æÚî. š Ö" &ÏW *ª 1 g  10.25 unit~ CGTase¢ Î&Vj r ‚&~ ‚Wj ¾æÚîb–, V¢B šê~ Î þf “ç *ª 1 g  10.25 unit~ CGTase

¢ Î&Î –šöB >¯~&.

10% &ÏW *ª χj &çb‚ 24* ÿn ²ª>w þj

>¯~ >w*ö Vž ' CD 5 CDs *Ú~ ³ê æz¢ G

;~ š¢ Fig. 3ö ¾æÚî. š Ö" >w B ê £ 2*š

ã"~&j r ' CD~ ³ê& ‚& 8j ¾æÚîb–,  šê öº >w*š ã"Žö V¢ 6N 6²~&. š‚ Ö"º  WB CDs& >wχ Úö &‚ šÒŽb‚Ž CDs& β ‚Wj

&šʖ¾, 6º CDs& βö ~š  ªš>Ú F; mal- tooligosaccharide‚ *~>V r^b‚ ÒòB[8-10]. V¢B *ª~

CDs‚~ *~j ¸šV *šBº ÖB CDs¢ >wχb‚¦V

Ö ¯ βf ªÒʺ ;š jºŽj r > ®.

3-2. Cross-flow ïÎîj šÏ‚ CDs Ö 3-2-1. *ª³êö Vž β-CD Ö

–·{K 2 atm, ïÎî‚ F«>º >wχ~ B~Fïj 600 mL /minb‚ ¢;~² FæÎ çöB Fig. 1ö ¾æÞ cross-flow ï Îîš J~B ï >wV¢ ÒÏ~ >w–ö ê«>º &ÏW * ª χ~ ³ê(1-20%)f >w*ö Vž ïR"ï 5 R"‡ 7~

β-CD ³ê æz¢ Fig. 4(a)ö ¾æÚî. š Ö" ïR"ïf *ª χ~ ³êf >w*š Ã&Žö V¢ 6N 6²~ ¢>'ž ï

ïR"ï 6²& ~&º–, šº ïö ~š VBB *ª" β&

ö *'Nb‚Ž B>º ³êª 5 ïJ" *çš >w . Vö "‚ ¢Ú¾V r^š[13, 19]. ‚Þ R"‡ 7~ β-CD ³ê º *ªÏ‡~ ³êf >w*š Ã&Žö V¢ Ã&~&. Fig. 4 (a)~ Ö"‚¦V ' >w*öB ï * š'~ β-CD Öï [produced amount(kg/m2) =ß; >w*ræ~ ï R"‡ï(L/m2)

×R"‡ 7~ β-CD ³ê]j êÖ~ š¢ Fig. 4(b)ö ¾æÚî.

š Ö" β-CD~ Öïf >w*š Ã&Žö V¢ Ã&~–, *ª χ~ ³ê& 10% šçš >š –~ ÿ¢‚ Öïj ¾æÚî.

3-2-2.–·{Kö Vž β-CD Ö

>w–ö ê«>º &ÏW *ª χ~ ³ê¢ 10%, >wχ~ B

~Fïj 600 mL/min‚ ¢;~² FæÎ çöB –·{K(1-4 atm)" >w*ö Vž ïR"ï 5 R"‡ 7~ β-CD ³ê æz¢

Fig. 5(a)ö ¾æÚî. š Ö" ïR"ïf –·{Kš ¸j>ƒ Ã

&~&b–, R"‡ 7~ β-CD ³êº –·{Kö –~ 'Ëj Aæ p~. Fig. 5(a)~ Ö"‚¦V ' >w*öB ï * š'~ β- CD Öïj êÖ~ š¢ Fig. 5(b)ö ê~&. š Ö" β-CD

~ Öïf –·{Kš Ã&Žö V¢ Ã&~&.

3-2-3.B~Fïö Vž β-CD Ö Fig. 2. Relative activity at different unit of CGTase.

(pH 6, 60oC, 10% SS)

Fig. 3. Variation of CDs concentration in batch reactor.

