• 검색 결과가 없습니다.

f(x, y) over the region R

N/A
N/A
Protected

Academic year: 2022

Share "f(x, y) over the region R"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

중앙대학교 건설환경플랜트공학과 교수

김 진 홍

- 10주차 강의 내용 -

(2)

10.3 Calculus Review : Double Integrals

 The double integral of

f(x, y) over the region R

is denoted by





R

f ( x , y ) d x dy

or R

f ( x , y ) dA

 Double integrals have properties quite similar to those of definite integrals. For any functions

f

and

g

of (x, y), defined and continuous in a region

R

,



Rkfdxdy k



R fdxdy (

k

; constant) (1)



R(f g)dxdy



R f dxdy



Rgdxdy



R f dxdy



R f dxdy



R f dxdy

1 2

Chap. 10 Vector Integral Calculus. Integral Theorems

Formula(1)

 If R is simply connected, then there exists at least one point (x0, y0) in

R

such that

(2) f x y dx dy f x y A

R ( , ) ( 0, 0)



where

A

is the area of

R

. This is called the mean value theorem

for

double integrals.

(3)

Evaluation of a double integral

Evaluation of Double Integrals by Two Successive Integrations

Double integrals over a region R may be evaluated by two successive integrations.

We may integrate first over y and then over x. Then the formula is

(3)



R

 

b a

x h

x

g f x y dy dx

dy dx y x

f ( , ) [ ( ) ( , ) ]

) (

Here y=g(x) and y=h(x) represent the boundary curve of R and, keeping x constant, we integrate f(x, y) over y from g(x) to h(x). The result is a function of x, and we integrate it from x=a to x=b.

Chap. 10 Vector Integral Calculus. Integral Theorems

Similarly, for integrating first over

x

and then

y

the formula is

(4)



R

 

d c

y q

y

p f x y dx dy

dy dx y x

f ( , ) [ ( ) ( , ) ]

) (

The boundary curve of

R

is now represented by x=p(y) and x=q(y). Treating y as a constant, we integrate

f(x,y)

over x from p(y) to q(y) and then the resulting function of

y

from y=c to y=d.

(4)

Ex. 1) Evaluate the integrals (a)

 

12

3 2

0 x ydydx (b)

 

03

2 2

1 x ydxdy

(a) Regarding x as a constant,

2 2

1 2 2 2

1 2

2 3

2 x

x y dy y x

y

y

 

 



 

03

2 2 1 3 2

0 2

27 2

3x dx dx

dy y x

(b)

 





2 1 3

0 2 3

1 3

0 2 2 1 3

0 2 2

1 2

9 27 3 y dy ydy dy x

dx y x dy

dx y x

x

x

Chap. 10 Vector Integral Calculus. Integral Theorems

Ex. 2) Evaluate the integrals

0

12ysin(xy)dxdy

xy

dy y y dy

dy dx xy

ysin( ) cos( ) xx ( cos2 cos )

0 2 0 1

2 1

0

 

 

0 sin

2 2sin 1

0



y y Ex. 3) Evaluate the integrals

 

12

2 2

0 (x 3y )dydx

12 2 2

0 (x 3y )dydx 2 xy y3 yy 12dx

0 [  ]

02 (x7)dx 12

(5)

Application of Double Integrals

The area

A

of a region

R

in the

xy

-plane is given by the double integral



R

dx dy A

The volume V beneath the surface z = f(x,y) (>0) and above a region R in the

xy

-plane is



R

f x y dx dy

V ( , )

Chap. 10 Vector Integral Calculus. Integral Theorems

Double integral as volume

Ex. 4) Evaluate x y dA



R(  )2 over the region 2x2

yy1x2.

The parabolas intersect when 2x2 1x2, x1

The region R is, R {(x,y)/1 x 1, 2x2y 1x2} bounded by parabolas and

A d y

R x



(  )2 x y dydx

xy y

yy xx dx x

x

2 2 2

2

1 2 1 2

1 1

2 1

1 ( 2 )

  

  

15 ) 32 1 2

3

( 4 3 2

1

1      

x x x x dx

(6)

Ex. 5) Find the volume V beneath the paraboloid zx2y2 and above the

2. x y  region bounded by line y  2x and parabola The region R is, R {(x,y)/0 x  2,x2y 2x}

A d y x

V



R( 2 2) x y dydx

x y y

yy xxdx x

x

3 2 2 2

0

2 2 2

2 0

2(  )   /3 2

  

x dx x

x x x

x )

3 ) ( 3

) 2 ) ( 2 ( (

3 2 2 2 3 2 2

0   

x dx x x

3 ) 14 ( 3

3 4

2 6

0   

21 5 76 21635

2

0 4 5

7  

 

x x x

Chap. 10 Vector Integral Calculus. Integral Theorems

Ex. 6) Evaluate integral

01

1sin 2

x y dydx

The region R is,R {0 x 1, xy 1} R {0 y 1, 0 xy}

01 1sin 2

x y dydx

 

0y y dxdy 1 2

0 sin

dy y

x xxy

1 2 0

0 [ sin ] 1 [ysiny2]dy

0

1 0 2)]

cos(

5 .