(4)

–·{K 2 atm, &ÏW *ª χ~ ³ê¢ 10%‚ ¢;~² Fæ

Î çöB >wχ~ B~Fï(400-1,000 mL/min)" >w*ö Vž ïR"ï 5 R"‡ 7~ β-CD ³ê æz¢ G;~ Fig. 6(a) ö ¾æÚî. š Ö" ïR"ïf B~Fïš ¸j>ƒ Ã&~&º

–, šº B~Fïš š>ƒ ïÎî ÚöB~ F³š ^ ö

;WB ³êª" ïJ"š 6²~V r^š[13, 19]. ‚Þ R"‡

7~ β-CD ³êº B~Fï~ 'Ëj –~ Aæ p~. Fig. 6(a)~

Ö"‚¦V ' >w*öB ï * š'~ β-CD Öïj êÖ

~ š¢ Fig. 6(b)ö ê~&. š Ö" β-CD~ Öïf B~F ïš Ã&Žö V¢ Ã&~&.

3-2-4. CDs~ Ö

–·{Kj 2 atm, &ÏW *ª χ~ ³ê¢ 10%, >wχ~ B

~Fïj 600 mL/minb‚ ¢;~² Fæ‚ çöB cross-flow ï Îîš J~B ï >wV¢ 24* ÿn Ú*~&j r, >w*ö Vž R"‡ 7~ ' CD 5 *Ú CDs~ ³ê æz¢ Fig. 7(a)ö

¢;‚ 8j Fæ~&b–, šr CDs *Ú~ ³êº £ 37 mg/mLš

*Ú~ Öïj ’~ Fig. 7(b)ö ¾æÚî. š Ö" cross-flow ïÎîš J~B ï >wV¢ 24* Ú*~&j r CDs *Ú~ C

Öïf £ 6.7 kg/m2šîb–, šr~ α-, β-, γ-CD ''~ Öj

º £ 4.4 : 5.5 : 1‚ β-CD~ ֚ &Ë ô~.

3-3. CDs~ Ö jv

10% &ÏW *ª χj &çb‚ ²ª >wV 5 cross-flow ï Îîš J~B ï >wV(–·{K 2 atm, B~Fï 600 mL/min)¢

ÒÏ~ CDs¢ ֆ r, >wVö ê«B &ÏW *ª~ Cï"

ÖB CDs *Ú~ ·b‚¦V ' >w*öB~ *~Nj êÖ~

 š¢ Fig. 8ö ¾æÚî. š êÖ ï >wV~ ãÖ ÖB CDsº ïj Îv Û"~ *ª" βº ïj Û"~æ á~æ‚

>wχ 7öB~ ' CD~ ³êº ï R"‡ 7öB~ ³êf ÿ

¢‚ ©b‚ *"~&[15]. š Ö" ²ª >wV~ ãÖº ÖB CDs& >wV Úö &‚ »'>V r^ö CDs& β ‚Wj &

šʖ¾, 6º CDs& βö ~š  ªš>Ú F; maltoo- ligosaccharide‚ æ~>V r^ö *~Nš >w 2* 6öB 45%‚ ‚& 8j ¾æÞ ê 6N 6²~ >w 12* 6 šê

š J~B ï >wV~ ãÖº >w*ö V¢ *~Nš 6N Ã&

~&b–, >w B 10* 6 šêöº *~Nš £ 37%‚ ¢;

~² Fæ>î. šº ï >wV~ ãÖ ÖB CDs¢ Ö ¯

ïÎîj ۚ ªÒŽb‚Ž Öb~ β &šf βö ~‚ CDs

~ F; maltooligosaccharide‚~ *~j ÛBVV r^b‚ Òò Fig. 4. (a) Flux and β-CD concentration in permeate and (b) produced

amount of β-CD with change of soluble starch concentration in cross-flow membrane bioreactor.

(∆P=2 atm, circulation rate=600 mL/min)

Fig. 5. (a) Flux and β-CD concentration in permeate and (b) produced amount of β-CD with change of operating pressure in cross-flow membrane bioreactor.

(10% SS, circulation rate=600 mL/min)

(5)

z B38² B1^ 2000j 2ú

B. ‚Þ  ’¢ ۚ áÚê &ÏW *ª~ CDs‚~ *~N 8 30-45%º Rendleman[20]" Kim [21]š B‚ *ª~ CDs‚

~ ¢>'ž C *~N 8 28-50% º*ö ³~&.

 ’~ cross-flow ïÎîš J~B ï >wV(–·{K 2 atm, B~Fï 600 mL/min)öB~ CDs *Ú~ Öï" V B‚B ¢^

[15]~ dead-end ïÎîš J~B ï >wV(–·{K 2 atm)öB~

CDs *Ú~ Öïj jv~ š¢ >w*ö V¢ Fig 9ö ¾æ Úî. š Ö" *Ú >w*ö žö cross-flow ïÎîj Òς

ãÖ& dead-end ïÎîj Òς ãÖ CDs *Ú~ Öïš £ 1.8-2V ¸~. šº cross-flow ïÎîf dead-end ïÎî"º Ò

>wχš ïÎî ڂ B~>æ‚ ³êª" ïJ" ;Wj ÛB

B ïR"ïj ’² Fæ† > ®V r^š.

6‚ *~ Ö"‚¦V ï * š'~ CDs ÖW[productivity (kg/m2Áhr) = ß; >w*öB~ ïR"ï(L/m2Áhr)×CDs ³ê]j êÖ~ š¢ Fig. 10ö ¾æÚî. š Ö" v «~ ïÎî Îvö

&š CDs ÖWf >w .V(2* šÚ)ö &Ë ¸~ šê 6²

~&º :, šº .Vöº ïJ"~ ê¯ ³ê *~N~ Ã& ³ ê& z †š–, šêöº *~Nf –~ ¢;‚ 8j Fæ~º >š

ïJ"f ê³'b‚ ê¯>V r^b‚ ÒòB. ¾ „B VF

‚ :f ?š cross-flow ïÎîš dead-end ïÎî ³êª"

ïJ" ;Wj ÛBÊV r^ö z ¸f CDs ÖWj áj > ® Fig. 6. (a) Flux and β-CD concentration in permeate and (b) produced amount of β-CD with change of circulation rate in cross-flow membrane bioreactor.

(∆P=2 atm, 10% SS)

Fig. 7. (a) Variation of CDs concentration in permeate and (b) produced amount of CDs in cross-flow membrane bioreactor.

(∆P=2 atm, 10% SS, circulation rate=600 mL/min)

Fig. 8. Soluble starch conversion in batch reactor and cross-flow mem- brane bioreactor.

(6)

4. Ö †

&ÏW *ªb‚¦V CGTaseö ~‚ CDs~ Ö 5 ÿ ªÒ¢

cross-flow ïÎîš J~B ï b>wVöB ’‚ Ö" r~

ֆj áî.

(1) Cross-flow ïÎîš J~B ï >wV¢ ÒÏ~ CDs~ β'

Ö" ªÒ¢ ÿö >¯Žb‚Ž ²ª>w~ 6ž ÖB CDs

~ β &š·Ï" βö ~‚ CDs~ F; maltooligosaccharide‚~

*~j ÛBÒ > ®Ú *ª~ CDs‚~ *~Nj 37%‚ ¢;~² FæÒ > ®î.

(2) Cross-flow ïÎîš J~B ï >wVöB ï * š'~

β-CD Öïf –·æ>ž *ªÏ‡~ ³ê, –·{K 5 B~Fï

š Ã&†>ƒ Ã&~¾, *ªÏ‡~ ³ê& 10% šçš >š ¢;

‚ Öïj Fæ~&.