0 y

 0.5(1cos1)

(7)

Let f(x, y) be the density (=mass per unit area) of a distribution of mass in the

xy

-plane. Then the total mass M in

R

is



R

f x y dx dy

M ( , )

the center of gravity of the mass in

R

has the coordinate , where x, y





R Ryf x y dxdy

y M dy

dx y x M xf

x 1 ( , )

) ,

1 ( and

the moments of inertia and of the mass about the x- and

y-

axes, respectively, are x

I

Iy

dy dx y x f x I

dy dx y x f y

Ix



R 2 ( , ) , y



R 2 ( , )

and the polar moment of inertia

I

0 about the origin of the mass is, dy

dx y x f y x I

I

I0xy



R( 22) ( , )

Chap. 10 Vector Integral Calculus. Integral Theorems

(8)

Change of Variables in Double Integrals, Jacobian

For a definite integral the formula for the change from

x

to

u

is

(5)

du

du u dx x f dx x

b f

a ( ) ( ( ))

Here we assume that x = x(u) is continuous and has a continuous derivative.

The formula for a change of variables in double integrals from

x, y

to

u, v

is

; the absolute value of the Jacobian

(7) u

y v x v y u x v

y u

y v

x u

x v

u y J x

) , (

) , (

(6) dudv

v u

y v x

u y v u x f dy

dx y x

R f R



( , )



( ( , ), ( , )) (( ,, ))

Chap. 10 Vector Integral Calculus. Integral Theorems

) , (

) , (

v u

y x

(9)

Ex. 1) Change of Variables in a Double Integral

Evaluate the following double integral over the square

R

. dy

dx y

R(x22)



Sol.) The shape of

R

;xyu, xyv

2 1 2 / 1 2 / 1

2 / 1 2 / 1 ) , (

) ,

( 

 

  v u

y J x

R

corresponds to the square 0≤u≤ 2, 0≤v≤2 .

3 8 2

)1 2(

) 1

( 2 2 2

0 2

0 2

2

 



R x y dxdy u v dudv

) 2(

), 1 2(

1 u v y u v

x

Therefore,

Region R in Example 1

In case of the polar coordinates r and θ, and . Thenxrcos yrsin r r

r r

y

J x  

 

 

 sin cos

sin cos

) , (

) ,

( and

(8) f x y dxdy f rrrdrd

R R



( , )



* ( cos , sin )

where R* is the region in the rθ-plane corresponding to R in the xy-plane.

Chap. 10 Vector Integral Calculus. Integral Theorems

(10)

Ex. 2) Evaluate x y dA, where

R

is the region in the upper half-plane

R(3 4 2)



Sol.) The region R is,

bounded by circles x2  y2 1 and x2 y2 4.

} 4 1

, 0 / ) ,

{(   22

x y y x y

R A d y

R x



(3 4 2) 0 (3rcos 4r2sin2)rdrd 2

1

 

(1r2,0

)

d dr r

r cos 4 sin ) 3

( 2 3 2

0 2

1

 

r3 r4 2 rr 12d

0 cos sin

2

d

0 7cos 15sin

 d



0 7cos 152 (1 cos2 )

0

2 4 sin 15 2

sin 15

7 

2

15

Chap. 10 Vector Integral Calculus. Integral Theorems

Ex. 3) Evaluate dydx

y x

x

 

02 x 8

2 2

2

5 1

Sol.) dydx

y x

x

 

02 x 8

2 2

2

5

1

rdrd

r2

2 /

4 /

8

0 5

1

 

drd

r r

2 2

/

4 /

8

0 5

2 2

1

 

r d

/2

4 /

8 0 2) 5 2 ln(

1

d

/2

4

) /

5 ln 13 2(ln 1

5 ln13 8

) 2 0

, 8

(x y x2 x

(11)

Ex. 4) Double Integrals in Polar Coordinates. Center of Gravity. Moment of Inertia Let be the mass density in the region(Fig. below). Find the total mass, the center of gravity, and the moments of inertia .

1 ) , (x yf

, 0

,I I Ix y Sol.) The total mass,

4 2

1

2 / 0 2

/ 0

1 0

 

 



dxdy

 

rdrd

d

M R

The center of gravity,

 

 

 

3 cos 4

3 1 cos 4

4 /2

0 2

/

0 1

0

 

r rdrd

d

x

3

4

y for reasons of symmetry The moments of inertia are

r rdrd d

dxdy y Ix R

2 2 / 0 2

/ 0

1 0

2 2

2 sin

4

sin

1

 



) 16 2 0

8 ( ) 1

2 cos 1

8 ( 1

2 / 0

π θ π

d

π θ

16

Iy for reasons of symmetry,

0 8

Ix Iy I

Example 4

Chap. 10 Vector Integral Calculus. Integral Theorems

(12)

감사합니다

참조

관련 문서

In this paper our aim is to establish some geometric properties (like starlikeness, convexity and close-to-convexity) for the generalized and normalized Dini functions.. In

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

Successive substitution, also known as iteration, is a method for finding roots of equations by repeatedly evaluating a function at previous

Within the Fresnel approximation, there are two approaches to determining the complex amplitude g(x, y) in the output plane, given the complex amplitude f(x, y) in the

Sinusoidal waves traveling in the z direction and have no x or y dependence, are called plane waves, because the fields are uniform over every plane perpendicular to the

[r]

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of