(3)*ªÏ‡ ³ê 10%, –·{K 2 atm, B~Fï 600 mL/minž

–šöB ï >wV¢ 24* ÿn Ú*~&j r ï * š'~

CDs C Öïf £ 6.7 kg/m2šîb–, šr~ α-, β-, γ-CD ''

~ Öjº £ 4.4 : 5.5 : 1‚ β-CD~ ֚ &Ë ô~.

(4) Cross-flow ïÎîš J~B ï >wVöB~ CDs Öf dead- end ïÎîš J~B ï >wVöB~ CDs Ö  £ 1.8-2V

Öï" ÖWš Ã&~&.

6 Ò

 ’º ö.æ&Ò~ '99jê ö.æVF Fê‹Òëb‚

>¯B ’Ö"~ ¢¦‚B æöö 6Òãî.

^^ò

1. Szejtli, J.: J. Mater. Chem., 7(4), 575(1997).

2. Horikoshi, K.: Process Biochem., May, 26(1979).

3. Villiers, A. C. R.: Acad. Sci. Paris, 112, 536(1891).

4. Schardinger, F. and Untersuch, Z.: Nahrungs-Genussmittel Gebrauch- sge-genstände, 6, 865(1903).

5. Szejtli, J.: “Cyclodextrin Technology,” Kluwer, Dordrecht(1988).

6. Li, S. and Purdy, W. C.: Chem. Rev., 92, 1457(1992).

7. Lee, J. E., Choi, Y. S. and Kim, D. I.: Korean J. Biotechnol. Bioeng., 12(1), 108(1997).

8. Rendleman, Jr. J. A.: Biotechnol. Appl. Biochem., 24, 121(1996).

9. Vettler, D., Thorn, W., Brunner, H. and Konig, W.: Carbohydr. Res., 223, 61(1992).

10. Kim, T. J., Lee, Y. D. and Kim, H. S.: Biotechnol. Bioeng., 41, 88 (1993).

11. Corn Products Co.: “Catalogue for Cyclodextrins,” 1968.

12. Mifune, A. and Shima, J.: J. Organic Synthesis(Japan), 35, 116(1977).

13. Mulder, M.: “Basic Principles of Membrane Technology,” 2nd ed., Kluwer, Dordrecht(1996).

14. The Membrane Society of Korea: “Membrane Separation: Applica- tions,” Jayu Academy, Seoul(1996).

15. Hong, J. K. and Youm, K. H.: Membrane, 8(3), 170(1998).

16. Lejeune, A., Sakaguchi, K. and Imanaka, T.: Anal. Biochem., 181, 6 (1989).

17. Kaneko, T., Kato, T., Nakamura, N. and Horikoshi, K.: J. Jpn. Soc.

Starch Sci., 34, 45(1987).

18. Kato, T. and Horikoshi, K.: Anal. Chem., 56, 1738(1984).

19. Youm, K. H., Fane, A. G. and Wiley, D. E.: J. Memb. Sci., 116, 229(1996).

20. Rendleman, Jr. J. A.: Biotechnol. Appl. Biochem., 24, 129(1996).

21. Kim, T. J., Kim, B. C. and Lee H. S.: Enzyme Microbial Tech., 20, 506(1997).

Fig. 9. Produced amount of total CD in cross-flow and dead-end mem- brane bioreactors.

Fig. 10. Productivity of total CD in cross-flow and dead-end mem- brane bioreactors.

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Levi’s ® jeans were work pants.. Male workers wore them

Home delivery of newspapers will end. with so many people getting their information online, there may not be a need for traditional newspapers at all.

agents, for which an experimental assessment was performed. At a 10 minute interval immediately after the surgery, the carotid artery of white rats was palpated and a 2 hr

(2) At stator outlet for design flow rate, the values of axial velocity and the total pressure decrease between near the suction surface of the blade and the hub surface

Although the new syn- thetic trial met with a relative amount of success, in that the two series of structures 8 and 10 were obtained using the acidic reaction between 2

Let f(x, y) be the density (=mass per unit area) of a distribution of mass in the xy -plane. 10 Vector Integral Calculus.. 10 Vector Integral Calculus.. 1) Change of Variables